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While predictive modeling for unit nonresponse in panel surveys has been explored in various
contexts, it is still under-researched how practitioners can best adopt these techniques. Currently,
practitioners need to wait until they accumulate enough data in their panel to train and evaluate
their own modeling options. This paper presents a novel “cross-training” technique in which we
show that the indicators of nonresponse are so ubiquitous across studies that it is viable to train a
model on one panel study and apply it to a different one. The practical benefit of this approach is
that newly commencing panels can potentially make better nonresponse predictions in the early
waves because these pre-trained models make use of more data. We demonstrate this technique
with five panel surveys which encompass a variety of survey designs: the Socio-Economic
Panel (SOEP), the German Internet Panel (GIP), the GESIS Panel, the Mannheim Corona
Study (MCS), and the Family Demographic Panel (FREDA). We demonstrate that nonresponse
history and demographics, paired with tree-based modeling methods, make highly accurate
and generalizable predictions across studies, despite differences in panel design. We show how
cross-training can effectively predict nonresponse in early panel waves where attrition is typically

highest.
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1 Introduction

Panel surveys are an irreplaceable source of data for social
scientists. These surveys require more skilled management
and resources than one-time surveys, so sources of error
must be controlled as much as possible (Pforr and Schroder
2016). Nonresponse is one of the more severe sources of
survey error, and panel survey managers are increasingly
under pressure to ameliorate nonresponse rates (Fuchs et al.
2013; Luiten et al. 2020). This paper is exclusively con-
cerned with “unit nonresponse®, that is, when a participant
is invited to a panel wave and, for any reason, does not sub-
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mit any usable data. This variety of nonresponse is distinct
from permanent dropout from a panel or item nonresponse.

A promising approach to reducing nonresponse bias is
the application of predictive modeling to forecast nonre-
sponse in panel surveys. In this approach, practitioners
build models that output each participant’s estimated non-
response propensity. These estimates could then help to tar-
get the most at-risk participants with interventions aimed at
mitigating their risk of nonresponse (Jacobsen et al. 2021;
Jankowsky et al. 2022; Kern et al. 2021; Kocar and Biddle
2022; Mulder and Kieruj 2018). Machine Learning (ML)
is an approach to predictive modeling. In this application,
data collected about participants in a panel and their non-
response history is used to train (i.e., ‘fit’) an ML model
to predict future nonresponse behavior based on historic
patterns (Hastie et al. 2009; James et al. 2013).

Many research papers have explored this approach to
predicting participant nonresponse (Bach et al. 2020; Cheng
et al. 2016; n. D.; Kern et al. 2019; Kocar and Biddle 2022;
Mulder and Kieruj 2018; Olson 2013; Zinn and Gnambs
2022). However, most of these papers typically focus on


https://doi.org/10.18148/srm/2025.v19i2.8473
https://europeansurveyresearch.org
https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://orcid.org/0000-0001-7363-4299
https://doi.org/10.18148/srm/8473

124 JOHN COLLINS, CHRISTOPH KERN

one specific panel study, train a range of prediction models,
and compare the results obtained for that panel. What is
absent in this literature is an understanding of how well the
findings about one panel study transfer to another panel. No
two longitudinal studies are alike; they differ widely in their
‘survey design’, including characteristics such as the target
population, the unit of study (i.e., individuals or household
respondents), the mode, topics, and wave frequency. When
a particular prediction approach is highly effective in one
survey context, it is still an open question whether that
technique will also be effective in another context.

Practitioners developing a new panel survey and inter-
ested in using predictive modeling are left uncertain as to
which modeling approach from the literature to adopt. Prac-
titioners could wait until they accumulate enough survey
waves to train various models on their panel and select
the best performer for future use. However, this requires
the panel to accumulate many panel waves and potentially
lose panelists during that time. In this paper, we present
the possibility of “cross-training,” that is, using data from
pre-existing panels to train a nonresponse prediction model
and apply it to a new panel. Our underlying assumption is
that ML models fitted on nonresponse history and demo-
graphic data are consistently effective so that these models
can be transported across different contexts. Therefore, our
first guiding research question is as follows.

1.1 What is the Predictive Performance of a Model
Trained on One Panel but Applied to Another Study?

Assuming that transporting models is viable, we want to
understand when and why these models can (or cannot) be
interchanged between panels. For example, suppose non-
response history and demographics like age and income
are the key indicators of nonresponse across many different
panels. In that case, it explains how cross-training would
be effective because this predictive process is ubiquitous
across contexts. Alternatively, cross-training between pan-
els would likely fail if, for example, nonresponse history
were more predictive in panels with monthly versus annual
waves. To understand when cross-training may or may not
be successful, we aim to analyze the consistency of the
efficacy of the algorithms and predictors across different
panel contexts. Therefore, our second research question is
as follows.

1.2 Across Different Survey Contexts, is There a
Difference in What Predictors and Algorithms are
Effective in Predicting Nonresponse?

We test these questions by gathering data from five differ-
ent panel surveys in Germany, each with a different sur-
vey design: the Socio-Economic Panel (SOEP), the Ger-
man Internet Panel (GIP), the GESIS Panel, the Mannheim
Corona Study (MCS), and the Family Demographic Panel
(FREDA). These panels were selected to compare com-
mon differences between panel surveys. These studies en-
compass various sampling methods, recruitment methods,
data collection modes, units of study, and wave frequen-
cies. We derive equivalent features (i.e., predictors) across
all datasets in each survey. For each dataset, we train a
set of models and compare the predictive performance of
each model for predicting nonresponse in each panel. Our
study is the first to systematically (cross-)train and evaluate
machine learning models for nonresponse prediction across
multiple panels at scale.

Our study design allows us to identify which differ-
ences in survey characteristics cause certain algorithms to
be specifically effective or reduce performance. We also
compare the ‘permutation feature importance’ (PFI — Alt-
mann et al. (2010)), which measures how much each fea-
ture contributes to predictive performance. We then evaluate
whether specific features are always helpful for prediction-
making in any context or whether certain features are more
or less powerful under certain contexts.

We propose a process for exploring how ML models
can be trained on one panel and applied to another. How-
ever, which algorithms and predictors should we explore?
Furthermore, how would we evaluate them? In the Back-
ground Sect. 2, we establish that previous research has most
often considered logistic regression or tree-based models
trained on demographic and past-nonresponse behavior
data. In the Methods Sect. 3, we introduce how we imple-
ment those modeling approaches using data from the five
panel surveys. We also compare and contrast the design
characteristics of each of these five panels. To answer re-
search question one, we introduce a framework for ‘cross-
training’ models, that is, training models on one panel’s
data and then making nonresponse predictions in a another
panel.

To answer research question two, we examine whether
certain predictors are more or less important in different
panels. In the Results Sect. 4, we show that cross-training
can accurately predict nonresponse in the second wave of
a given panel. The ubiquity of nonresponse history and
demographics as effective predictors explains this outcome.
In the Discussion Sect. 5, we consider what these findings
should mean for survey practitioners and the limitations of
this research.
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2 Background

Many studies explore forecasting nonresponse in panel sur-
veys (Bach et al. 2020; Hill et al. 2020; Jacobsen et al. 2021;
Jankowsky et al. 2022; Kern et al. 2021; Kocar and Biddle
2022; Kreuter and Jackle 2008; Lipps 2007; Lugtig 2014;
McLauchlan and Schonlau 2016; Minderop and Weif3 2023;
Mulder and Kieruj 2018; Plewis and Shlomo 2017; RoB-
mann and Gummer 2016; Siegers et al. 2021; Uhrig 2008;
Voorpostel and Lipps 2011). In this section, we identify that
nonresponse history and demographics are often the most
powerful predictors of future nonresponse and that logistic
regression and tree-based models are highly successful in
many studies. This paper will take the extra step of demon-
strating that these features and techniques are consistently
effective across contexts and that this is why our proposed
cross-training approach is viable.

For this study, we are only interested in discussing re-
search that aims to predict future nonresponse instead of
explaining it. Also, we are interested in predicting nonre-
sponse propensity in the next wave, as opposed to other
possible prediction units like survival time (Lemay 2009).
This decision is because those units require more waves to
assess the outcome, and we are interested in models that
can be fitted as early as possible to reflect the survey prac-
titioner’s need for timely forecasts.

Of the previous studies that aimed to predict future unit
nonresponse, only one paper evaluated several surveys (al-
though only one was a panel study) and systematically
compared the results: Bach et al. (2020). In this paper,
the authors applied a common set of algorithms across
three surveys: the Longitudinal Internet Studies for the So-
cial Sciences (LISS), the Survey on Free Time (SOFT),
and the Employment and Purchase Behavior in Germany
(EPBG). LISS is a household panel survey with around
5000 households sampled by geographic clustering across
the Netherlands. LISS recruited households by mail, tele-
phone, or face-to-face interviews. Regular surveys about
topics concerning internet usage have been conducted on-
line and monthly since 2007. SOFT and EPBG are cross-
section surveys. SOFT was a 2013, US-based telephone
survey with around 300 household respondents sampled by
random selection of ZIP codes from the postal service reg-
istry. EPBG was a 2011 telephone survey of 12,400 Ger-
mans sampled from the federal administrative labor force
records. Each survey collected different data, and the re-
searchers used different covariates across the same set of
models. Demographic data was available across all three
surveys. The models for LISS used information about pre-
vious nonresponse history, while SOFT and EPBG used
information from the recruitment process, such as the num-
ber of missed invitation calls. The two implemented predic-
tion methods were logistic regression and gradient boost-

ing (tree-based). The gradient-boosted models performed
best, with very high Area Under Receiver Operator Curve
(AUROC") scores of 0.84 for EPBG, 0.88 for LISS, and
0.94 for SOFT. This study demonstrates the efficacy of tree-
based models with demographics and nonresponse history,
yielding 0.88 AUROC when forecasting nonresponse in the
LISS panel.

Zinn and Gnambs (2022) trained models to predict next-
wave nonresponse in the National Educational Panel Study
(NEPS). NEPS is a panel survey, with waves running ev-
ery six to twelve months, starting in 2009. The sample of
over 40,000 German residents was drawn through cooper-
ation with educational institutions. In each of the six co-
horts recruited since 2009, there is a mixture of newborns,
kindergarteners, primary schoolers, high schoolers, post-
high schoolers, and post-tertiary adults. Zinn and Gnambs
(2022) experimented with two models: Bayesian Additive
Regression Trees (BART) and logistic regression. Because
NEPS is focused on education-related topics, many of the
model’s features were substantive information like the num-
ber of books a child has at home, the number of sick days
taken, and demographics like migration background and
federal state. Zinn and Gnambs report their results in terms
of accuracy (the portion of correct predictions) as 89-99%
for the first five waves of NEPS with both models. This
study is an example of another successful implementation
of tree-based and logistic regression models.

Kocar and Biddle (2022) predicted next-wave nonre-
sponse in the Life in Australia (LIA) panel survey. LIA has
run roughly monthly waves since May 2018. The sample
was recruited by random digit dialing of registered num-
bers amongst the general Australian population. Interviews
were conducted online. Kocar and Biddle used demograph-
ics, past nonresponse behavior, and online paradata such
as browser type and page-click behavior. Kocar and Bid-
dle fitted these features with a logistic regression model
and achieved a recall score of over 0.9 and a (consider-
ably lower) precision of 0.2. This study also shows the
viability of logistic regression with demographic and past-
nonresponse predictors.

Mulder and Kieruj (2018) predicted next-wave nonre-
sponse in the LISS panel. They used features such as de-
mographics, past nonresponse, physical/mental health, per-
sonality measures, and incentive sizes. Mulder and Kieruj
used these features to build various prediction models: lo-
gistic regression, support vector machines, random forest,
gradient boosted, and neural networks. The resultant Area

! For a classifier that outputs the probability of a given case belonging
to a certain class, AUROC is a metric that measures the trade-off be-
tween sensitivity (true positive rate) and specificity (true negative rate).
AUROC values range from O to 1, where 1.0 represents a perfect classi-
fier, and 0.5 represents random guessing (the worst possible classifier).
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Under Receiver Operator Curve (AUROC) scores ranged
from 0.65 for the neural network to 0.79 for the random
forest.

Kern et al. (2021) predicted next-wave nonresponse with
the GESIS Panel. The GESIS Panel is a general German
population panel with online/postal options, and the wave
frequency is between two and three months. The authors
used demographics, past nonresponse behavior, and rolling-
average nonresponse rates with varying window sizes (i.e.,
average nonresponse over the past two waves, three waves,
etc.). These researchers applied these predictors to various
models, including logistic regression, random forest, and
extra tree classifiers. Over the GESIS Panel waves from late
2013 to mid-2017, these models achieved average AUROC
scores ranging from 0.86 with penalized logistic regression
to 0.89 with random forest.

These studies show that panel study practitioners are in-
terested in predictive modeling to intervene with at-risk par-
ticipants preemptively. However, panel studies have differ-
ent techniques for alleviating nonresponse bias. Numerous
studies analyze the characteristics of responders and non-
responders to evaluate the risk of nonresponse bias and
the effectiveness of nonresponse weights to mitigate such
bias. Some examples of this analysis were carried out un-
der the University of Michigan’s Panel Study of Income
Dynamics (PSID) (Fitzgerald et al. 1998) and the United
Kingdom’s Understanding Society panel (Lynn et al. 2023).
Such explanatory (rather than predictive) modeling simi-
larly indicates that a core set of individual characteristics
can consistently differentiate between responders and non-
responders: Durrant and Steele (2008) analyze nonresponse
in six United Kingdom Government surveys and report that
only selected predictor variables (such as self-employment,
household type, region) exhibit survey-specific effects while

Table 1
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many demographic characteristics are important predictors
of nonresponse for all six surveys.

This literature review shows that nonresponse history and
demographics used in a logistic regression or tree-based
model have often been effective in predicting nonresponse.
Across these studies, AUROC values in the 0.8-0.9 range
have been achievable with these techniques. However, not
all implementations were equivalent in that model parame-
ters varied, and the exact method for deriving each variable
differed across studies. This paper aims to apply the same
technique to various panels to understand which approaches
are ubiquitously effective.

3 Methods

3.1 Data

We selected five panel surveys which cover a range of com-
mon panel survey designs. These panels target the gen-
eral German population but vary widely in other respects.
We have a wide range of maturities, with SOEP being a
“traditional” and widely used panel study commenced in
1984, whereas FREDA is extremely recent, starting in 2021.
The purpose of the surveys varies from FREDA, which is
focused on family affairs, to the GESIS Panel, which is an
omnibus survey. MCS is focused on the COVID-19 pan-
demic. Survey modes have been evolving over the past
several decades, with face-to-face, phone, mail, and on-
line modes all varying in prominence over time. Through-
out its lifetime, SOEP has employed many different survey
modes, including face-to-face and mail, compared to the
GESIS Panel and FREDA, which focus on mail and online

Comparison of survey designs. F2F: Face-to-Face, HH: Households, I: Individuals

Characteristic =~ SOEP GIP GESIS Panel MCS FREDA

Started 1984 2012 2013 2020 2021

Modes F2F, Phone, Post, Online Online/Post Online Online/Post
Online

Wave Frequency Annual Two months Two-three months Weekly Three months

Unit of study HH/ HH/I | I Family/singles

Sampling
Method

Recruitment age

Recruitment
method

Main Topics

Regionally clustered,
multi-stage random
samples

16+
F2F/Phone

Economics, politics,
psychology

Regionally clustered,
multi-stage random
samples

16-75
F2F

Attitudes, politics,
economics

Probabilistic sample of
the German-speaking
population

18-70
F2F

Omnibus

Regionally clustered,
multi-stage random
samples

16-75
F2F

COVID-19

Probabilistic sample of
the German-resident
population

18-49
Phone/Post

Family and relationships
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data collection. GIP and MCS are entirely online panels.
By comparing these surveys, we evaluate how prediction
techniques in one era and with one given study objective
can generalize to another context. In the following sections,
we describe each panel in detail before summarising their
similarities and differences in Table 1.

3.1.1 The Socio-Economic Panel (SOEP)

The Socio-Economic Panel (SOEP) is a German general-
population household survey (Liebig et al. 2022). SOEP
collects data about economic matters, political attitudes,
and psychological factors, among other topics. It has been
running annually since 1984. In this paper, we follow the
initial recruitment intake of 15,000 participants, which has
steadily declined to around 2500 as of 2020 (see Fig. (Ap-
pendix) 1). Over the years, survey modes have included
face-to-face, phone, mail, and online. (DIW Berlin 2023;
Goebel et al. 2019; Siegers et al. 2021). The initial sampling
method selected households by random walks across geo-
graphic regions to provide a representative sample of Ger-
many at the time (i.e., pre-reunification). For each house-
hold, every resident over the age of 16 was invited to pro-
vide an individual response. Also, a ‘head of household’
provides information about the whole household. SOEP
panelists can exit the survey by explicit request, death, or
moving abroad.

3.1.2 German Internet Panel (GIP)

The German Internet Panel (GIP) is a general German po-
pulation survey concerning politics and economics, among
other topics (Blom et al. 2015, 2022). The panel com-
menced in 2012 and runs waves every two months. We
follow the initial recruitment intake of roughly 1500 partic-
ipants (see Fig. (Appendix) 1). The survey mode is online
only. Initial sampling was based on geographic stratified
clustering, in which regions of roughly equal populations
were selected to be representative of Germany’s distribu-
tion of federal states and urbanity. German residents aged
16 to 75 were eligible to participate. Participants were re-
cruited by face-to-face interviews, and subsequent waves
were conducted online. Households without sufficient in-
ternet or computer access were provided with devices and
support.

One issue with GIP data is that the published dataset
does not include whether participants have asked to exit the
panel. As a result, we cannot distinguish between temporary
nonresponders and permanent dropouts. In other panels, we
can exclude exited participants and analyze only tempo-
rary unit nonresponse. This matter has the effect of making

the apparent GIP active panel size (the number of partici-
pants invited to each wave) stay at roughly 1500 over time,
whereas other panels attrite invitees (see Fig. (Appendix) 1).

3.1.3 GESIS Panel

The GESIS Panel is an omnibus survey of the general Ger-
man population, covering topics such as politics, time use,
and well-being (GESIS 2023). It commenced in October
2013 and ran in two-monthly waves until February 2021,
when the wave frequency became three-monthly.

We follow the initial recruitment intake, which com-
menced with roughly 5000 participants and steadily de-
clined to around 2500 by 2021 (see Fig. (Appendix) 1). The
survey has two modes: Web (roughly 75%) and mail (Bosn-
jak et al. 2018; GESIS 2021, 2023). The GESIS Panel’s
sampling method randomly selected invitees from the Ger-
man population register. The recruitment criteria allowed
German residents between the ages of 18-70 to participate.
Recruitment interviews were conducted face-to-face. Pan-
elists exit the study either by explicit request or by nonre-
sponding to three consecutive waves.

There is a peculiarity regarding the GESIS Panel’s first
two post-recruitment interview waves (waves 3 and 4). Re-
cruitment took many months, but the Panel managers were
concerned about losing participants if they were not con-
tacted for a long time. Therefore, only the participants re-
cruited by that time were invited in these early waves. The
result is a substantially smaller sample in those early waves
(Bosnjak et al. 2018).

3.1.4 Mannheim Corona Study (MCS)

The Mannheim Corona Study (MCS) was a survey of indi-
viduals concerning how COVID-19 affected the daily lives
of the general German population. The panel ran weekly
waves for 16 weeks from 20th March to 10th July 2020. All
waves were administered online. The same team managed
the Mannheim Corona Study as the GIP, and the partici-
pants were a randomly selected subset of GIP participants
as of 2020, which was larger than its initial recruitment size
of 1500 (because of additional intakes in 2014 and 2018).
Therefore, unlike all other surveys in this study, MCS did
not start with a typical recruitment survey because the par-
ticipants had already been recruited (Blom et al. 2021).
Because the survey only ran for 16 weeks, participants who
committed to the study were invited every week. Cases of
requests to exit were minimal, and no data is available on
those requests. Therefore, the apparent sample size of el-
igible panelists for MSC, like GIP, stays constant at 4400
invitees (see Fig. (Appendix) 1).



128 JOHN COLLINS, CHRISTOPH KERN

3.1.5 The German Family Demography Panel Study
(FREDA)

The German Family Demography Panel Study (FREDA) is
a panel survey that aims to study family life and relation-
ships (including singles) in Germany (Bujard et al. 2023).
The waves are annual, consisting of three sub-waves three
months apart each year. Starting in 2021, in each subwave,
around 38,000 participants were invited to respond. The
modes were online and mail. Initial sampling was random
sampling from the population register. German residents be-
tween 18-45 years of age were eligible to participate. As of
this paper, only the first three sub-waves of data have been
published (Federal Institute for Population Research 2022).
Therefore, we can evaluate how predictive techniques per-
form when applied to a freshly commenced panel survey.
Currently, participants who completed the first wave are
all invited to the second and third wave, so none have yet
exited the panel.

3.2 Design Comparison

Table 1 summarizes the above panel design aspects. We can
see that all panels target the German population. However,
they differ in various aspects: One of the most substantial
differences is the wave frequency, ranging from annual to
weekly waves. We expect that the period between waves
would impact the drivers of nonresponse because the fre-
quency leads to very different commitments of time and
discipline. Another important consideration when compar-
ing panel surveys is the treatment of the recruitment inter-
views. Each panel, except for MCS, starts with a recruit-
ment interview, and we can only access data about those
participants who responded because those who did not par-
ticipate did not agree to have their data shared. The result is
that when predicting nonresponse in the first post-recruit-
ment wave, the models trained on data from recruitment
waves are missing nonresponse history, which we expect to
be a very important predictor. This issue needs to be kept
in mind when we review our results.

3.3 Modeling Setup

3.3.1 Outcome

The dependent variable that each model aims to predict is
each participant’s nonresponse at the next wave in a given
panel. We provide the American Association for Public
Opinion Research (AAPOR) response codes we consider
nonresponses in Table (Appendix) 3. Where possible, we

aim to follow AAPOR’s definition of nonresponse ‘RR6’,
which includes partial responses, failure to make contact,
implicit and explicit refusal, and the participant’s incapac-
ity or death. However, AAPOR response codes are only
available for the GESIS Panel and FREDA. We attempted
to derive similar response codes for the SOEP, which pre-
dates the AAPOR standard and adopted the system only
in later waves. Furthermore, nonresponse in the GIP can
only be inferred based on whether a given participant ID is
not present in the wave. MCS records only a binary ‘par-
ticipation’ variable, so we cannot infer the specific type of
nonresponse. See Table (Appendix) 3 for the data used to
derive nonresponse in each panel.

We filter data only to include members of each panel’s
first recruitment intake to avoid any effect of sample re-
freshment. Finally, each survey wave is given an individual
date to compare panels over time. We date each survey
from the start of the data collection period as many of them
do not publish a specific end date of data collection. Fig-
ure (Appendix) 2 shows the timeline of nonresponse rates
at each wave for each panel we are analyzing. Nonresponse
in GESIS starts high (20-25%) and falls gradually (10%) as
low-propensity participants exit the panel, leaving only “re-
liable” participants. In GIP and MCS, participants are never
removed from the panel for consecutive nonresponses, so
the subsequent nonresponse rate climbs over time, from
20 to 40% and 18 to 24%, respectively. SOEP maintains
a steady average nonresponse rate between 8-12%, likely
because the managers maintain a target response quota and
have a year to meet it. Nonresponse rates were 41 and 45%
across the second and third FREDA waves.

3.3.2 Predictors

To predict each participant’s propensity of nonresponse in
the next wave, we input the data we have about each partici-
pant as of a given wave into an ML algorithm. We use ‘Tem-
poral Cross-Validation’, meaning we iterate over waves in
which we predict nonresponse using only data available up
until that time (Bergmeir and Benitez 2012; Kern et al.
2021).

Table 2 details the variables we derived from each panel
to make predictions. The predictor variables are selected to
cover common types of predictors used in past research as
long as those covariates can be derived from all five panels
of our study. Following previous studies in the literature
review, we focus on socio-demographic characteristics and
nonresponse history. To account for the concept of survey
fatigue (Lugtig 2014), we additionally include a variable
for the number of waves each participant has been invited
to thus far. These are variables that all of the panel sur-
veys collect despite their different topics of focus. For each



PRE-TRAINED NONRESPONSE PREDICTION IN PANEL SURVEYS WITH MACHINE... 129

Table 2

Predictors derived for each panel

The respondent positively self-identifies as married.

Derived by the survey date and year of birth.

Count of people residing in the participant’s residence.

Monthly combined income of the participant’s household in Euros.
Monthly personal income in Euros.

The participant indicated a ‘female’ sex.

The participant self-identifies as unemployed. We treat part-time, full-time,

and parental leave as employment. Unemployment includes studying,
retraining, or being retired.

Type Variable Value range Description
Socio-demographics  Is Married 0,1

Age 0 — infinity

Household Size 0 — infinity

Household Income 0 — infinity

Personal Income 0 — infinity

Is Female 0,1

Is Unemployed 0,1
Response history Invited Waves 1 — infinity

Nonresponse This Wave 0,1

Historic Nonresponse Rate  0—1

Count of the number of waves this respondent had ever been invited to.
Indicates if the participant did not respond in the current wave.

The participant’s average nonresponse rate over all of their invited waves.

demographic variable, we also include a binary variable
indicating missingness. Also, the different panels refresh
demographic data at different intervals: GESIS, SOEP, and
GIP periodically update demographic data, but FREDA and
MCS have such short running times that these variables are,
in practice, time-invariant in those cases.

Note that we scale (standardize) each continuous varia-
ble using only data available at the time of prediction. This
way, our retrospective models are fitted the way they could
have been at the time. Table (Appendix) 1 shows the de-
scriptive statistics of the unscaled predictor variables across
all panels.

3.3.3 Prediction algorithms

In this study, we test prominent models representing the
main types of classification algorithms explored in past re-
search.

e Logistic regression. Regression models are often suc-
cessful when classification can be made by additively
summarising the effects of the covariates. We eval-
uate penalized and unpenalized logistic regressions
(Le Cessie and Van Houwelingen 1992; Tibshirani 1996).
Although logistic regression can be specified to account
for feature interactions by deliberately building in inter-
action terms, we use this method with only main effects
as we use other algorithms that can algorithmically ac-
count for interactions in this study.

e Random forest. Tree-based models are often successful
in cases where there are complex interactions between
variables. A random forest is a set (‘ensemble’) of deci-
sion trees tuned to maximize the homogeneity of cases at

the endpoint of each decision path. The final prediction is
based on the portion of decision trees that ‘vote’ for each
classification (Breiman 2001; James et al. 2013).

e Gradient Boosted Classifier (GBC). This algorithm
is similar to random forest, except that trees are built
sequentially rather than independently. Compared to ran-
dom forests, boosting may achieve better performance
when predicting nonresponse but needs more careful
model tuning because small changes in the ensemble
setup can greatly impact the results (Friedman 2001;
James et al. 2013).

For each algorithm, we repeat the training process with
different parameter settings. This process is a common part
of ML modeling, called ‘hyperparameter tuning’, and is in-
tended to discover, by experimentation, which parameters
(in this context called ‘hyperparameters’ ?) are the best al-
gorithm settings (Feurer and Hutter 2019). We will trial
parameters as described in Table (Appendix) 2. For com-
pleteness, we present the results of all hyperparameter set-
tings.

3.3.4 Model Comparison

We limit the maximum number of preceding waves used
in the training set to avoid long-fitting times and adverse

2 Hyperparameters are constant values in a machine learning algorithm
that are set before training. Examples include the penalty rate in regu-
larized logistic regression or the choice of a homogeneity measure in
a classification tree. Tuning hyperparameters involves repeatedly train-
ing the model with different hyperparameter values and comparing out-
comes using a specific performance metric to select the best settings.
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impacts from using training data from too far in the past
to be relevant. Therefore, the maximum number of train-
ing waves for all panels is up to the ten most recent waves
for each test wave. For the GESIS Panel, SOEP, and GIP,
we test our models on the second through to the 20th sur-
vey wave. This limitation is also to avoid long computation
times and also we are concerned with nonresponse in the
earliest stages of a panel. We test our models for MCS
on the second through to the sixteenth wave, which is all
available data. For FREDA, we test on the second wave, as
only three waves are currently available. We predict non-
response in each of the outlined waves and calculate the
AUROC, recall, and precision scores. Recall is the propor-
tion of positive cases that the model correctly identifies’.
Precision is the proportion of predicted positive cases that
are true positives*. AUROC is a value between 0 and 1,
indicating the trade-offs between false positives and false
negatives. An AUROC of 0.5 represents the worst possible
binary classifier, and 1.0 is the best score.

Further, we compare models through Permutation Fea-
ture Importance (PFI)>. PFI measures how much a given
predictor contributes to a model’s predictive performance
(Altmann et al. 2010; Oh 2022; Saarela and Jauhiainen
2021). Feature importance is calculated by taking a trained
model and then scrambling each predictor’s values by ran-
domly shuffling values in that column for each predictor in
the test data. That test data, with a single scrambled pre-
dictor, is inputted into the trained model, and the AUROC
score of those predictions is calculated. We repeat this pro-
cess ten times for each predictor with a different random
shuffle. Each predictor’s PFI is the average loss in AUROC
compared to the original performance in the test dataset.
Because the shuffling neutralized the predictive power of
the scrambled predictor, the loss in AUROC indicates how
much predictive performance is contributed by that pre-
dictor. We calculate the PFI for each wave and report the
average for each variable across each panel. However, this
method is vulnerable to covariation. That means that when
two predictors are correlated, withholding one predictor will
not substantially reduce AUROC because the same infor-
mation is still available to the model through the other co-

3 Le., of those who nonrespond in the next wave, recall is the propor-
tion that was correctly predicted.

4 TLe., of those who were predicted to nonrespond in the next wave,
precision is the proportion that did so.

5 To measure PFI, we take a fitted machine learning model and input a
set of cases from the test set to measure the model’s baseline AUROC
scores. Next, we repeatedly input the same cases but shuffle the values
of a given predictor column, effectively removing that feature’s predic-
tive power, and measure the average AUROC scores with these “scram-
bled” test sets. The PFI is then calculated as the difference between the
baseline AUROC score and the average AUROC across these repeti-
tions. A higher PFI value indicates a greater drop in AUROC score
when the given predictor is withheld from the model.

variate. This issue means that correlated predictor pairs will
have their relative PFI understated. When we examine PFI,
we must remember that selected pairs of variables may have
their importances understated. Missing value flags, for in-
stance, covary with nonresponse.

3.4 Cross-Training

In this paper, we train models on one panel and then use
them to make nonresponse predictions in another panel. To
make the most use of our data, we conduct cross-training,
in which the training panel (i.e., the panel survey used for
model training) both predates and post-dates the test panel.

Latest Data Available

Time

Train Data

Training Panel ‘ Wave 1 ‘ Wave 2 ‘ Wave 3 ‘ Wave 4 ‘

Test Panel ‘ Wave 1 ‘ Wave 2 ‘ Wave 3 ‘ Wave 4 ‘

H_/
Test Data

Equivalent In Lifecycle

Time

24 Months
Train Data
N

Training Panel ‘ Wave 1 ‘ Wave 2} Wave 3 ‘ Wave 4 ‘

Test Panel ‘ Wave 1 ‘ Wave 2 ‘ Wave 3 Wave 4

Test Data

24 Months

Fig. 1

Examples of the two methods for cross-training models.
Here, we have a training and a test panel, each with dif-
ferent lengths of time between waves. In the ’latest data
available’ approach, we can train a model using only data
available by the start of the test wave. Because wave four
of our training panel was still in its fieldwork period when
the test wave started, we can only use data from up to wave
three of the training panel. In the ‘equivalent in lifecycle’
approach, we calculate that our test wave commenced 24
months into the panel’s lifetime. Therefore, we train a model
on any data that was available in the training panel within
24 months of its respective lifecycle. Because wave three of
the training panel was still in fieldwork as of 24 months, we
use up to wave two for the training data



PRE-TRAINED NONRESPONSE PREDICTION IN PANEL SURVEYS WITH MACHINE... 131

For example, we will show how SOEP data from 1985 can
predict nonresponse in GIP in 2012 but also apply a model
trained on GIP’s 2012 data to predict nonresponse in SOEP
in 1985. We provide two different methods for deriving the
training data, and evaluate both. These two methods are
as follows. Fig. 1 provides an illustrated example of each
method.

3.4.1 Latest Data Available

In this method, for each wave in the test panel (i.e., the
panel study used for model evaluation), we train a model
on a fixed number of waves (in our case, five) from the
training panel, which precede the start date of that target
wave. For example, the first wave of the GESIS Panel was
administered in 2013. We can train a model on five SOEP
waves from 2007 to 2012 and then use that model to predict
nonresponse in the first GESIS Panel wave in 2013. This
method aims to train a model using waves that are close to
the target wave in time because we expect the contexts to
be most similar when they are close together in time.

Note that we can only report results with this method
for cases where the training waves predate the target wave.
Therefore, we cannot, for example, predict nonresponse in
the starting waves of SOEP with GESIS Panel data. Instead,
we predict later SOEP waves once data from other panels
becomes available. Also, we do not cross-train between GIP
and MCS because they are drawn from a common set of
individuals.

3.4.2 Equivalent In Lifecycle

For each wave we predict nonresponse in the target panel,
we train a model on all waves in the training panel available
at the equivalent point in the survey’s lifetime. For example,
the fourth GESIS Panel survey wave takes place 12 months
after the first survey wave. We thus can train a model on
SOEP data using waves that took place up to 12 months
from the start of SOEP (which would be only the first SOEP
wave because it is an annual survey). Conversely, the third
SOEP survey wave takes place 24 months after the start of
SOEP, and we can predict nonresponse in this wave using
a model trained on the 12 GESIS Panel waves that took
place within 24 months of the start of the GESIS Panel.
This cross-training approach aims to compare equivalent
periods in the survey’s lifetime by, for example, applying
a model trained on the early period of one panel to the
equivalent period of the other panel.

4 Results

4.1 Model Comparison

We commence our results analysis by establishing a base-
line of prediction models’ performances. Fig. 2 shows the
performance results from training each model type with
data of the same panel study, using information available
as of each given target wave starting from the second wave
of each survey. In the early waves, AUROC is rather low
(<0.8) across all panels except MCS, the second wave of the
SOEP (in which there was substantial nonresponse, making
it easy to anticipate correctly), and the random forest mod-
els in the GESIS Panel. This limited early performance may
be because insufficient training data had accumulated at that
point to build effective models.

In addition, the recruitment waves may be detrimental
as training data. Each panel, except for MCS, starts with
a recruitment interview, and the GESIS Panel commences
with a two-stage recruitment (the same participants are in-
terviewed across two recruitment waves). Predicting nonre-
sponse following a recruitment interview is a fundamentally
different process than predicting nonresponse from a regu-
lar panel wave, and models trained on the former might not
reliably predict the latter. However, once the recruitment
waves are over and more training data accumulates, we can
see substantial improvement in AUROC across all panels.

Comparing performance across panels (Fig. 2), there is
a trend that shows higher prediction performance for panel
studies with more frequent panel waves. SOEP, an annual
survey, has an average AUROC of just below 0.8, while GIP
and the GESIS Panel, both two-monthly surveys in this pe-
riod, are around 0.9 and 0.8, respectively. MCS, which fea-
tures weekly surveys, exceeds 0.9. Predicting nonresponse
in FREDA, which, as of writing, has only one recruitment
wave and one regular wave for which we know the depen-
dent variable values, performs poorly at a high score of
0.6.

Each type of model performs equally well. Aside from
the results for MCS, however, tree-based models perform
better than logistic regression in the earliest one or two
waves of a panel study. This outcome indicates that flexible
models have a slight advantage in early waves, but in later
waves and established panels, main effects models may be
sufficient to achieve good performance. Equivalent figures
providing recall and precision scores are provided in Fig-
ures (Appendix) 3 and 4.

Fig. 3 shows which features were most predictive across
different panels. As survey wave frequency increases (GIP,
GESIS Panel, MCS), historic nonresponse becomes more
important for all models. As survey waves become less
frequent (SOEP, FREDA), demographic features become
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Comparing model performance across panels where each
panel. Auras around the lines are the range of scores across

model is trained using up to 10 preceding waves of the same
different hyperparameter values. However, models with different

hyperparameter settings have such close values that these auras are hardly visible. In the FREDA survey, we can only predict
nonresponse in wave three based on the data from wave two, with a model trained on wave one. In that wave, all models

achieved roughly 0.6 AUROC

relatively more important. However, nonresponse history
remains important across all models and panels, except for
FREDA (because data on nonresponders in the first recruit-
ment interview is omitted, meaning there is no nonresponse
history to exploit in the first training wave).

Survey mode has little impact. GESIS Panel is a mixed
mode panel study, while GIP and MCS are both online-
only, yet they all have similar feature importance profiles.
Age is a relevant predictor across all panels, although often
more important to random forest models, indicating that age
may have an interactive or non-linear effect. This outcome
corresponds to other research, which shows that very young
and very old participants are particularly at-risk groups for
nonresponse (Lipps 2009).

From this analysis, we can address our second research
question. Nonresponse history and demographics are ubig-
uitously effective across all of the panels analyzed in this

paper. AUROC scores after the first few waves of data
had accumulated converged across all panels at around
0.75-0.85. Tree-based models are usually better than lo-
gistic regression, but logistic regression is often almost as
good and sometimes slightly better.

4.2 Model Cross-Training

Fig. 4 shows the result of training nonresponse prediction
models on each of our five panel studies and applying them
to the GESIS Panel. The results of all other cross-train-
ing exercises are detailed in the Appendix section 6.2. Ex-
cept for MCS as the target panel, all cross-trained mod-
els start with low AUROC when applied to predict next-
wave nonresponse in the respective first wave of a differ-
ent panel, with a high of 0.65 when nonresponse in SOEP
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Feature Importances
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Heatmap comparison of permutation feature importances across panels

is predicted with a model trained on GESIS Panel data
(Fig. (Appendix) 6. However, when predicting next-wave
nonresponse based on data from the second wave, for all
models except those trained on FREDA data, the perfor-
mance of the cross-trained models is often the same or
better than the baseline models’ performances (which use
training data from the same panel). The results show that
pre-trained models can achieve AUROC values over 0.75.
This performance is seen when nonresponse in the GIP
is predicted with models trained on SOEP or GESIS Panel
data (Fig. (Appendix) 7); when models predict nonresponse
in the GESIS Panel trained on SOEP, GIP or MCS (Fig. 4);
when nonresponse in the MCS is predicted based on models
trained on SOEP or GESIS Panel data (Fig. (Appendix) 8);
or when nonresponse in FREDA is predicted by models
trained on any other panel (Table (Appendix) 5 and 6).
Critically, when cross-trained models predict next-wave
nonresponse based on the second wave of a target panel,
using the ‘Latest Data Available’ approach, AUROC was
always the same or higher than the baseline approach. Also,
although the baseline approach could have been conducted
in practice, it would have required training the model as
soon as the data collection period ended for a given wave
and applied immediately to the next wave, which is poten-
tially a short time window. The pre-trained model could
have been ready beforehand, and predictions about partic-
ipants could have been made as their responses became
available. Using a pre-trained model could be a valuable

innovation for newly commencing panels. The strong per-
formance of pre-trained models is likely because they ben-
efit from more training data than the baseline approach.

However, not all cross-training applications are success-
ful. Firstly, using training data that was available as close as
possible to the date of the test wave (‘Latest Data Available’
method) was much more successful than using the ‘Equiv-
alent in Lifecycle’ method. This result implies a temporal
effect, such that training data is more effective when it is
closer by date to the target wave, even when the training
data is from a different panel. Models trained on FREDA
data often performed poorly, likely because of limited train-
ing data. Pre-trained tree-based models outperformed logis-
tic regression models on average across all panels, indicat-
ing that flexible models have advantages over main effect
models in this context.

5 Discussion

This paper presents the first demonstration of ‘cross-train-
ing’ for nonresponse prediction in panel surveys. We show
that predictors of nonresponse are so consistently effective
across diverse contexts that it is possible to predict non-
response effectively in the second wave of a panel study
using models trained with data from a different panel. This
finding is important because a pre-trained model would be
available to make predictions sooner for waves one and two
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Models trained on other surveys but applied to the GESIS Panel. The ‘Baseline’ subplot shows performance results when
models are trained using training data of the same panel as the target wave. Auras around the lines indicate the range of

performance values across different hyperparameter settings

than a panel-specific model, which can only be developed
once the required training data is available. This timeliness
can be critical in the early waves of a panel study, where
attrition is often highest.

However, not all applications of cross-training were suc-
cessful, with some cases performing worse than baseline
models and exhibiting low-performance scores. Predicting
the very first wave with a pre-trained the model was gen-
erally unsuccessful. However, in the second wave, nonre-
sponse can be predicted accurately, with AUROC scores
of 0.75 to 0.85, and pre-training can outperform baseline

models as they ‘borrow’ training data from multiple waves
of another panel study.

The main limitation of this research is the number of pan-
els we could compare. A considerable effort is required to
process the raw survey data of multiple panels into a com-
mon set of features. Including more panel surveys would
risk certain surveys not collecting all the same features. An-
other limitation of this study is that each panel we compare
aims to study the general German population. This limi-
tation means we could not compare the effect of different
population frames.
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The main contribution of this study has been to show that
the processes driving panel nonresponse can be very simi-
lar between panels despite different survey designs. In our
comparisons, only the frequency of survey waves stood out
as a factor that influences nonresponse predictability, such
that more frequent panels are more predictable. Overall, our
findings imply that modeling techniques proven effective in
one panel should interest managers of similar panels when
deciding their modeling approach. Also, it is possible to
pre-train models on one survey and apply them to another
with high predictive accuracy. This novel technique could
allow survey managers to target and intervene with low-
propensity participants in the earliest, most critical waves
of a panel study, thereby reducing attrition.

How should panel managers commencing a new panel
make use of pre-trained nonresponse models? The sug-
gested method, based on this paper’s results, is as follows.
Firstly, the best type of panel to use as pre-training data is
one that targets the same population of interest. It is also
beneficial to use training data that was collected close in
time to the target waves. In such cases, fit the model to
predict next-wave nonresponse using up to five waves that
commenced closest to the start date of the new panel. Dur-
ing the first field period of the new panel, the pre-trained
model will not make accurate predictions about who will
nonrespond in wave two, so attempting to do this is not
recommended. Instead, during the second field period, as
responses come in, the model can be used to estimate non-
response propensity for each participant based on their be-
havior in the first and second waves.
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