CONTRIBUTIONS TO CLUB VELOCITY IN GOLF SWINGS TO SUBMAXIMAL AND MAXIMAL SHOT DISTANCES

  • Fredrik Tinmark
  • John Hellström
  • Anton Arndt
  • Kjartan Halvorsen

Abstract

The contribution of joint rotations to endpoint velocity was investigated in golf shots to submaximal and maximal shot distances using a 41degrees of freedom (DOF) kinematic model. A subset of 16 DOFs was found to explain 97%-99% of endpoint velocity regulation at club–ball contact. The largest contributors, for both groups at every shot condition, were pelvis and torso twist rotation among the most proximal DOFs, elbow pronation/supination and wrist flexion/extension among DOFs in the left arm, and shoulder internal/external rotation and wrist flexion/extension among DOFs in the right arm. The contributions from pelvis obliquity, left wrist flexion/extension, left wrist ulnar/radial deviation and right shoulder flexion/extension differed significantly between the advanced and intermediate group.
Section
Coaching and Sports Activities