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Abstract. We propose a new generalization over determiner denotations. We claim that, for 
any determiner Det, Det(P)(Q) entails Det(P⋂ Q)(Q) (the left-CONS2 Constraint, as we 
elaborate in the paper). We discuss potential counterexamples to the validity of this constraint 
including restricted universals (e.g. every … but John, approximately/almost all/every…) and 
proportional expressions with an upper bound (e.g. fewPROP, at most one-third…, fewer than 
seventy percent...). Following earlier proposals, we provide evidence that problematic 
inferences associated with determiners arise not from their denotations but either from the 
operator Exh or from degree operators. 
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1. Introduction 
 
One of the central tasks of formal semantics is to a provide a theory of natural language (NL) 
meanings that accounts for our intuitions about semantic relations between sentences. For 
instance, intuitively, (1a) entails (1b) just as (2a) entails (2b): 
 
(1) a. Linda bought a yellow carpet. 
 b. Linda  bought a carpet. 
   
(2) a.  Every student read Macbeth 
 b. Every American student read Macbeth.
 
Translating the sentences in (1) and (2) into the language of (standard) First Order Logic (FOL), 
we observe that the intuitive entailment relations between these sentences can be captured as 
formal (semantic) entailment within this logical system. 
 
(3) a.   ∃x((Yx ∧ Cx) ∧ Blx) 
 b. ∃x(Cx ∧ Blx) 
 c. {∃x((Yx ∧ Cx) ∧ Blx)} ⊨ ∃x(Cx ∧ Blx)  
   
(4) a.   ∀x(Sx → Rxm) 
 b. ∀x((Sx ∧ Ax) → Rxm) 
 c. {∀x(Sx → Rxm)} ⊨ ∀x((Sx ∧ Ax) → Rxm)
 
One might be tempted to think that translating NL-sentences into the sentences of FOL will 
suffice to model speaker intuitions about entailment relations between sentences. Such an 
optimism would be unwarranted, however. Barwise & Cooper (1981) show that proportional 
determiners such as most, more than half, one-third cannot be defined within standard FOL (p. 
213–216, Theorems C12 and C13). That is, NL-sentences with proportional determiners, 
examples of which are shown in (5) cannot be paired with FOL-sentences. As a result, the 
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intuitive entailment relation between (5a) and (5b), where (5a) ⇒ (5b) cannot be expressed 
using the language of (standard) FOL. 
 
(5) a. Most students read both Macbeth and Hamlet. 
 b. Most students read Macbeth. 
 
This observation, among others, has been one of the motivations behind the application of 
Generalized Quantifier Theory (GQT, Mostowski, 1957) to natural language quantifiers 
(Barwise & Cooper, 1981; Keenan & Stavi, 1986; a.o.). Within this theory, a quantified 
nominal expression (i.e. a quantifier) is analyzed as denoting a set of subsets of E, the set of 
entities provided by the model (S ⊆ E is the set of students).  
 
(6) [[ every student]] = {X ⊆ E: S ⊆ X} 
 [[ most students]] = {X ⊆ E: |S ∩ X| > |S \ X|} 
  [[ at least one third of students]] = {X ⊆ E: |X ∩ S| / |S| ≥ 1 / 3}
 
We can also express the denotation of a quantifier as a function characterizing a set of sets. 
That is to say, a generalized quantifier can also be understood to be a function from properties 
to truth values.1 
 
(7) [[ every student]] = λQet. S ⊆ Q* 
 [[ most students]] = λQet. |S ∩ Q*|>|S \ Q*| 
  [[ at least one third of students]] = λQet. |S ∩ Q*| / |S| ≥ 1 / 3
 
Determiners can, then, be represented as denoting functions from properties to generalized 
quantifiers: 
 
(8) [[ every]] = λPet.λQet. P* ⊆ Q* 
 [[ most]] = λPet.λQet. |P* ∩ Q*| > |P* \ Q*| 
  [[ at least one third]] = λPet.λQet. |P* ∩ Q*| / |P*| ≥ 1 / 3
 
One important observation about quantification in natural languages is that there are 
restrictions on what types of determiners exist in the world’s languages. That is, not every 
possible determiner is a natural language determiner. For instance, there seems to be no natural 
language in which the pseudo-determiner blah1, with the denotation given in (9), is to be found 
(Keenan, 1996; see Chierchia & McConnell-Ginet, 2000, for other examples): 
 
(9) [[ blah1]] = λPet.λQet. |P*| = |Q*|
 
There are various mathematical properties that natural language determiners must satisfy 
(Barwise & Cooper, 1981; Keenan & Stavi, 1986; van Benthem, 1983, 1986; a.o.). A well-
known and much discussed generalization about determiners is that they denote functions that 
are conservative on the first argument, a notion that can be defined as: 
 

                                                 
1 Given a function f of type et, f* = {x: f(x) = 1}. That is, f* is the set characterized by f. 
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(10) A determiner denotation Det ∈ Det, et,t is conservative on its first argument (or is 
CONS1) iff for any P, Q ∈ Det, Det(P)(Q) ⇔ Det(P)(P ⋂ Q)2 

 The CONS1 Constraint: NL-determiners denote CONS1 functions. 
 
This constraint provides an explanation for the absence of a determiner like blah1. 
 
(11) [[ blah1]](P)(Q) ⇎ [[ blah1]](P)(P ⋂ Q)
 since |P*| = |Q*| ⇎ |P*| = |P* ∩ Q*|

 
Intuitively, the CONS1 Constraint entails that the truth value of an expression of the form 
Det(P)(Q) can be determined simply by looking at the properties of those entities which are in 
the set characterized by the first argument (i.e. P*) of the determiner.3 For instance, to 
determine the truth value of a sentence like (2a) (in a model), we need not have any information 
as to whether any of the non-students (in this model) read Macbeth. The properties of the 
members of the complement set of students are irrelevant to the truth value of this sentence.  
 
A natural question that arises at this point is whether NL-determiners can be said to be 
conservative on their second argument, too, which can be defined as: 
 
(12) A determiner denotation Det ∈ Det, et,t is conservative on its second argument (or is 

CONS2) iff for any P, Q ∈ Det, Det(P)(Q) ⇔ Det(P ⋂ Q)(Q) 
 The CONS2 Constraint: NL-determiners denote CONS2 functions 
 
If NL-determiners are conservative on their second argument, then the truth value of an 
expression of the form Det(P)(Q) is only sensitive to the properties of the entities in the set 
characterized by the second argument (i.e. Q*) of the determiner. This would mean that a 
pseudo-determiner blah2, with the denotation in (13), cannot be found in any natural language.  
 
(13) [[ blah2]](P)(Q) ⇔ |P* \ Q*| = |P* ∩ Q*|
  
Keenan (2006:304) notes that “many natural classes of Dets fail CONS2.” Universal 
determiners like every, all and proportional determiners like most, at least one-third do not 
denote CONS2 functions: 
 
(14) a.   [[ every]](P)(Q) ⇎ [[ every]](P ⋂ Q)(Q)  
  since P* ⊆ Q* ⇎ P* ∩ Q* ⊆ Q* 
 b. [[ most]](P)(Q) ⇎ [[ most]](P ⋂ Q)(Q) 
  since |P* ∩ Q*| > |P* \ Q*| ⇎ |(P* ∩ Q*) ∩ P*| > |(P* ∩ Q*) \ Q*| 
 
The conclusion seems to be that NL-determiners obey the CONS1 Constraint but not the 
CONS2 Constraint. 

                                                 
2 Given any two functions P,Q of type et, P ⋂ Q = λz.P(z) ∧ Q(z). Note that (P ⋂ Q)* = P* ∩ Q*. 
3 To be precise, for CONS1 to have this consequence two other conditions, Extension and Quantity, must be 
assumed (Barwise & Cooper, 1981; van Benthem, 1986; Keenan & Stavi, 1986). For discussion, see Clark (2001). 
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2. The left-CONS2 Constraint 
 
The presence of determiners such as most and every shows that NL-determiners can denote 
non-CONS2 functions. At this point, it is important to note that these two determiners fail to 
denote CONS2 functions in a specific way. To see this, let us first note that the definition of a 
CONS2 function contains a biconditional statement (Det(P)(Q) ⇒ Det(P ⋂ Q)(Q) as well as 
Det(P ⋂ Q)(Q) ⇒ Det(P)(Q)). Separating each conditional that enters into the definition of 
CONS2 functions, we can distinguish between two types of functions: left-CONS2 functions 
and right-CONS2 functions:  
 
(15) Left-CONS2 functions 
 A determiner denotation Det ∈ Det, et,t is left-conservative on its second argument (or 

is left-CONS2) iff for any P,Q ∈ Det Det(P)(Q) ⇒ Det(P ⋂ Q)(Q). 
 

(16) Right-CONS2 functions 
 A determiner denotation Det ∈ Det, et,t is right-conservative on its second argument (or 

is right-CONS2) iff for any P,Q ∈ Det Det(P ⋂ Q)(Q) ⇒ Det(P)(Q) 
 
The universal determiner every and the proportional determiner most are not CONS2 functions 
since they do not denote right-CONS2 functions: 
 
(17) a.   [[ every]](P ⋂ Q)(Q) ⇏ [[ every]](P)(Q)  
  since P* ∩ Q* ⊆ Q* ⇏ P* ⊆ Q* 
 b. [[ most]](P ⋂ Q)(Q) ⇏ [[ most]](P)(Q) 
  since |(P* ∩ Q*) ∩ P*| > |(P* ∩ Q*) \ Q*| ⇏ |P* ∩ Q*| > |P* \ Q*|  
 
Crucially, both every and most denote left-CONS2 functions: 
 
(18) a. [[ every]](P)(Q) ⇒ [[ every]](P ⋂ Q)(Q)  
  since P* ⊆ Q* ⇒ P* ∩ Q* ⊆ Q* 
 b. [[ most]](P)(Q) ⇒ [[ most]](P ⋂ Q)(Q) 
  since |P* ∩ Q*| > |P* \ Q*| ⇒ |(P* ∩ Q*) ∩ P*| > |(P* ∩ Q*) \ Q*| 
 
In this paper we claim that being a left-CONS2 function is a mathematical property that natural 
language determiners must satisfy. 
 
(19) The left-CONS2 Constraint 
 NL-determiners denote left-CONS2 functions.
 
In this way, we can provide an explanation for the absence of the determiner blah2 in (13). 
 
(20) [[ blah2]](P)(Q) ⇏ [[ blah2]](P ⋂ Q)(Q) 
 since |P* \ Q*| = |P* ∩ Q*| ⇏ |(P* ∩ Q*) \ Q*| = |(P* ∩ Q*) ∩ Q*| 
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At an intuitive level, what the left-CONS2 Constraint says is that the truth of an expression of 
the form Det(P)(Q) cannot be sensitive to the presence of entities in the set P* \ Q*. Note that 
the truth value of Det(P)(Q) can be sensitive to the absence of entities in P* \ Q* (consider 
every, which requires that the set P* \ Q* be empty). There cannot, however, be a determiner 
Det that requires that P* \ Q* should be non-empty, or that it should have the cardinality n, for 
some n ≥ 1. 

3. Some potential counterexamples to the left-CONS2 Constraint 
 
In what follows, we shall take a closer look at potential counterexamples to the left-CONS2 
Constraint. These include restricted universals and proportional expressions with an upper 
bound. Following earlier proposals, we suggest that the semantic contribution of sentential 
operators (like Exh) and degree operators should be severed from the denotation of the 
determiners. Once this is done, we see that potential counterexamples to the left-CONS2 
Constraint are spurious; NL-determiners denote left-CONS2 functions after all. 

3.1. Restricted universals 
 
Consider (21): 
 
(21) Every student but John read Macbeth. 
 
In one of the earlier treatments of universal (connected) exceptive constructions4 like (21) 
within GQT, Keenan & Stavi (1986) claim that the analysis in (22) captures the semantic 
properties of such constructions (M* = {x ∈ E: x read Macbeth}) 
 
(22) [[ every…but John]](S)(M) ⇔ S* \ M* = {j} 
 
It is not hard to see that the discontinuous determiner every…but John does not denote a left-
CONS2 function under this analysis. 
 
In a comprehensive analysis of exceptives, von Fintel (1993) suggests that the denotation of 
such constructions consists of two components: Subtraction and Exhaustivity (or Uniqueness). 
The subtraction component is responsible for subtracting the excepted entities from the domain 
of quantification of the determiner. The exhaustivity (or ‘uniqueness’ in the terminology of 

                                                 
4 There is a second type of exceptive constructions, free exception constructions (Hoeksema, 1987), in which 
the excepted phrase can occupy various positions within the sentence: 
 
(i) a. Except for you, I would not trust any dentist.
 b. I would not, except for you, trust any dentist.
 c. I would not trust any dentist except for you. 
 
We ignore such constructions in this paper and focus on connected exceptives. For discussion of free exceptives, 
see von Fintel (1993) and Hoeksema (1995). 
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von Fintel) component requires that the set that consists of the excepted entities be the smallest 
one whose exclusion renders the sentence true.5 
 
(23) [[ Det P but X Q]] ⇔ Det(P \ X)(Q)   (Subtraction) 
   ∧ ∀X’: X’ ⊈ X → ¬Det(P \ X’)(Q) (Exhaustivity)
 
Under this analysis, a universal (connected) exceptive like (21) is given the following analysis: 
 
(24) [[ every… but John]](S)(M) ⇔  S* \ {j} ⊆ M*  (Subtraction) 
   ∧ ∀X: j ∉ X → S* \ X ⊈ M* (Exhaustivity)
 
There are also analyses in which subtractive and exhaustive inferences associated with 
connected exceptives come from distinct sources (Gajewski, 2008, 2013; Hirsch, 2016). Under 
such analyses, subtractive inferences are a consequence of the denotation of exceptive 
determiners. That is, the overall effect of a but-phrase is to restrict the domain of the 
quantification of the determiner it is associated with. 
 
(25) [[ every…but John]](S)(M) ⇔ S*\{j} ⊆ M* (Exceptives as Subtraction) 
 
Exhaustive inferences arise due to the presence of an exhaustivity operator (Exh), which is 
responsible for negating alternative sentences that are not entailed by the prejacent sentence 
(Hirsch, 2016; see also Gajewski, 2013, for an analysis based on an Exh operator that takes 
second-order alternatives into consideration). 
 
(26) Exh [Every student but [John]F read Macbeth] 
 
This operator acts on the alternative propositions that are obtained by replacing the focus-
marked constituent (here, the complement of but) with its alternatives. Assuming a context 
with Mary, Sue and John as three distinct individuals, the alternatives to (21) are given in (27): 
 
(27) ALTC(21) = 
 {Every student but Mary read Macbeth, Every student but Sue read Macbeth} 
 
Due to Exh, the alternatives that are not entailed by (21), i.e. the prejacent, are negated. As a 
result, we obtain the inference that John didn’t read Macbeth.6 
 
(28) S* \ {j} ⊆ M*   (prejacent)
 S* \ {s} ⊈ M*  (negated alternative)
 S* \ {m} ⊈ M*  (negated alternative)
 j ∉ M*   (conclusion)
 
That is, under such decompositional approaches, the inferences associated with universal 
exceptives that are problematic for the left-CONS2 constraint do not come from the denotation 
                                                 
5 One important consequence of this analysis is that it provides an explanation for certain co-occurence 
restrictions on exceptive constructions. 
6 We take it for granted that j ∈ S* holds. See von Fintel (1993) and Gajewski (2013) for discussion. 
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of the determiner itself. If this is true, then universal (connected) exceptives, with the 
denotation given in (25), do not invalidate the left-CONS2 Constraint.  
 
Crnič (2018) provides independent evidence that “[s]ubtraction, but not [e]xhausitivity, is 
encoded in the meaning of” exceptives (p. 744). The analysis relies on the Condition on VP-
Ellipsis in (29) for which Crnič provides independent evidence.7 
 
(29) Condition on VP Ellipsis 

If a quantificational expression is interpreted in the antecedent VP, a semantically 
equivalent expression must be interpreted in a parallel position in the elided VP.  

 
Crnič observes that VP-ellipsis construction like (30), where strikethrough represents the elided 
material, pose a challenge for approaches that take exhaustive inferences associated with 
exceptives to be internal and integral to the denotation of such determiners (e.g. Keenan & 
Stavi, 1986; von Fintel, 1993): 
 
(30) a.  In the exam, John solved every exercise but the last one. 
 b. (To get an A), he really had to solve every exercise but the last one. 
 
The crucial observation is that (30b) is not understood to entail (31). 
 
(31) (To get an A), John had to not solve the last exercise. 
 
In a context with three exercises {e1,e2, e3}, where the third exercise is the last exercise, an 
integral approach predicts the denotation of (30b) to be as in (32a), in which case (30b) is 
predicted to entail (31) (Sj = λx. John solves x, E* is the set of exercises) 
 
(32) a.   □ (E* \ {e3} ⊆ Sj* ∧ ∀X: e3 ∉ X → E* \ X ⊈ Sj*) (prejacent)
 b. □ (∀X: e3 ∉ X, E* \ X ⊈ Sj*)  (inference from (a))
 c. □ (e3 ∉ Sj*)  (letting X = U \ {e3}, U = the Universe)
 
The fact that such an inference is not obligatory can be accounted for within an approach to 
exceptives that take exhaustive inferences to arise due to an Exh operator at the sentence level. 
Under this analysis, the sentence in (30b) has the representation shown in (33) with the 
contextual alternatives given in (34). 
 
(33) Exh [John had to solve every exercise but [the last one]F] 
                                                 
7 Consider (i), discussed in Crnič (2018: 746–747), where strikethrough represents the elided material. 
 
(i) a. John read exactly three books.  
 b. To get an A, he really had to read exactly three books. 
 
(ib) can only mean that John was required to read three books and not to read more than three books. That is 
exactly must be understood to be in the scope of the modal operator. The more plausible reading, in which John 
is required to read three books but is also allowed to read more than three books, could be derived by assuming 
that the quantifier exactly three books moves to a position higher than the modal operator. This would violate the 
Condition on VP Ellipsis, which is why such (plausible) readings are not available. See Fiengo & May (1994) and 
Fox (2000) for further discussion and derivation of this condition. 
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(34) ALTC(30b) =  
{John had to solve every exercise but the first one,  
 John had to solve every exercise but the second one} 

 
Negating all the alternatives that are not entailed by the prejacent of Exh, we obtain: 
 
(35) a.   □ (E*/{e3} ⊆ Sj*)   (prejacent)
 b. ¬ □ (E*/{e1} ⊆ Sj*)  (negated alternative)
 c. ¬ □ (E*/{e2} ⊆ Sj*)  (negated alternative)
 
This set of propositions is compatible with John not having to solve the last exercise. That is, 
the conjunction of the propositions in (35) does not contradict (36). 
 
(36) ◇ (e3 ∈ Sj*) 
 
Consider a model where w1 and w2 are accessible from the world of evaluation (say w0). In 
w1, John solves both exercise 1 and exercise 2; in w2, John solves all the three exercises (e1, 
e2 and e3). It can be seen that in such a scenario, each proposition in (35) and (36) is true. This 
means that (30b) does not entail (31), as expected. 
 
Building upon a proposal by Spector (2014), Crnič (2018) argues that, similar to exceptives, 
approximative determiners also have subtractive analyses, as in (37b), which involves the 
contextually determined inference that the subtracted set X is a small one (but, presumably, not 
empty; see Horn, 2002; Nouwen, 2006, for a discussion of this proximal component of almost).  
 
(37) a. Almost every student read Macbeth. 
 b. [[ almostX every]](P)(Q) ⇔ P* \ X ⊆ Q* (or ∃X: P* \ X ⊆ Q*) 
 
This analysis raises the question of how to account for the negative inference in (38) associated 
with the approximative sentence in (37a). The negative inference is problematic for the left-
CONS2 Constraint if it is to be encoded in the denotation of approximatives.8 
 
(38) Not every student read Macbeth. 
 
Crnič suggests that sentences containing approximative determiners are obligatorily parsed 
with an Exh operator. Replacing the (contextually determined) set X with the empty set, i.e. ∅, 
we obtain the alternative in (39a). Note that this alternative is stronger than (37a) given the 
analysis in (37b). 
 
(39) a. Every student read Macbeth ∈ ALT(37a) 
 b. Every student read Macbeth ⇒ Almost every student read Macbeth 
 

                                                 
8 Sadock (1981) and Ziegeler (2000) take this inference to be a conversational implicature. In Crnič’s analysis, 
such inferences are conventional (i.e. grammatical) but this does not entail that they are integral to almost every. 
See Chierchia, Fox & Spector (2012) for an overview of the grammatical approach to scalar inferences. 
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With these observations, we see that the negative inference we see in (38) is a result of negating 
the alternative in (39a) due to Exh. One piece of evidence for severing the contribution of the 
Exh operator from the denotation of approximative determiners comes, again, from VP-ellipsis 
contexts. Consider:  
 
(40) a. In the exam, John solved almost every exercise. 
 b. (To get an A), he really had to solve almost every exercise.
 
Crucially, Crnič observes, (40b) does not entail (41). 
 
(41) To get an A, John had to not solve every exercise. 
 
Similar to what we have observed with exceptive constructions, the absence of this entailment 
can be explained on the assumption that the negative entailment of (37a) does not come from 
the determiner itself but from the Exh operator. That is, the sentence in (40b) has the LF-
representation in (42). 
 
(42) Exh [John had to solve almost-XF every exercise] 
 
This concludes our discussion of restricted universal determiners in the context of the left-
CONS2 Constraint. We have reviewed the evidence indicating that inferences associated with 
such determiners that are problematic for the left-CONS2 Constraint (i.e. the negative 
inferences) come not from the denotation of determiners but from the obligatory presence of 
the operator Exh.9 This suggests that restricted universal determiners do not invalidate the left-
CONS2 Constraint. 

3.2. manyPROP and fewPROP 
 
Partee (1989) argues that the context-dependent determiner many and its antonym few are 
ambiguous between cardinal and proportional readings. In a scenario where all the faculty 
children were at the picnic but there were few faculty children in the first place, one can say: 
 
(43) There were few faculty children at the 1980 picnic. 
 

                                                 
9 Keenan & Stavi (1986) suggest that the string not every is a determiner and has the denotation in (ii) 
 
(i) Not every student came to the party. 
(ii)  [[ not every]] (P)(Q) ⇔ P* \ Q* ≠ ∅ 
 
If not every were, indeed, a determiner, we would expect it to behave as a unit and take scope from a single 
position. However, Sternefeld (2006: 333 as discussed in Penka, 2011: 6) observes that other operators can 
intervene between the negation operator and the universal determiner, which suggests that not every is not a 
determiner. 
 
(iii) Not every boy can be above average height. (¬ » ◆ » ∀)
 
For further arguments against analyzing not every as a determiner, see Rothstein (1988). 
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This interpretation of the sentence, in which few faculty children can be understood to 
correspond to all faculty children, is captured with a cardinal analysis of this determiner. 
 
(44) a. [[ fewCARD]](P)(Q) ⇔ P* ∩ Q* | < n, a small number  
 b. [[ manyCARD]](P)(Q) ⇔ |P* ∩ Q* | > k, a large number
 
There are, however, cases where a cardinal analysis is not sufficient to explain the 
interpretations available with few (and many). For instance, while stage-level predicates 
(‘existence-asserting’ ones) are compatible with the possibility of few being ‘all’ as in (45a), 
individual level predicates do not allow such an interpretation (45b). 
 
(45) a. Few egg-laying mammals turned up in our survey, perhaps because there are few.
 b. #Few egg-laying mammals suckle their young, perhaps because there are few. 
 
(45b) is infelicitous because the continuation because there are few suggests a cardinal 
interpretation (which is compatible with the possibility of few being ‘all’). However, the 
determiner few, when used with an individual-level predicate, has a proportional interpretation 
and “few can never be ‘all’ on the proportional reading” (Partee, 1989: 391).10 
 
(46) a. [[ fewPROP]](P)(Q) ⇔ |P* ∩ Q* | / |P*| < n, a small proportion 
 b. [[ manyPROP]](P)(Q) ⇔ |P* ∩ Q* | / |P*| > k, a large proportion 

 
Cardinal determiners denote symmetric functions, hence CONS2 functions and hence left-
CONS2 functions. Unlike manyPROP, which denotes a left-CONS2 function, fewPROP does not 
denote a left-CONS2 function: 
 
(47) [[ fewPROP]] (P)(Q) ⇏ [[ fewPROP]] (P ⋂ Q)(Q)  
 since |P* ∩ Q* | / |P*| < n ⇏ |(P* ∩ Q*) ∩ Q* | / |P* ∩ Q* | < n
 

                                                 
10 There is a third reading associated with many and few in which the interpretation is the reverse of the 
proportional readings (see Westerståhl, 1985 for a discussion of the reverse-proportional many. Herburger 
(1997) makes similar observations for few and discusses the interaction of these readings with focus). Under 
these readings, a sentence like (ia) is understood to be truth-conditionally equivalent to (ib): 
 
(i) a. Many Scandinavians have won the Nobel Prize in literature. 
  b. Many winners of the Nobel Prize in literature are Scandinavians. 
 
These readings could be captured with the following denotations for many and few. 
 
(ii) a. [[ manyR.PROP]] (P)(Q) ⇔ |P* ∩ Q*| / |Q*| > k, a large proportion
 b. [[ fewR.PROP]] (P)(Q) ⇔ |P* ∩ Q*| / |Q*| < n, a small proportion 

 
manyR.PROP and fewR.PROP are of interest because they seem to counterexemplify the CONS1 Constraint we have 
discussed in Section 1. Interestingly, such determiners denote left-CONS2 functions, which is why we ignore 
them in this paper. For an analysis of these readings that makes them compatible with the CONS1 Constraint, 
see Romero (2015). For a recent general overview of the status of the CONS1 Constraint, see Zuber & Keenan 
(2019). 
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There is reason to believe that the determiner few has a negative component that should be 
severed from the denotation of the determiner itself. In the presence of a modal operator, 
sentences with few have a (preferred) split-scope reading in which negation outscopes the 
modal operator and the quantifier is interpreted in the scope of the modal operator (i.e. negated 
de dicto readings; see de Swart, 2000 for the example and discussion; see also Solt, 2006 and 
Penka, 2011 on split-scope readings). 
 

 
(48)  Ze  hoeven weinig verpleegkundigen te ontslaan.  
 They  need  few nurses to fire  
 ‘For a group Y consisting of few nurses y, it is necessary to fire each y.’   (de re)
 ‘It is not necessary to fire more than a small number of nurses.’ (negated de dicto)
 
The first interpretation (i.e. the de re reading) corresponds to few nurses taking scope over the 
modal operator. Under this reading, there are a small number of specific nurses that must be 
fired. A more natural interpretation for (48) is the second interpretation (i.e. the negated de 
dicto reading), in which we learn that it is possible to not fire a large number of nurses.11 These 
interpretations can be distinguished in a context in which it is necessary to fire large numbers 
of nurses but “there are only one or two nurses in particular for whom is it necessary that (s)he 
be fired.” (de Swart, 2000: 114). In a context of this kind, the first reading comes out as true 
while the second reading is false. 
 
In analyzing split readings, de Swart (2000) adopts a lexicalist approach in which the quantifier 
few nurses has a higher order interpretation in terms of quantification over properties.12 Penka 
(2011), on the other hand, suggests that few can be equated with ‘degree negation’ (i.e. λd.λD. 
D(d) = 0) similar to the analysis of little in Heim (2006). Romero (2015) claims that the 
(parametrized) determiner few consists of the (parametrized) determiner many and degree 
negation, which are not interpretable as such but they split in the course of derivation for 
interpretability. It seems fair to say that any approach to few that accounts for split readings 
ends up suggesting that few is not a determiner as such.  
 
We follow Romero (2015; see also Hackl, 2001) in assuming that manyPROP and fewPROP are 
parametrized determiners with a degree argument. Following McNally (1998), we assume that 
few has the same denotation as many. The main difference between these two determiners is 
that few has an uninterpretable degree negation feature13 (i.e. uD.Neg). 
 
(49)  [[ manyPROP]] = [[ fewPROP[uD.Neg]]] = λd.λP.λQ. |P* ∩ Q*| / |P*| ≥ d 
 
                                                 
11 There is a third possible reading in which the modal operator scopes over few and we obtain the interpretation 
that it is necessary that they fire few nurses. This reading is not available in (48) due to the fact that hoeven 
‘need’ in Dutch is a negative polarity item that must be in the scope of a negative operator. The absence of this 
reading is immaterial for our purposes. 
12 Under this approach, few is not a determiner as such; therefore, it is not in the scope of any generalization over 
determiner denotations. Other approaches that do not take few to have a determiner-like denotation include Solt 
(2015) and Rett (2018). If few is not a determiner, it does not constitute a problem for the left-CONS2 Constraint. 
13 This idea is reminiscent of analyzing the negative determiner no as an existential determiner with the additional 
syntactic requirement of occurring in the scope of a (generally silent) Neg operator (Zeijlstra, 2004; Penka, 2011). 
Note that few must occur in the scope of the degree negation and not the sentential negation operator.  
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Due to the uninterpretable D.Neg feature, few must occur in the scope of the degree negation 
operator, whose function is to give the complement of a set of degrees. 
 
(50)  [[ D.NEG]] = λD. D’ 
 
Similar to adjectives, the determiners many and few are associated with a POS operator 
(Cresswell, 1976; Heim, 2006; von Stechow, 2009; a.o), which introduces a contextually 
determined neutral segment (an interval of degrees to be called Nc) such that each degree on 
this interval counts neither as many nor as few on the relevant scale. Consider an exam with 
100 multiple choice questions, where the class average for correct answers is around 40%. The 
students who have answered less than 20% of the questions correctly can be said to have 
answered few questions correctly and the students who have answered more than 60% of the 
questions correctly can be said to have answered many questions correctly. The students who 
have solved between 20% and 60% of the questions have solved neither few nor many 
questions. The neutral segment (Nc) that is crucial for the interpretation of many and few can 
be encoded in the denotation of the operator POSc.14 
 
(51) POSc = λDdt.∀d ∈ Nc: D(d) 
 
Let us see now how this idea can be made to work in order to analyze split-scope readings of 
fewPROP. Consider (52) with the LF in (53), where the POSc operator has moved for 
interpretability, leaving behind a degree trace. D.NEG merges with the constituent in which the 
variable in the tail of the movement chain is bound by a lambda operator. 
 
(52) Few mammals can survive in the polar climate. 

 
(53) [POSc [D.NEG [λd1 [can [[d1-fewPROP[UD.Neg] mammals] [survive in polar climate]]]]]] 
 
The denotation of (53) is given in (54), where Mw’ = λx. x is a mammal in w’, Pw’ = λx. x 
survives in the polar climate in w’. 
 
(54) λw. ∀d ∈ Nc, ∀w’ ∈ ACCw, |Mw’* ∩ Pw’*| / |Mw’*| < d 
 
This denotation suggests that, by nomological necessity, the proportion of mammals that 
survive in the polar climate to the totality of mammals is less than the average of the survival 
rates of mammals in different climates. This is the negated de dicto reading. Other readings 
associated with fewPROP can be represented by letting D.NEG scope below the modal operator 
(the narrow scope reading) or by moving the quantifier few mammals to a position higher than 
the modal operator (the de re reading).  
 
We have shown that we can make sense of the idea that fewPROP is a type of determiner on the 
assumption that it is semantically equivalent to manyPROP. Recall that manyPROP is a 
parametrized determiner with an additional degree argument. Strictly speaking, manyPROP is 
not a left-CONS2 function given that its denotation is not a member of Det, et,t. We can, 

                                                 
14 For a more principled approach to the demarcation of a Neutral Segment in the context of few and many, see 
Romero (2015). 
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however, say that, manyPROP contains a determiner. That is, once its degree argument is 
satisfied with any d, 0 < d < 1, manyPROP(d) is a determiner and denotes a left-CONS2 function. 
 
(55) ∀d, 0 < d < 1, [[ manyPROP]](d) is a left-CONS2 function 
 
We speculate that no natural language expression contains a determiner that does not denote a 
left-CONS2 function. In the next section, we shall see that degree operators denote left-CONS2 
functions, too. 

3.3. Modified proportional numerals with an upper bound 
 
Nouwen (2010) distinguishes between two types of numeral expressions. Class A contains 
positive (e.g. more than 3) and negative (e.g. fewer than 1/3, less than 4) variants of numeral 
comparatives. Class B consists of expressions that impose a minimal bound on some degree 
(e.g. at least 80%, minimally 4) or a maximal bound (e.g. at most 50%, maximally 50). Within 
the Generalized Quantifier Theory (GQT, e.g. Keenan and Stavi, 1986) such expressions are 
analyzed as denoting relations between sets (i.e. as determiners). Under this approach, the 
determiners in (56a) have the denotations shown in (56b). While positive comparative 
expressions modifying a proportional numeral (e.g. more than 1/3) denote left-CONS2 
functions, negative comparatives do not (56c). 
 
(56) a. More than/Fewer than one third of the students came to the party. 
 b.  [[ more than/fewer than 1/3]](P)(Q) ⇔ |P* ∩ Q*| / |P*|{>, <}1/3 
 c.  [[ fewer than 1/3]](P)(Q) ⇏ [[ fewer than 1/3]] (P ⋂ Q)(Q) 
  since |P* ∩ Q*| / |P*| < 1/3 ⇏ |(P* ∩ Q*) ∩ Q* | / | (P* ∩ Q*) | < 1/3 
 
Note also that, under the GQT approach, proportional determiners expressing a minimal bound 
denote left-CONS2 functions. Determiners of maximality, however, are potential 
counterexamples to the left-CONS2 Constraint, as can be seen in (57c). 
 
(57) a. At most/At least seventy percent of the students came to the party. 
 b. [[ at most/at least 70%]](P)(Q) ⇔ |P* ∩ Q*| / |P*|{≤ , ≥}70/100 
 c. [[  at most 70%]](P)(Q) ⇏ [[ at most 70%]](P ⋂ Q)(Q) 
  since |P* ∩ Q*| / |P*| ≤ 70% ⇏ |(P* ∩ Q*) ∩ Q* | / | (P* ∩ Q*) | ≤ 70% 

 
GQT takes an idiomatic approach towards complex numerals (see Hackl, 2001, for discussion). 
The internal composition of a determiner is not expected to affect its semantic behavior. For 
instance, within GQT, the determiners more than n and at least n+1 are expected to show 
similar semantic distributions when they are evaluated within a discrete domain (that is, within 
a domain where fractions do not matter). This is not, however, what we find. For instance, the 
semantic behavior of these determiners in the context of collective predicates such as separate 
and form a triangle is not uniform (Hackl, 2001): 
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(58) a. ??John separated more than one animal. 
 b. John separated at least two animals. 
 c. ??More than two students were forming a triangle.
 d. At least three students were forming a triangle. 
 
In this paper, we shall follow the line of research that pays close attention to the internal make-
up of determiners (as in our analysis of fewPROP in Section 3.2) and their interactions with other 
operators in the sentence. We assume that (proportional) numerals denote degree segments 
(Takahashi, 2006; Solt, 2011) as in: 
 
(59) [[ 70%]] = λd. 70/100 ≥ d 
 
Hackl (2001) suggests that numerals are associated with the parametrized determiner manyCARD 
(also Takahashi, 2006; Nouwen, 2010). We shall assume that proportional numerals are 
associated with the parametrized determiner manyPROP. 
 
(60) [TP [DP [[70%][manyPROP]] [students]] [VP came to the party]] 
 
Previously we have seen that the POSc operator induces universal quantification that is 
restricted by the contextually provided neutral segment. In the absence of any restrictors, POS 
denotes a subset relation between degree segments. 
 
(61) [[ POS]] (D)(D’) ⇔ D ⊆ D’ 
 
That is, POSc = POS(NSc), where NSc is the neutral segment provided by the context. We 
assume that proportional numerals function as the restrictor of the POS operator. 
 
(62) [TP [DP [[POS 70%][manyPROP]] [students]] [VP came to the party]] 
 
The constituent POS 70% denotes a degree quantifier, which means that it cannot be interpreted 
as the sister of manyPROP. POS 70% undergoes quantifier raising, leaving behind a degree trace 
as in (63). The overall interpretation is given in (64). 
 
(63) [TP2 [POS 70%] λd [TP1 [DP [d-manyPROP] [students]] [VP came to the party]]] 
 
(64) λd. 70/100 ≥ d ⊆ λd.|S* ∩ C*| / |S*| ≥ d 
 
This corresponds to the at-least interpretation of proportional numerals which we take to be 
the basic interpretation of such expressions. Let us now discuss the two types of modified 
proportional numerals that might be taken to be problematic for the left-CONS2 constraint. We 
will start with expressions involving at most. Following Hackl (2001) and Nouwen (2010), we 
assume that at most n denotes a quantifier over degrees. We claim that AT_MOST is simply the 
converse of POS.15  
                                                 
15 Beck (2012: 237) proposes a covert variant of AT_MOST with the following denotation:  
 
(i) [[  AT_MOSTBECK]](d)(D’) ⇔ max(D’) ≤ d. 
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(65) a. Det-1(P)(Q) =def Det(Q)(P)
 b. POS-1 = AT_MOST 
 
A sentence like (66a) has the structure in (66b) and the truth conditions in (66c). 
 
(66) a. At most seventy percent of the students came to the party. 
 b. [TP2 [AT_MOST 70%] λd [TP1 [DP [d-manyPROP] [students]] [VP came to the party]]]
 c. AT_MOST(λd. 70/100 ≥ d)(λd.|S* ∩ C*| / |S*| ≥ d) ⇔ 
  λd.|S* ∩ C*| / |S*| ≥ d ⊆ λd. 70/100 ≥ d 
 
In our definition of left-CONS2 functions, we have assumed that such functions relate sets of 
individuals. We might more generally ask whether degree determiners (i.e. determiners that 
relate sets of degrees) can be said to denote left-CONS2 functions. It turns out that the degree 
determiner AT_MOST denotes a left-CONS2 function: 
 
(67) [[ AT_MOST]](D)(D’) ⇒ [[ AT_MOST]] (D ⋂ D’)(D’) 

since D’ ⊆ D ⇒ D’ ⊆ D ∩ D’ 
 
All in all, every determiner that is involved in the interpretation of a sentence with a degree 
quantifier of the form at most prop. num denotes a left-CONS2 function.16  
 
Let us finally discuss negative comparatives involving proportional numerals. Following Heim 
(2006), Alxatib (2014) and Romero (2015), among others, we assume that the COMP(arative) 
operator denotes a proper subset relation between degree segments. 
 
(68) COMP(D)(D’) ⇔ D ⊂ D’ 
 
                                                 
The similarity between AT_MOST and AT_MOSTBECK can be appreciated by observing that [[ AT_MOST]] (D)(D’) 
⇒ max(D’) ≤ max (D). See Penka (2010); Solt (2011) and Coppock (2016) for analyses that capitalize on the fact 
that at most has a superlative form. 
16 At this point, one might wonder about the relation between AT_MOST and AT_LEAST. We suggest that the 
main difference between these determiners is that AT_LEAST is derived from fewPROP

[uD.NEG]. The pre-movement 
representation of the sentence in (i) is given in (ii). 
 
(i) At least seventy percent of the students came to the party. 
(ii) [TP [DP [[AT_MOST [D.NEG 70%]][fewPROP]] [students]] [VP came to the party]] 
 
The quantifier raising of [AT_MOST [D.NEG 70%]] is followed by the merger of another D.NEG to a position c-
commanding fewPROP. The overall interpretation of (i) is shown in (iv) 
 
(iii) [TP3 [AT_MOST [D.NEG 70%]] [TP2 D.NEG λd [TP1 [DP [d-fewPROP][students]] [VP came …]]]] 
(iv) [[  1]] ⇔ λd. |S* ∩ C*|/|S*| < d ⊆ λd. 70% < d ⇔ λd. 70% ≥ d ⊆ λd.|S* ∩ C|/|S*| ≥ d 
 
This corresponds to the at-least reading interpretation for proportional numerals that we have seen before. The 
need for the double interpretation of negation is discussed in Takahashi (2006) but the independent motivation 
for this assumption (other than getting the truth conditions right) is not clear. See the discussion of fewer than 
70% below. For an alternative, and actually the opposite, view on the relation between AT_MOST and AT_LEAST, 
see Penka (2014). 
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Negative comparative quantifiers (e.g. fewer than 70%) are built on fewPROP[UD.Neg], which is 
semantically equivalent to manyPROP (recall (49)). We shall assume that the quantifier in the 
sister of fewPROP contains D.NEG (see Takahashi, 2006, on this assumption). That is, before 
the application of quantifier raising, the syntactic representation of (69a) is as in (69b). 
 
(69) a. Fewer/Less than seventy percent of the students came to the party. 
 b. [TP [DP [[er than [D.NEG 70%]][fewPROP]] [students]] [VP came to the party]] 
 
The quantifier raising of [er than [D.NEG 70%]] leaves a degree variable in the tail of the 
movement chain. A second instance of D.NEG is then merged to a position c-commanding 
fewPROP[UD.Neg]. The overall interpretation is given in (70b). 
 
(70) a. [TP3 [COMP [D.NEG 70%]] [TP2 D.NEG [λd [TP1 [DP [d-fewPROP] [students]]      

[VP came to the party]]]]] 
 b. [[ COMP]]( λd.d > 70%)( λd. |S* ∩ C*|/|S*| < d) ⇔  
  λd. 70% < d ⊂ λd. |S* ∩ C*|/|S*| < d ⇔ λd. |S* ∩ C*|/|S*| ≥ d ⊂ λd. 70% ≥ d 

 
The assumption that D.NEG must be interpreted in two positions is discussed in Takahashi 
(2006: 83). As far as we are aware, there has not been much discussion of how this assumption 
can be independently motivated.  
 
Observe that the COMP operator denotes a left-CONS2 function. 
 
(71) [[ COMP]](D)(D’) ⇒ [[ COMP]](D ⋂ D’)(D’) 

since D ⊂ D’ ⇒ D ∩ D’ ⊂ D’ 
 
We have noted that both AT_MOST and COMP denote left-CONS2 functions. However, 
neither AT_MOST nor COMP denote CONS1 functions.  
 
(72) [[ COMP]](D)(D’) ⇎ [[ COMP]](D)(D ⋂ D’) 

since D ⊂ D’ ⇎ D ⊂ D ∩ D’ 
 
(73) [[ AT_MOST]](D)(D’) ⇎ [[ AT_MOST]](D)(D ⋂ D’) 

since D’ ⊆ D ⇎ D ∩ D’ ⊆ D 
 
This might be taken to indicate that while the CONS1 Constraint puts a restriction only on 
relations between sets of individuals (see Romoli, 2015, for some discussion) the left-CONS2 
Constraint has a wider domain of relevance. 

4. Conclusion 
 
The main claim of this paper is that natural language determiners denote left-CONS2 functions. 
To support this claim, we have taken a closer look at some of the determiners that seem to 
falsify the validity of this constraint and provided evidence that the problematic inferences 
associated with restricted universal determiners and (modified) proportional expressions arise 
from a source distinct from their denotations. 
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Hackl (2001: 19) notes that, within the Generalized Quantifier Theory, finding out the 
denotation of a determiner in a language involves “identify[ing] the syntactic constituents that 
denote the restrictor and the scope” of the determiner and “attribut[ing] to the so found 
determiner the Boolean and comparative operations necessary to represent the truth 
conditions”. In this paper we have suggested that such a procedure does not do justice to the 
contribution of various sentential and degree operators that play a crucial role in the overall 
interpretation of sentences involving determiners. Once these factors are taken into 
consideration, we see that possible determiner denotations are more restricted than what we 
might have thought. 
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