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Abstract. Bare numerals (BNs), comparative-modified numerals (CMNs), and superlative-
modified numerals (SMNs) exhibit interesting differences with respect to scalar implicatures,
ignorance, sensitivity to grammatical polarity, and sensitivity to pragmatic polarity. Each of
these differences has been used to conclude fundamental difference—between BNs and MNs,
within MNs, and within SMNs. Revisiting the manifestation of the effects within numerals and
across numerals and disjunction, indefinites, and minimizers, as well as connections between
the effects, in this paper I argue for fundamental similarity and propose a unified account. The
account crucially explores interactions between subdomain alternatives and classic, Horn-style
scalar alternatives as well as between O(nly) and E(ven), arguing in particular that sensitivity
to grammatical/pragmatic polarity comes from ODA/ESA, and that both O and E are ultimately
driven by the same pressure: To justify the choice of the assertion in light of its true alternatives.
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1. Introduction

Naively speaking, comparative-modified numerals (CMNs; e.g., more/less than 3) and
superlative-modified numerals (SMNs; at least/most 3) should simply denote a range on a
scale, and, given reference to this scale, they should be pairwise truth-conditionally equiva-
lent. However, they often exhibit effects much richer than that. Four interesting effects are as
follows:

First, Horn (1972) showed that, in a plain upward-entailing (UE) environment, a bare numeral
(BN; e.g., 3) utterance such as Jo called 3 people is compatible with situations where she
called 3 or 4 or . . . people but strongly suggests that she did not in fact call 4 or . . . people, so,
that she called exactly 3 people. Horn proposes that this comes about as follows: BNs entail
one bound—3 entails ‘at least 3’—but they belong to a natural scale—〈0,1,2,3,4, . . .〉—which
naturally activates scalar alternatives—the scalemates—which, when factored into meaning,
give rise to scalar implicatures—‘not at least 4’, ‘not at least 5’, etc.—such that BNs acquire
another bound—3 implicates ‘not at least 4’—which is how their ‘exactly’ meaning. However,
Krifka (1999) showed that on this view not just BNs but also CMNs and SMNs are predicted
to give rise to exact meanings in that context also and that, while for BNs this is correct, for
CMNs and SMNs this is incorrect. This is what we will call the Scalar Implicatures (SI) puzzle.

(1) a. Jo called 3 / more than 2 / at least 3 people.
 not 34 / # more than 3 / # at least 4 (predicted meaning: exactly 3)

Second, Geurts and Nouwen (2007) showed that in the same UE environment CMNs are com-
patible with exact speaker knowledge but SMNs are not. Since this has been tied to an effect
of ignorance, this is what we will call the Ignorance (IG) puzzle.

(2) a. Jo called 4 people. Therefore, she called 3more than 2 / # at least 3 people.

1I would like to thank Gennaro Chierchia, Kathryn Davidson, Anamaria Fălăuş, Roger Schwarzschild, the mem-
bers of the Laboratoire Linguistique de Nantes, and the audience at Sinn und Bedeutung 25 for useful suggestions
and discussion. Any errors are my own.
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Third, Geurts and Nouwen (2007) showed that in a downward-entailing (DE) environment such
as the scope of negation CMNs are fine but SMNs are degraded (i.e., they cannot take scope
below negation), though in a DE environment such as the first argument of a conditional or a
universal they are both fine. This is what we will call the Polarity Sensitivity 1 (POL1) puzzle.

(3) a. Jo didn’t call 3more than 2 / # at least 3 people.
b. If Jo called 3more than 2 / 3at least 3 people, she won.
c. Everyone who called 3more than 2 / 3at least 3 people won.

Fourth, and last, Cohen and Krifka (2014) (and refs. therein) argued that, even in those DE
environments where SMNs are reported to be fine, this is in fact not always so: In a positive
antecedent of a conditional or restriction of a universal, SMNs are actually degraded if the
continuation is pragmatically negative (lose), and in a negative antecedent of a conditionals or
restriction of a universal they are degraded if the continuation is pragmatically positive (win).
This is what we will call the Polarity Sensitivity 2 (POL2) puzzle.

(4) a. If Jo called 3more than 2 / # at least 3 people, she lost.
b. If Jo didn’t call 3more than 2 / # at least 3 people, she won.

What is the reason for these patterns? How can we make sense of them all?

The existing literature has proposed answers of fundamental difference: SI has been used to
argue that CMNs and SMNs are fundamentally different from BNs (Krifka, 1999 and most
of the literature since); IG and POL1 has been used to argue that SMNs are fundamentally
different from CMNs (for IG: Geurts and Nouwen, 2007 and most of the literature since, in
various ways; for POL1: Geurts and Nouwen, 2007; Cohen and Krifka, 2014; Spector, 2015, in
various ways); and POL2 has been used to argue that SMNs are fundamentally different from
SMNs—that is, that SMNs have two different lexical entries (Cohen and Krifka, 2014).

In this paper I propose an answer of fundamental similarity: I revisit SI, IG, POL1, and POL2;
reject the conclusion of a fundamental difference for all; and provide a unified account for all.

The plan is as follows: Expanding on my work in Mihoc (2020), and considering things in
broader perspective (disjunction, indefinites), in §2 I reject the claim for IG and show that
this helps us reject the claim for POL1 also. I propose a unified solution in terms of silent
exhaustification relative to subdomain alternatives via contradiction-based O(nly). Building on
this, and in broader perspective (disjunction, indefinites, minimizers), in §3 I reject the claim
for SI and show that this helps us reject the claim for POL2 also. I propose a unified solution in
terms of silent exhaustification relative to classic, Horn-style scalar alternatives via O(nly) and
E(ven). In §4 I discuss empirical and theoretical predictions arising from all of this, especially
concerning the relation between the subdomain alternatives and the classic, Horn-style scalar
alternatives; O and E; O and only and E and even; and O/only and E/even. In §5 I conclude.

2. IG and POL1: A matter of subdomain alternatives and O(nly)

In this section I review and expand on the discussion and solution for IG and POL1 that I
developed in Mihoc (2020). In the existing literature IG has been used to conclude fundamental
difference between CMNs and SMNs, and POL1 has been used to support this conclusion. I
reject the conclusion for IG and show that it helps us reject the conclusion for POL1 also.
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2.1. IG: A matter of obligatory OExhDA ± ability to use just SgDA or just NonSgDA

2.1.1. IG in numerals is richer and also includes considerable similarity
As mentioned, Geurts and Nouwen (2007) showed that, in a plain UE environment, CMNs are
compatible with knowing that n, for some n in the range (what we will call a ONE-WINNER sce-
nario, reflecting the fact that one element of the domain, n, is true in all the worlds compatible
with what the speaker knows), but SMNs are not, (5a). This contrast, supported experimentally,
has been used to argue that SMNs give rise to IG but CMNs do not (Geurts and Nouwen, 2007
and most of the literature since). Consistently, CMNs are also compatible with knowing that
not n (what we will call a ONE-LOSER scenario), whereas SMNs are not, (5b). However, some-
thing not acknowledged enough: Both CMNs and SMNs are compatible with IG (Nouwen,
2015: 244), (5c), and both CMNs and SMNs can give rise to IG (Mayr and Meyer, 2014),
(5d)—two similarities, also supported experimentally, which are especially striking when we
consider that, in the same contexts, BNs can do neither. (Here and throughout, experimental
data/sources are indicated on the right-hand margin of the relevant example line.)

(5) a. Jo called 4 people. So, she called 3more than 2 / # at least 3 people. (100%/51%)2

b. Jo called 3more than 2 / # at least 3 people, but not, 5.
c. I am not sure how many people Jo called, but it was 3more than 2 / 3at least 3.3

d. Jo called more than 2 / at least 3 people.  / speaker not sure how many3

2.1.2. IG in numerals is similar to IG in disjunction and indefinites
Most of the existing literature on IG in SMNs assumes that it is similar to IG in disjunction
(Büring, 2008 and most literature since) or, more rarely, indefinites (Nouwen, 2015). How-
ever, this comparison is rarely qualified. Still, qualifying it is worthwhile because, as it turns
out, sometimes we find profiles not just like SMNs but also like CMNs. More concretely,
in disjunction we find the following: English or is incompatible with either ONE-WINNER or
ONE-LOSER; and French ou is the same.4

(6) a. (i) Jo called Alice. Therefore, she called # Alice, Bob, or Cindy.
(ii) Jo called # Alice, Bob, or Cindy, but not Alice.

b. (i) John
John

a triché.
cheated

# Donc,
therefore

John
John

ou
ou

Bill
Bill

est
is

un
a

tricheur.
cheater

(ii) John
John

est
is

dans
in

la
the

cuisine
kitchen

ou
or

la
the

salle de bain,
bathroom

# mais
but

pas
not

dans
in

la
the

cuisine.
kitchen

However, in modal indefinites we find the following: Romanian un NP oarecare—and seem-
ingly also Italian un NP qualsiasi/qualunque, un qualsiasi/qualunque NP, a.o.—is incompatible
with either ONE-WINNER and ONE-LOSER; German irgendein—or Italian un qualche NP, or

2Cf. Geurts and Nouwen (2007: 546). For similar findings, see also Geurts et al. (2010), Cummins and Katsos
(2010), or Cremers et al. (2017), and for an overview see Nouwen et al. (2019). The UE modifiers are usually
accepted at higher rates, though, for the same level of monotonicity, the contrast between CMNs and SMNs is
always significant.
3For experimental evidence see Westera and Brasoveanu (2014) or Cremers and Chemla (2017).
4For observations about ONE-WINNER in or see Strawson (1952), Grice (1989), Rips (1994: 48), Chierchia (2013:
252), Lauer (2014), Nouwen (2015: 250), and for experimental evidence see Rips (1994: 156) who, testing the
natural language counterparts of various valid logical inference rules, found disjunction introduction to be the
absolute worst, or Marty, Picat, and Mascarenhas (work in progress, p.c.), who find acceptance to be intermediate
(60%). Sources for the French examples: Aurore Gonzalez (p.c.) and Laurence B. Violette (p.c.).
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Spanish algún, a.o.—are incompatible with ONE-WINNER but compatible with ONE-LOSER;
and English some is compatible with both ONE-WINNER and ONE-LOSER.5

(7) a. (i) A
has

sunat
called

Victor.
Victor

Deci,
so

a
has

sunat
called

# un
UN

student
student

oarecare.
OARECARE

(ii) A
has

sunat
called

# un
UN

student
student

oarecare,
OARECARE

dar
but

nu
not

Victor.
Victor

b. (i) John
John

hat
has

geschummelt.
cheated

Deshalb
therefore

ist
is

# irgendein
IRGENDEIN

Student
student

ein
a

Betrüger.
cheater

(ii) John
John

ist
is

in
in

3 irgendeinem
IRGENDEIN

Zimmer
room

im
in.the

Haus
house

aber
but

nicht
not

in
in

der
the

Küche.
kitchen

c. (i) Arnold, a physicist, is cooking. Therefore, 3some physicist is cooking.
(ii) Jo called 3some student, but not Alice.

2.1.3. The solution for IG in disjunction and indefinites
Chierchia (2013) (and refs. therein, esp. Kratzer and Shimoyama, 2002, Alonso-Ovalle and
Menéndez-Benito, 2010) identifies the source of IG in indefinites with the fact that indefinites
make reference in their truth conditions not just to a scalar element but also to a domain. This
naturally gives rise not just to scalar alternatives (SA) but also to subdomain alternatives (DA).
The alternatives crucial to IG are the DA (although their SA also play a role; see §3.1). These are
factored into meaning via the silent contradiction-based exhaustivity operator O(nly), which as-
serts the prejacent and negates all the non-entailed alternatives; they are used in pre-exhaustified
form (as if prefixed by O); and they are used obligatorily. Without an intervening operator, this
leads to contradiction (due to their SA; see §3.1) but with an intervening possibility or neces-
sity modal, this yields a Free Choice effect. IG is a silent Free Choice effect that arises when
OExhDA happens across a last resort matrix-level, speaker-oriented, silent epistemic necessity
modal, �S. In the default case, this Free Choice effect is total, but if an item allows OExhDA
relative to just singleton DA (SgDA) it is also compatible with ONE-LOSER. This proposal
does not address ONE-WINNER and also aligns imperfectly with the existing approaches to dis-
junction, which often resort to disjunct-based alternatives derived using the structural theory of
alternatives and to contradiction-free exhaustification. In Mihoc (2020) I address these as fol-
lows: I show that, if an item allows OExhDA relative to just the non-singleton DA (NonSgDA), it
becomes compatible with ONE-WINNER. And I argue that, once we recognize that disjunction
too involves a domain, the exact same account transfers seamlessly to disjunction also.

5For ONE-WINNER, the literature on modal indefinites also often uses the namely test; I have used therefore
because it has also been used in numerals. For further discussion of modal indefinites in German, Spanish, Italian,
or Romanian, a.o., see Kratzer and Shimoyama (2002), Săvescu Ciucivara (2007), Alonso-Ovalle and Menéndez-
Benito (2010), Aloni and Port (2013), Chierchia (2013), Fălăuş (2014), Alonso-Ovalle and Menéndez-Benito
(2015), a.o. For specific discussion of some as a modal indefinite see Strawson (1974), who explicitly comments
on how, compared to a, some feels modal; Alonso-Ovalle and Menéndez-Benito (2015), who cite Strawson’s
comments about some as the first discussion of a modal indefinite in the literature; Becker (1999) who points
out that both a and some can give rise to ignorance, just that in some it is stronger; Becker (1999: Fns. 1, 5),
who comments on how some is nevertheless compatible with ONE-WINNER scenarios; and Marty, Picat, and
Mascarenhas (work in progress, p.c.), who find that, in ONE-WINNER scenarios exactly like the one shown (which
was in fact borrowed from them), some is accepted at ceiling (90%). Sources for the examples are as follows:
for un NP oarecare, cf. Anamaria Fălăuş (p.c.); for irgendein, ONE-WINNER is from Chierchia (2013: 257) and
ONE-LOSER from Niels Torben Kühler (p.c.); for some, ONE-WINNER is from Marty, Picat, and Mascarenhas
(work in progress, p.c.).
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2.1.4. Extending the solution for IG to numerals
Most of the existing solutions to IG in SMNs try to model the solution on disjunction or, more
rarely, indefinites. However, they struggle to justify in what way SMNs are like disjunction or
indefinites, and also why things should be any different for CMNs or, for that matter, for BNs. I
argue that there is a clear difference between BNs and MNs, and a clear similarity between MNs
and indefinites/disjunction: While all of BNs, CMNs, and SMNs make reference in their truth
conditions to a numeral, only CMNs and SMNs also make reference to a domain, as shown
below and in Fig. 1a. From here onward everything follows as for indefinites/disjunction: By
replacing the scalar element with its scalemates, and the domain with its subsets, we naturally
obtain SA for both BNs and MNs and DA only for MNs, as shown below and in Fig. 1b.

(8) Three people quit.
a. ∃x[|x|= 3∧P(x)∧Q(x)] (assertion)
b. {∃x[|x|= m∧P(x)∧Q(x)] | m ∈ S} (SA)

(9) More/less than 3 people quit.

a. max(λd .∃x[|x|= d∧P(x)∧Q(x)]) ∈

{4, ...}/{..., 2}︷ ︸︸ ︷
Jmuch/littleK(3) (assertion)

b. {max(λd .∃x[|x|= d∧P(x)∧Q(x)]) ∈ Jmuch/littleK(m) | m ∈ S} (SA)
c. {max(λd .∃x[|x|= d∧P(x)∧Q(x)]) ∈ D′ | D′ ( Jmuch/littleK(3)} (DA)

(10) At most/least 3 people quit.
a. max(λd .∃x[|x|= d∧P(x)∧Q(x)]) ∈

{..., 3}/{3, ...}︷ ︸︸ ︷
Jmuch/littleK(3) (assertion)

b. {max(λd .∃x[|x|= d∧P(x)∧Q(x)]) ∈ Jmuch/littleK(m) | m ∈ S} (SA)
c. {max(λd .∃x[|x|= d∧P(x)∧Q(x)]) ∈ D′ | D′ ( Jmuch/littleK(3)} (DA)

The alternatives crucial to IG are the DA (though see §3.1). These are factored in via the silent,
contradiction-based O (which asserts the prejacent and says that any true alternatives are en-
tailed, i.e., that non-entailed alternatives are false), (11), in pre-exhaustified form (as if prefixed
by O, where O proceeds relative to alternatives of the same size),6 (12), and obligatorily.

(11) JOK(C〈〈s,t〉,t〉, p〈s,t〉,ws) = p(w)∧∀q ∈C[q(w)→ p⊆ q]

(12) E.g., for OExhDA(x∨y∨z): Ox= x∧¬y∧¬z and O(x∨y) = (x∨y)∧¬(x∨z)∧¬(y∨z)

The result is as below. (Schematic notation cf. Fig. 1b. Only first computation given in full.)
First, exhaustification without any intervening operator yields contradiction, (13). However,
exhaustification across a modal operator yields a Free Choice effect, (14)-(15).

(13) OExhDA(0∨1) = (0∨1)∧¬ O0︸︷︷︸
0∧¬1︸ ︷︷ ︸

0→1

∧¬ O1︸︷︷︸
1∧¬0︸ ︷︷ ︸

1→0

, =⊥

(14) OExhDA♦(0∨1) (see §4 for more)
= ♦(0∨1)∧♦0↔ ♦1

(15) OExhDA�(0∨1)
=�(0∨1)∧�0↔�1

Assume now that a contradictory O parse can be rescued via the last resort insertion of a null,
speaker-oriented, epistemic necessity modal,�S (akin to the Gricean ‘the speaker believes. . . ’).
The result is a silent epistemic Free Choice effect—what is commonly called ‘ignorance’.
6More precisely, as if prefixed by contradiction-free O, where O proceeds relative to alternatives of the same size
or smaller—refinements however necessary only for OExhDA♦ . . . for domains larger than 2 elements.
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JMore/less than 3/ at most/least 3 people quitK
= 1 iff max(λd .∃x[|x|= d∧people(x)∧quit(x)]) ∈ Jmuch/littleK(3)︸ ︷︷ ︸

{4, ...}/{...,2}

/Jmuch/littleK(3)︸ ︷︷ ︸
{..., 3}/{3, ...}

ModifierP
〈dt, t〉

Modifier

[comp]/[at-sup]
λ f〈d,dt〉 .λnd .λD〈d,t〉 .

max(λd .D(d)) ∈ f (n)/ f (n)

much/little
λnd .λdd .d ≤ /≥ n

NumeralP
three

3

〈d, t〉

1, λd ∃x[|x|= d∧people(x)∧quit(x)]

DP
λQ〈e,t〉 .∃x[|x|= d∧people(x)∧Q(x)]

D
/0∃

λP〈e,t〉 .λQ〈e,t〉 .∃x[P(x)∧Q(x)]

NumberP
λxe . |x|= d∧people(x)

ModifierP
t1, d

Number’
λnd .λxe . |x|= n∧people(x)

Number
[count]

λP〈e,t〉 .λnd .λx . |x|= n∧P(x)]

NP
people

VP
quit

(a) The syntax and semantics of BNs, CMNs, and SMNs. Those for MNs are shown explicitly, and those for
BNs can be obtained by replacing ModifierP near Number’ with NumeralP (from higher up). I assume a numeral,
NumeralP, denotes a simple degree. In BNs, it combines with Number’ to yield a predicative meaning, which then
undergoes existential closure; this is the standard existential, ‘at least’ meaning of BNs cf. Link (1987) (and other
literature since). In CMNs/SMNs, it combines with [comp]/[at-sup] and much/little (analyzed as positive/negative
extent indicators, adapting ideas from Seuren 1984 or Kennedy 1997, 2001), yielding a generalized quantifier
over degrees, which cannot combine with Number’ but has to move, leaving behind a trace type d; this is the
meaning of CMNs from Heim (2000)-Hackl (2000) and of CMNs and SMNs from Kennedy (2015), though the
assumptions about [comp]/[at-sup] and much/little are new. For assumptions about NumberP and NumeralP see
Zabbal (2005) or Scontras (2013), and references therein; ModifierP is new.

More than 2 / at least 3 people quit.
3 4 5 . . . (SgDA)

3∨4 . . . 5∨7∨11 . . . (NonSgDA)

↓
2∨ . . . ← 3∨4∨ . . . ← 4∨ . . . ← . . . (SA)

Less than 3 / at most 2 people quit.
0 1 2 (SgDA)

0∨1 0∨2 1∨2 (NonSgDA)

↓
0 → 0∨1 → 0∨1∨2 → ·· ·∨3 → . . . (SA)

(b) The truth conditions (bottom center, black, bold) and alternatives (SA bottom left and right, blue; DA top, red)
of BNs, CMNs, and SMNs, schematically. Those for MNs are shown explicitly, and those for BNs are the same
as for the UE SMNs (e.g., 3 like at least 3), except BNs only get the SA. Arrows indicate direction of entailment.

Figure 1: The syntax and semantics (a) and alternatives (b) of BNs, CMNs, and SMNs.
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(16) OExhDA�S(0∨1) =�S(0∨1)∧�S0↔�S1 (ignorance)

Note now that the IG effect thus obtained is compatible with neither ONE-WINNER nor ONE-
LOSER—it is only compatible with not knowing that n and not knowing that not n, for all the
n in the domain, that is, with what we may call a, total ignorance, NO-WINNER scenario. This
captures the patterns for SMNs. However, what about the patterns for CMNs? In analogy to
indefinites/disjunction, compatibility with ONE-LOSER and ONE-WINNER in numerals can be
obtained if we consider just the SgDA or just the NonSgDA. For a domain with 2 elements
we will assume that this is not defined, as there are only SgDA, and removing them would
destroy the domain, so all we can get is OExhDA, yielding NO-WINNER, as shown above. For a
domain with 3 elements or more, however, OExhSgDA yields NO-WINNER or ONE-LOSER and
OExhNonSgDA yields NO-WINNER or ONE-WINNER, as can be verified by checking the results
below against various models; and OExhDA yields their intersection, that is, only NO-WINNER.

(17) OExhSgDA(�S(0∨1∨2))
=�S(0∨1∨2)∧
(�S0→�S1∨�S2)∧
(�S1→�S0∨�S2)∧
(�S2→�S0∨�S1)

(compatible with ONE-LOSER)

(18) OExhNonSgDA(�S(0∨1∨2))
=�S(0∨1∨2)∧
(�S(0∨1)→�S(0∨2)∨�S(1∨2))∧
(�S(0∨2)→�S(0∨1)∨�S(1∨2))∧
(�S(1∨2)→�S(0∨1)∨�S(0∨2))

(compatible with ONE-WINNER)

If both CMNs and SMNs undergo obligatory OExhDA but CMNs can ignore either the SgDA or
its NonSgDA while SMNs can do neither, this captures all the patterns in IG.

2.2. POL1: A matter of obligatory OExhDA ± proper strengthening

2.2.1. POL1 in numerals is richer and also includes considerable similarity
As mentioned, Geurts and Nouwen (2007) showed that in a DE environment such as the scope
of negation CMNs are fine but SMNs are degraded, (19a), though in a DE environment such as
the first argument of a conditional or a universal they are both fine, (19f)-(19g). These patterns,
supported experimentally, have been used, like IG, to argue that SMNs are fundamentally dif-
ferent from CMNs (cf., in very different ways, Geurts and Nouwen, 2007, Cohen and Krifka,
2014, Spector, 2015). Consistently, SMNs are also degraded in further DE environments, for
example, the scope of nobody, without, few, rarely, etc., (19b)-(19e). However, SMNs are
also fine in further DE environments, for example, the scope of a negated factive or of only,
(19h)-(19i).

(19) a. Jo didn’t call 3more than 2 / # at least 3 people. (85%/55%)7

b. Nobody called 3more than 2 / # at least 3 people.
c. Jo managed without calling 3more than 2 / # at least 3 people.
d. Few of the participants called 3more than 2 / # at least 3 people.
e. Jo rarely called 3more than 2 / # at least 3 people.
f. If Jo called 3more than 2 / 3at least 3 people, she won. (95%/95%)7

g. Everyone who called 3more than 2 / 3at least 3 people won. (95%/95%)7

h. Tim doesn’t know that Jo called 3more than 2 / 3at least 3 people. (89%/89%)7

i. Only kids aged 3more than 2 / 3at least 3 can attend.8

7Cf. Mihoc and Davidson (2021). The DE modifiers were generally rated lower, but they compared similarly.
8Cf. https://macaonews.org/only-kids-aged-at-least-3-can-attend-kindergarten-classes/
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2.2.2. POL1 in numerals is similar to POL1 in disjunction and indefinites
All the existing literature on POL1 in SMNs ties it in one way or another to IG. But neither
POL1 nor the relation between IG and POL1 are truly considered in broader perspective. Having
shown that IG in disjunction/indefinites varies just as in CMNs and SMNs, below I point out
that the same is true of POL1, and also, crucially, that IG and POL1 vary independently. This is
already visible from disjunction: English or can embed freely, but French ou is degraded under
not (cf. below), nobody, without, . . . , though fine under few, rarely, if, and every.

(20) a. Jo didn’t call Alice or Bob.
b. Marie

Mary
n’a
not has

pas
not

invité
invited

# Léa
Leah

ou
OU

Jean
John

à
to

dı̂ner.
dinner

And modal indefinites show the same: Romanian un NP oarecare or Italian un NP qualsi-
asi/qualunque are degraded under all of not, nobody, few, rarely, though fine under if, every,
only, exactly like SMNs, though Italian un qualsiasi/qualunque NP embeds freely (though see
Fn. 9). German irgendein or Italian un qualche NP embed freely (though Fn. 9), but Spanish
algún is degraded under not or nobody but fine under few, if, or every. And English some, is
degraded under not, nobody, without, but fine under few or rarely, as well as under if or every,
exactly like ou and partly like SMNs.9

2.2.3. The solution for POL1 in disjunction and indefinites
Just as for IG, many of the most recent solutions to POL1 in disjunction/indefinites rely on
the obligatory use of disjunct-based / subdomain-based alternatives, with or without pre-
exhaustification—let’s call them (Exh)DA. Moreover, all of these argue that the reason why
some items get # under not, nobody, . . . , comes from the fact that O(Exh)DA across these op-
erators does not lead to a properly stronger (PS) meaning, and the reason the same items al-
ways get 3under if, every, . . . , and sometimes also under few, rarely, . . . , comes from the fact
that, due to the fact that these operators contain an UE presupposition / implicature, O(Exh)DA
here does lead to a PS meaning. However, these approaches differ in whether they assume
a contradiction-free variant of O (e.g., Nicolae 2017) or rather the contradiction-based O we
used for IG (Chierchia, 2013). This doesn’t affect POL1 but it affects IG and especially the
predicted relation between IG and POL1—the former predicts them to co-vary whereas the lat-
ter predicts them to vary independently. Since our data support the latter, I will maintain the
contradiction-based O solution to IG and add to it the contradiction-based O solution to POL1.

2.2.4. Extending the solution for POL1 to numerals
As for disjunction and indefinites, OExhDA across not / other DE operators does not lead to PS.

(21) OExhDA(¬(0∨1)) = ¬(0∨1) ∧ ¬ (¬0∧¬¬1)︸ ︷︷ ︸
already excluded

∧¬ (¬1∧¬¬0)︸ ︷︷ ︸
already excluded

(does not lead to PS)

9For Italian un NP qualsiasi/qualunque, un qualsiasi/qualunque NP, un qualche NP, or German irgendein, see
Chierchia (2013: 260-2) or Aloni and Port (2015: 121). For Romanian un NP oarecare, cf. Anamaria Fălăuş
(p.c.). For Spanish algún, cf. Sara Sanchez-Alonso (p.c.). For English some, see Szabolcsi (2004); Nicolae
(2012). Caveat: As acknowledged in the sources, many of the items that we said embedded freely are actually
bad under sentential negation. This however is argued to be due to independent reasons–for example, competition
with an NPI or a negative concord item. The fact that they are fine under nobody or without—that is, strongly
negative DE operators—however suffices to make the point.
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However, if/every carry a positive presupposition. If we factor this in, OExhDA does lead to PS.

(22) OExhDA(∀w[(0∨1)w ...]∧∃w[(0∨1)w])
= ∀w[(0∨1)w ...]∧∃w[(0∨1)w] ∧
(... ∧∃w[0w])↔ (... ∧∃w[1w])

(leads to PS as in (14))

(23) OExhDA(∀x[(0∨1)x ...]∧∃x[(0∨1)x])
= ∀x[(0∨1)x ...]∧∃x[(0∨1)x] ∧
(...∃x[0x]) ↔ (...∃x[1x])

(with �S, leads to PS as in (16))

If both CMNs and SMNs undergo obligatory OExhDA, and both allow it to take into account
presuppositions, but CMNs are fine with an outcome that does not lead to PS whereas SMNs
are not, this captures all the patterns in POL1.

3. SI and POL2: A matter of scalar alternatives and O(nly) / E(ven)

Building on the previous section, in this section I address SI and POL2. In the existing literature,
SI has been used to conclude fundamental difference between BNs, on the one hand, and CMNs
and SMNs, on the other, and POL2 has been used to conclude a fundamental split within SMNs.
I reject the conclusion for SI and show that it helps us reject the conclusion for POL2 also.

3.1. SI: A matter of obligatory OSA and how it interacts with OExhDA

3.1.1. SI in numerals is richer and also includes considerable similarity
As mentioned, Krifka (1999) showed that, while in a plain UE environment BNs give rise to an
exact meaning, as predicted by Horn (1972), CMNs and SMNs do not, (24a-i). This has been
used to argue that BNs give rise to classic, Horn-style SI based on classic, Horn-style SA, but
CMNs or SMNs do not (Krifka, 1999 and most of the literature since; see §3.1.4). However, in
the UE environment defined by the scope of a necessity modal all of BNs, CMNs, and SMNs
give rise to the predicted SI (cf. Fox and Hackl, 2006 for CMNs, Mayr 2013 for both CMNs
and SMNs), (24a-ii). And in the DE environment defined by the scope of negation none do
(cf., e.g., Spector, 2013 for BNs, Mayr, 2013 for CMNs and SMNs), (24b-i). Finally, in the
DE environment defined, for example, by the antecedent of a conditional (but not only), all do
again (cf., e.g., Spector, 2013: 279ff. for BNs), (24b-ii). Thus, all of BNs, CMNs, and SMNs
sometimes do and sometimes do not give rise to both direct and indirect SI.10 Moreover: All
the cases where we get SI-gaps are, first, cases where we can still get SI if only we considered,
instead of the immediately strongest SA, some other stronger SA (cf., e.g., Spector, 2014: 42;
experimental evidence, cf. Cummins et al. 2012), (24c), and, second, cases where the numeral
gives rise to ignorance—witness being compatibility with ignorance, which under negation
shows up for BNs also, (24d). (Under negation, # immediately before the SMN marks POL1.)

(24) a. (i) Jo called 3 / more than 2 / at least 3 people.
 not 34 / # more than 3 / # at least 4 (predicted meaning: exactly 3)

(ii) Jo is required to call 3 / more than 2 / at least 3 people.
 not required 34 / 3more than 3 / 3at least 4

b. (i) Jo didn’t call 3 / more than 2 / # at least 3 people.
 not not # 2 / # more than 1 / # at least 2 (predicted meaning: exactly 2)

(ii) If Jo called 3 / more than 2 / at least 3 people, she won.
 not if 32 / 3more than 1 / 3at least 2

10Cf. Chierchia (2004: 59), direct SI = SI based on a SA stronger by virtue of its position in a scale, and indirect
SI = SI based on a SA stronger by virtue of its position in a scale reversed by a higher negative element.
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c. (i) Jo called 3 / more than 2 / at least 3 people.
 not 34 / 3e.g., more than 4 / 3e.g., at least 5

(ii) Jo didn’t call 3 / more than 2 / # at least 3 people.
 not not 31 / 3e.g., more than 0 / 3e.g., at least 1

d. (i) I’m not sure how many . . . but it was # 3 / 3more than 2 / 3at least 3.
(ii) I’m not sure how many . . . but it wasn’t 33 / 3more than 2 / 3# at least 3.

3.1.2. SI in numerals is similar to SI in disjunction and indefinites
Since Horn (1972), most of the existing literature on SI in BNs assumes that it is similar to SI

in disjunction and indefinites. Indeed, disjunction/indefinites give rise to direct SI (crucial to
controlling their IG) and participate in indirect SI (triggered by their scalemates) also. Based
on all the discussion so far, I will argue that SI in MNs is similar to SI in BNs, disjunction, and
indefinites: All these categories entail one bound and implicate another bound via classic SI.

3.1.3. The solution for SI in disjunction and indefinites
Just as for BNs, Horn (1972) proposed that SI in disjunction and indefinites comes from the
fact that these items belong to natural lexical scales: 〈or, and〉, 〈some, every〉, etc. Thus, they
naturally activate scalar alternatives—their scalemates. These are factored into meaning via
Gricean reasoning and give rise to SI. Following Chierchia et al. (2012), I adopt the view that SI

actually arise in the grammar, via OSA. Following Chierchia (2013) for modal indefinites, I also
assume that for all the disjunctions/ indefinites reviewed above, OSA is computed obligatorily.11

3.1.4. Extending the solution for SI to numerals
Since Krifka (1999), because of (24a-i), most of the literature abandons the classic, Horn-style
notion of SI and SA for MNs. What I mean is the following: The Horn (1972) view of SA and SI

involved an alternative set that was totally ordered and SI that endowed one-bounded meanings
with a second bound. Also, it allowed the granularity of the SA scales to be contextual. While
the approaches to MNs since then sometimes do assume some form of SA and SI for MNs, they
are no longer classical in the sense that they depart from either one or both of these features.

This has important conceptual consequences—the notion of SI in numerals ends up being
very different from the notion of SI in other categories.12 It also has important empiri-
cal consequences—they can capture only some of the SI patterns, usually failing to do so
for CMNs, or indirect implicatures, or the direct and indirect implicatures based on non-
immediately stronger SA. In contrast, the classical view is conceptually general and empiri-
cally adequate—as we just saw, the only problem are a few gaps which are however remarkably
systematic and occur not just in MNs but also in BNs.

I will thus uphold the classical, Horn-view of SI for all of BNs, CMNs, and SMNs: The al-
ternatives crucial to SI are the classic, Horn-style SA. However, in analogy to the proposal
for disjunction and modal indefinites just now, I update it with the following features: These

11A reason for this is because, with just OExhDA, or, for example, is predicted to mean and and also to be compat-
ible with ONE-WINNER. Following Chierchia (2004: 66ff.), I regard the felicity of continuations such as in fact,
. . . and. . . as a form of backtracking and note that they can correct or not just to and but also to ONE-WINNER: Jo
called Alice or Bob. 3In fact, both. / 3In fact, Alice.
12As Mayr (2013: Fn. 16) notes, accounts that depart from totally ordered scales “contradict Matsumoto (1995)’s
assumptions that the fundamental condition on Horn-sets is that the alternatives are ordered by monotonicity”.
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alternatives are factored into meaning via the silent, contradiction-based O, and obligatorily.

Regarding the SI-gaps in numerals, I believe they can be explained as follows: In both dis-
junction/indefinites and numerals, IG and SI, or more generally OExhDA and OSA, interact with
one another. However, while in disjunction/indefinites they merely constrain one another, in
numerals, in some contexts, due to the nature of the domain/scale, they always contradict one
another, and this clash is resolved in favor of IG, by weakening SI. For reasons of space, we
will not be able to discuss this idea any further here, but I believe it can be defended.13 As for
why, even in SI-gap contexts, some form of SI are always intuitively available, I believe this
is because such cases of invariable contradiction trigger a repair mechanism whereby the scale
granularity becomes coarser, based on context.

3.2. POL2: A matter of ± obligatory EExhSA

3.2.1. POL2 in numerals is richer and also includes considerable similarity
As mentioned, Cohen and Krifka (2014) (and refs. therein) argued that, even in those DE envi-
ronments where SMNs are reported to be fine, this is in fact not always so: In a positive/negative
antecedent of a conditional or restriction of a universal, SMNs with a pragmatically neutral
predicate, P1, are actually degraded if the predicate in the continuation, P2, is pragmatically
negative/positive (lose/win), (25a). They used this to argue that SMNs are different not just
from CMNs but also from SMNs: That is, SMNs have one lexical meaning that is sensitive to
DE environments, responsible for POL1, and another that is not sensitive to DE environments
but sensitive instead to some notion of evaluativity and responsible for POL2. Now, experimen-
tal results do indeed support some form of POL2. However, the ratings are sometimes different
than assumed, and sometimes also differ sharply between at least and at most (see esp. un-
derlined judgments/percentages). My intuitions about patterns with a pragmatically marked P1
similarly suggest a sharp split within SMNs by motonicity, and that CMNs might exhibit a light
form of the POL2 effect detected in their same-monotonicity SMN counterparts also, (25b). Fi-
nally, as Cohen and Krifka (2014) already acknowledge, SMNs under negation continue to be
degraded regardless of the pragmatic polarity of their P1, (25c).

(25) a. (i) If Jo called 3more than 2 / 3at least 3 people, she won. (95%/95%)14

If Jo called 3more than 2 / # at least 3 people, she lost. (93%/95%)14

If Jo didn’t call 3more than 2 / # at least 3 people, she won. (78%/55%)14

13Regarding plain UE contexts: This can be seen by computing OExhDA�SOSA(. . .) for disjunction/indefinites
and MNs. A challenge is to make sure that the ability of CMNs to accommodate ONE-WINNER does not affect
this result, though if it can be argued that the default for them too is OExhDA, and that DA can’t be removed to
accommodate OSA, this solves the problem. Regarding the scope of negation: The data patterns we saw earlier
suggest the explanation might have to do with a clash between SI and IG also. However, it is not obvious how
to derive IG here. I see two possibilities: (1) OSA across negation actually proceeds relative to SA both with
and without negation, which leads to contradiction, which triggers the last resort insertion of �S, yielding IG. A
potentially serious issue might be that a sentence such as Jo didn’t read 3 papers can be interpreted as ¬OSA3 but
still carry an IG effect in spite of the fact that the SA have been used already. Alternatively: (2) The shape of the
domain in MNs suggests that domains can be derived sorts of objects. Now, under negation, both a BN and a MN
yield a domain of sorts—not 3 / more than 2 / at least 3 = {3, . . .}, = {0,1,2}. This suggests that perhaps there is
a form of O(Exh)DA in this context also. A potentially serious issue might be that we will have to keep this O(Exh)DA
well apart from the one that yielded POL1, via PS. However, an attractive feature is that it allows us to explain all
cases of SI-gaps as the result of a tension between a pressure to use the scale and a pressure to use the domain.
14Cf. Mihoc and Davidson (2021), who test configurations exactly like this, with a neutral P1 and a marked P2.
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If Jo didn’t call 3more than 2 / 3at least 3 people, she lost. (80%/88%)14

(ii) If Jo called 3less than 4 / 3at most 3 people, she won. (95%/75%)14

If Jo called 3less than 4 / # at most 3 people, she lost. (92%/23%)14

If Jo didn’t call 3less than 4 / # at most 3 people, she won. (50%/20%)14

If Jo didn’t call 3less than 4 / 3 at most 3 people, she lost. (45%/23%)14

b. (i) If Jo solved 3more than 3 / 3at least 3 problems, she passed.
If Jo solved ? more than 3 / # at least 3 problems, she failed.
If Jo didn’t solve ? more than 3 / # at least 3 problems, she passed.
If Jo didn’t solve 3more than 3 / 3at least 3 problems, she failed.
If Jo made ? more than 3 / # at least 3 mistakes, she passed.
If Jo made 3more than 3 / ? at least 3 mistakes, she failed.
If Jo didn’t make 3more than 3 / ? at least 3 mistakes, she passed.
If Jo didn’t make ? more than 3 / # at least 3 mistakes, she failed.

(ii) If Jo solved ? less than 4 / # at most 3 problems, she passed.
If Jo solved 3less than 4 / 3at most 3 problems, she failed.
If Jo didn’t solve 3less than 4 / ? at most 3 problems, she passed.
If Jo didn’t solve ? less than 4 / # at most 3 problems, she failed.
If Jo made 3less than 4 / 3at most 3 mistakes, she passed.
If Jo made ? less than 4 / # at most 3 mistakes, she failed.
If Jo didn’t make ? less than 4 / # at most 3 mistakes, she passed.
If Jo didn’t make 3less than 4 / ? at most 3 mistakes, she failed.

c. (i) Jo didn’t solve 3more than 2 / # at least 3 problems.
Jo didn’t make 3more than 2 / # at least 3 mistakes.

(ii) Jo didn’t solve 3less than 4 / # at most 3 problems.
Jo didn’t make 3less than 4 / # at most 3 mistakes.

3.2.2. POL2 in numerals is similar to POL2 in minimizers
Cohen and Krifka (2014: 77) (and refs. therein) note that POL2 in numerals resembles similar
facts in NPIs, especially strong NPIs. Here we note that it also resembles facts discussed by
Crnič (2011: 49ff.) (and refs. therein) in minimizers, for example, lift a finger. First, lift
a finger also exhibits POL1, though in the opposite direction than SMNs. Second, they also
exhibit POL2, which is similar to SMNs.

(26) a. (i) Jo 3helped / # lifted a finger to help.
(ii) Jo didn’t 3help / 3lift a finger to help.

b. (i) Everyone who 3helped / 3lifted a finger to help was rewarded.
(ii) Everyone who 3helped / # lifted a finger to help was punished.

3.2.3. The solution for POL2 in minimizers
Chierchia (2013: 148ff.) (and refs. therein; also Crnič 2011 and refs. therein) identifies
the source of POL1 in minimizers with the fact that minimizers make reference in their truth
conditions to a scalar element. This naturally gives rise to SA. These have to be factored into
meaning via the silent exhaustivity operator E(ven). E carries a scalar condition that requires
that the prejacent be less likely than all its SA. Now, a minimizer is by definition the lowest
in its scale. Thus, ESA in a UE context fails—all the SA entail the prejacent, so the prejacent
cannot be less likely than them—but in a DE environment it succeeds—the prejacent entails all

659



the SA, so it can easily satisfy the requirement of being less likely than them. This captures
POL1. Following Crnič (2012), I assume that in some items E may use the scalar in both the
prejacent and the SA in an exact sense, making them non-monotonic, and causing the scalar
condition to be assessed relative not to logic but rather context. This captures POL2.

3.2.4. Extending the solution for POL2 to numerals
Cohen and Krifka (2014) propose a solution on which POL2 comes from a second meaning of
SMNs, one that does not mind being in a DE environment but simply requires that the predicate
that the SMNs combines with most immediately, P1, be pragmatically positive. However, this
does not capture all the patterns in SMNs, nor their light/strong parallels in CMNs/minimizers.

Building on our discussion of SI earlier, I argue that there is a clear similarity between SMNs
and minimizers: They both make reference in their truth conditions to a scalar element. Thus,
we should be able to extend the account from minimizers to SMNs also. As for minimizers,
the alternatives relevant to POL2 are the SA. These are factored in via the silent exhaustivity
operator E. Following Chierchia (2013: 148)’s concrete discussion of minimizers, I assume
that E asserts the prejacent and adds that any alternatives (different from it; see Crnič, 2012:
542) are contextually more likely than it, that is, that the prejacent is the least likely.

However, at this point we are faced with a conundrum. Minimizers are, by definition, end-of-
scale items. They stand in the same relation with respect to all their SA. Thus, there was a clear
sense in which they could satisfy the scalar condition of E. However, numerals are typically not
end-of-scale. They have SA that entail them and SA that are entailed by them, in both UE and
DE environments. Thus, they can never satisfy the scalar condition of E, whether by logical or
by contextual reasoning. I propose that, quite generally, the scalar condition of E is really just
about the entailed SA, (27). (See (38) in §4 for further refinements.)

(27) JEK(C〈〈s,t〉,t〉, p〈s,t〉,ws) = p(w)∧∀q ∈C[p⊆ q→ p≺µ q] (further thoughts in §4)

Finally, following Crnič (2012)’s solution for POL2, mentioned above, I assume that both the
prejacent and the SA are used by E on an exhaustive interpretation, that is, following Crnič
(2012), as if strengthened at some level via O, (28).

(28) E.g., ESA(If OSA(at least 3 P1), P2) is in a sense EExhSA(If at least 3 P1, P2), with the
prejacent (If OSA(at least 3 P1), P2) and the SA (If OSA(at least m P1), P2).

The result is as below. (First example shown explicitly, subsequent examples abbreviated to
first line—giving the intuitive judgments—and last lines—giving the predictions from ESA.)

(29) a. If Jo solved 3at least 3 problems, she passed.
EExhSA(If OSA(Jo solved 3at least 3 problems)︸ ︷︷ ︸

exactly 3 solutions

, she passed.

︸ ︷︷ ︸
exactly 3 solutions→ pass ≺µ exactly 4/5/. . . solutions→ pass

b. If Jo solved # at least 3 problems, she failed.
# exactly 3 solutions→ fail ≺c exactly 4 solutions→ fail

c. If Jo didn’t solve # at least 3 problems, she passed.
# exactly 3 solutions→ pass ≺c exactly 2 solutions→ pass

d. If Jo didn’t solve 3at least 3 problems, she failed.
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3exactly 3 solutions→ fail ≺c exactly 2 solutions→ fail
e. If Jo made # at least 3 mistakes, she passed.

# exactly 3 mistakes→ pass ≺c exactly 4 mistakes→ pass
f. If Jo made ? at least 3 mistakes, she failed.

3exactly 3 mistakes→ fail ≺c exactly 4 mistakes→ fail
g. If Jo didn’t make ? at least 3 mistakes, she passed.

3exactly 3 mistakes→ pass ≺c exactly 2 mistakes→ pass
h. If Jo didn’t make # at least 3 mistakes, she failed.

# exactly 3 mistakes→ fail ≺c exactly 2 mistakes→ fail

(30) a. If Jo solved # at most 3 problems, she passed.
# exactly 3 solutions→ pass ≺c exactly 2 solutions→ pass

b. If Jo solved 3at most 3 problems, she failed.
3exactly 3 solutions→ fail ≺c exactly 2 solutions→ fail

c. If Jo didn’t solve ? at most 3 problems, she passed.
3exactly 3 solutions→ pass ≺c exactly 4 solutions→ pass

d. If Jo didn’t solve # at most 3 problems, she failed.
# exactly 3 solutions→ fail ≺c exactly 4 solutions→ fail

e. If Jo made 3at most 3 mistakes, she passed.
3exactly 3 mistakes→ pass ≺c exactly 2 mistakes→ pass

f. If Jo made # at most 3 mistakes, she failed.
# exactly 3 mistakes→ fail ≺c exactly 2 mistakes→ fail

g. If Jo didn’t make # at most 3 mistakes, she passed.
# exactly 3 mistakes→ pass ≺c exactly 4 mistakes→ pass

h. If Jo didn’t make ? at most 3 mistakes, she failed.
3exactly 3 mistakes→ fail ≺c exactly 4 mistakes→ fail

If both CMNs and SMNs can undergo ESA, but SMNs must in fact do so obligatorily, this
captures all the patterns for POL2 with marked P1. As for the patterns for POL2 with neutral
P1, I believe they should work the same—once we figure out the strategy for interpreting P1.

4. Predictions and extensions

4.1. Prediction: OExhDA–OSA–EExhSA

Given the above, we expect OExhDA, OSA, and EExhSA to interact. Two examples are as below.

First, SMNs in plain UE contexts. Here, as discussed, SMNs give rise to IG, via OExhDA, and
to SI, via OExhDA. However, they also give rise to an evaluative judgment—at least 3/at most 3
suggests that 3 is many/few. Note that this can be derived from ESA.

(31) Jo solved at least 3 problems.
exactly 3 ≺µexactly 2  3 is many!

(32) Jo solved at most 3 problems.
exactly 3 ≺µexactly 4  3 is few!

Second, SMNs under possibility modals. Here, as discussed, SMNs give rise to a Free Choice
effect, via OExhDA. However, they also give rise to an interesting bound—possible at most 3
mysteriously suggests not possible more. I argue this comes from OSA being computed atop of
OExhDA. However, this bound is attested only for at most. I suggest this might be because the
EExhSA built atop of all this yields a sensible interpretation for at most but not for at least.
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(33) Jo may drink 3at least 3 beers.
EExhSA(OSA(OExhDA(♦(3∨4∨ . . .))︸ ︷︷ ︸

(♦3∧♦4∧...) Free Choice

)

︸ ︷︷ ︸
¬(♦2∧♦3∧...) not possible less

)

︸ ︷︷ ︸
♦3≺µ♦4 does not fit common assumptions

(34) Jo may drink 3at most 3 beers.
EExhSA(OSA(OExhDA(♦(· · ·∨2∨3))︸ ︷︷ ︸

(···∧♦2∧♦3) Free Choice

)

︸ ︷︷ ︸
¬(···∧♦3∧♦4) not possible more

)

︸ ︷︷ ︸
♦3≺µ♦2 fits common assumptions

4.2. Extension: O–only, E–even, and O/only–E/even

Horn (1972: 37ff.) notes contrasts between what we now call instances of covert O and overt
only—O is fine with more but bad with less, while only is the opposite. Building on comments
from an anonymous reviewer, I similarly note contrasts between what we now call instances of
covert E and overt even—E with at least [positive P1] is fine with a positive P2 but bad with
a negative P2, which we said is because E pitches the prejacent up against its entailed SA, but
even is fine with either a positive or a negative P2, which by our reasoning must come because
even can pitch the prejacent up against either its entailed or its non-entailed SA.

(35) {O / Only} 60% of the electorate will
be fooled, if not 3/# more / #/3less.

(36) {E / Even} if you solve at least 3
problems, you 3/3pass / #/3fail.

Building on suggestions from Horn (1972) and literature since, I suggest that only/O are as
follows: (1) They both convey the same set of inferences. However: (2) They differ in the
status of some of these inferences (whether it is asserted, α , or presupposed, π). Moreover:
(3) Their overt/covert status likely matters also. Analogously, and very tentatively, I suggest
that even/E are as follows: (1) They both convey the same set of inferences. Above I said that,
in light of non-end-of-the-scale items, the scalar inference cannot be about all the SA, and I
suggested it is about the entailed SA. Here I suggest, in light of even, that it is restricted to
the true SA, where a third commonly assumed existential inference ensures that at least one
true alternative (different from the prejacent) is always available. Then: (2) They might also
differ in the status of some of these inferences. With the literature, for now I will assume that
they do not. However, crucially: (3) Their overt/covert status matters, as follows: With OSA
at the same site as ESA, the set of true alternatives are the entailed SA (see (11), §3.1), which
constrains the scalar inference such that sometimes it ends up clashing with context. Without
OSAat the same site as ESA, the set of true alternatives can in principle be either the entailed
or the non-entailed OSA, which ensures that the scalar inference can adjust to context. Now, I
assume that overt even can suspend OSA at the same site, thus accessing the non-entailed SA,
but covert E cannot. This affects their set of true alternatives, thus capturing their patterns.

(37) Jonly/OK(C〈〈s,t〉,t〉, p〈s,t〉,ws)
a. p(w) (π/α)
b. ∀q ∈C[q(w)→ p⊆ q] (α/α)

(38) Jeven/EK(C〈〈s,t〉,t〉, p〈s,t〉,ws)
a. p(w) (α/α)
b. ∀q ∈C[q(w)→ p≺µ q] (π/π)
c. ∃q ∈C[q 6= p∧q(w)] (π/π)

If this is on the right track, we can also draw conclusions about the role of the exhaustivity
operators O-only and E-even more generally. When an assertion has multiple alternatives that
are true, as is the case with the entailed SA of scalar items or with the additional true SA added
by E-even, these operators clarify why the assertion was chosen over them: It entails any other
true alternative (O-only) and/or it is more noteworthy than any other true alternative (E-even).
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5. Conclusion and outlook

IG, SI, POL1, and POL2 have all been used to conclude fundamental difference—between BNs
and MNs, within MNs, and within SMNs. We have revisited these effects and argued instead for
fundamental similarity—within numerals and between numerals and disjunction, indefinites,
and minimizers—offering also a unified account. This account revisits the connection between
IG and POL1, suggesting they both come from DA, via O. This account also argues for a
connection between SI and POL2, suggesting they both come from SA, the former via O and
the latter via E. The proposal predicts some free variation, that is, that one might find, for
example SMNs compatible with ONE-WINNER, or items where a clash between IG and SI

is resolved in favor of SI, or CMNs with POL2. I believe all these are indeed attested—the
former, for example, in Chinese zhi-shao (vs. zui-shao; Nouwen, 2015: 255), and the latter
two both, possibly, in no more than n (vs. not more than; Nouwen, 2008: 77). The proposal
also tentatively tackles the connection between O and only, E and even, and O/only and E/even,
suggesting that they all come from the same source: a pressure to justify the choice of the
assertion in light of its true alternatives.
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Westera, M. and A. Brasoveanu (2014). Ignorance in context: The interaction of modified nu-
merals and QUDs. In M. W. Todd Snider, Sarah D’Antonio (Ed.), Semantics and Linguistic
Theory (SALT) 24, pp. 414–431. LSA and CLC Publications.

Zabbal, Y. (2005). The syntax of numeral expressions. Ms., University
of Massachusetts Amherst. https://pdfs.semanticscholar.org/e5d9/

203864c2d0a6657488a0c98b28ec700da395.pdf.

665




