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Abstract

In this paper I will discuss why (un) marked expressions typically get an (un)marked
interpretation: Horn’s division of pragmatic labor. It is argued that it is a conventional fact
that we use language this way. This convention will be explained in terms of equilibria of
signalling games introduced by Lewis (1969) but now in an evolutionary setting. I will also
relate this signalling game analysis with Blutner’s (2000) bi-directional optimality theory
and with Parikh’s (1991, 2000) game-theoretical analysis of successful communication.

1 Introduction

Yesterday, Paul came into my office and told me ‘Miss X produced a series of sounds that corre-
spond closely with the score of “Home Sweet Home.́ Paul intended to communicate something
to me and he succeeded: I understood that Paul wanted to tell me that Miss X’s performance
suffered from some hideous defect. How can this be explained?

The above example is just one instance of a general rule that says that (un)marked expressions
typically get an (un)marked interpretation. Many other examples are discussed in Horn (1984)
and the rule has come to be known as Horn’s division of pragmatic labor. I will denote this
rule sometimes also by Horn’s rule or by the Horn strategy. Grice’s (1975) explanation of
the one instantiation of the rule I started out with appeals to his maxim of manner. He also
suggests that this maxim, just like the other ones, should be derivable from general principles
of rationality. This seems natural: when we obey the rule, we use linguistic expressions in a
more economical way than when we don’t. But how should such a reduction to principles of
economy and rationality look?

According to a tradition going back to Zipf (1949), economy considerations apply in the first
place to languages. Speakers obey Horn’s rule because they use a conventional language that,
perhaps due to evolutionary forces, is designed to minimize the average effort of speakers and
hearers. Horn’s (1984) own explanation in terms of the interaction of his Q and R principles
belongs to this tradition,1 and so does the recent Optimality Theoretic one of Blutner (2000).

According to another possible way to go, rationality considerations apply every time a speaker
and a hearer are involved in communication. The ‘rule’ that Horn observed is not a convention
among language users, but is observed only because rationality dictates that speaker and hearer
always coordinate their utterance and interpretation acts in accordance with the rule. Parikh’s
(1991, 2000) game-theoretical explanation of successful communication is perhaps the most
explicit analysis following this road.

∗The research for this paper has been made possible by a fellowship of the Royal Netherlands Academy of Arts
and Sciences. I would like to thank Jason Noble and Brian Skyrms for clarifying some issues about signalling in
evolutionary settings, and to Johan van Benthem and Frank Veltman for discussion after an earlier presentation of
some of the material dealt with in this paper. I thank William Rose for correcting my English.

1See also Atlas & Levinson (1981) and Levinson (2000).
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The main goal of this paper is to convince you that (in general) the first line of attack is more
natural than the second. To do so, I will give a game-theoretical explanation of how Horn’s
rule could have become conventionalized through the forces of evolution. But the paper has
some secondary goals too: (i) to show the great similarity of Blutner’s and Parikh’s analyses
of successful communication; (ii) to point out the resemblance of Parikh’s unusual games of
partial information with so-called signalling games introduced by Lewis (1969); and (iii) to
point out that recent work on signalling games within economics is of great interest to the
semantic/pragmatic analysis of natural language: perhaps linguistic models that try to account
for the interpretation of expressions that are partly underspecified by semantic constraints can
learn something from economic models that explain the interpretation of signals that have no a
priori given meaning at all.

2 Bidirectional OT and Strategic Games

2.1 Bidirectional Optimality Theory

Inspired by Horn’s (1984) ‘formalization’ of Zipf’s principles of minimization of speaker’s and
hearer’s effort, Blutner (2000) proposes to account for the phenomenon that (un)marked expres-
sions typically get an (un)marked interpretation in terms of his Bidirectional Optimality Theory.
The idea behind Optimality Theory (OT) in semantics/pragmatics (cf. Hendriks & de Hoop,
2001) is that conventional meaning underspecifies the actual interpretation of an expression,
and that a combination of viable optimality theoretic constraints determines what the optimal
(= actual) one of those candidate interpretations is. The crucial distinction between Blutner’s
Bi-directional versus standard one-directional OT, is that in the former, but not the latter, for the
hearer to determine what the optimal interpretation is of a given form, he must also consider the
alternative expressions the speaker could have used to express this meaning/interpretation. One
way to implement this idea is to say that we not only require that the hearer finds the optimal
meaning for a given form, but also that the speaker expresses the meaning he wants to com-
municate by using the optimal form. Thus, what is optimal is not just meanings with respect
to forms, but rather form-meaning pairs. Jäger (2000) connects Blutner’s ideas with standard
Optimality Theory by showing how the ordering relation between form-meaning pairs can be
derived from a system of ranked OT constraints: some of them are relevant only for ordering
forms, others only for ordering meanings. Now we can say that form-meaning pair 〈 f ,m〉 is
strongly optimal iff it satisfies both the speaker’s principle (S) (i.e. is optimal for the speaker)
and the hearer’s principle (H) (i.e. is optimal for the hearer):2

(S) ¬∃ f ′ : 〈 f ,m〉 < 〈 f ′,m〉
(H) ¬∃m′ : 〈 f ,m〉 < 〈 f ,m′〉

Bidirectional OT wants to account for the fact that we typically interpret the lighter form as
having a more salient, or stereotypical, meaning. Grice’s example of ‘singing’ versus ‘produc-
ing a series of sounds’ with which I started this paper is one concrete example. Another one,
discussed by McCawley (1978), is that although ‘kill’ and ‘cause to die’ could in principle mean
the same thing, we typically will interpret the former lexicalized expression as denoting stereo-
typical killing (by knife or pistol), while the use of the morphologically complex expression

2According to optimality theory there exists also a generation function, G, that assigns to each form f a set of
interpretations that it could possible mean. For ease of exposition I will ignore this function, but all form-meaning
pair combinations that play a role in the definitions will obey this constraint: for all 〈 f ,m〉 mentioned, m ∈ G( f ).
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suggests that the murderer performed his action in a less conventional way. It is easy to see that
Blutner’s notion of strong optimality can account for one half of this principle. If we assume
that 〈 f ,m〉 > 〈 f ′,m〉 iff f is a lighter expression than f ′ and that 〈 f ,m〉 > 〈 f ,m′〉 iff m is more
salient or stereotypical than m′, it immediately follows that ‘kill’ gets interpreted as stereotyp-
ical killing. We are not able yet, however, to explain why the more complex form can have a
meaning at all, in particular, why it will be interpreted in a non-stereotypical way. To account
for this, Blutner (2000) introduces a weaker notion of optimality. A form-meaning pair 〈 f ,m〉
is weakly-optimal iff it satisfies both of the following more complex S and H principles (where
〈 f ,m〉 ∈ H iff 〈 f ,m〉 satisfies the new (H)):

(S) ¬∃ f ′ : 〈 f ′,m〉 ∈ H & 〈 f ,m〉 < 〈 f ′,m〉
(H) ¬∃m′ : 〈 f ,m′〉 ∈ S & 〈 f ,m〉 < 〈 f ,m′〉

Jäger (2000) notes that although the S and H principles interact with each other, this does not
give rise to an infinite regress as long as we assume that the OT constraints generate a well-
founded ordering relation on form-meaning pairs.3 All form-meaning pairs that are strongly
optimal are also weakly optimal. However, a pair that is not strongly optimal like 〈‘Cause to
die’, unstereotypical killing〉 can still be weakly optimal: although a stereotypical killing would
be the optimal meaning for ‘Cause to die’, this interpretation is blocked by the S principle,
because this meaning can be expressed by the lighter expression ‘kill’. Similarly, an unstereo-
typical killing cannot be expressed by ‘kill’ because this is blocked by the H principle: there is
a less marked meaning that could be denoted by ‘kill’. The pair 〈‘Cause to die’, unstereotypical
killing〉 is not blocked at all, however, and thus weakly optimal.

2.2 A game-theoretical reformulation

Blutner’s bidirectional OT has been given a game-theoretical reformulation in Dekker & van
Rooy (2000). According to this reformulation, information exchange is represented as a strate-
gic (interpretation) game of complete information between speaker and hearer. A two-player
strategic game, or a game in strategic form, is a model 〈{1,2},(Ai),(Ui)〉 of interactive deci-
sion making in which each player i (element of {1,2}) chooses her plan of action (element of
Ai) once and for all, and is uninformed, at the time of her choice, of the other players’ choices.
The actions chosen by the players depend on their preferences, modeled in terms of a cardinal
utility function (Ui) over the action pofiles, the simultaneous choices of the players. A profile
〈a1,a2〉 ∈ A1 ×A2 of actions forms a Nash equilibrium of a strategic game 〈{1,2},(Ai),(Ui)〉
if it has the property that neither player can profitably deviate, given the actions of the other
players:

(i) ¬∃a′1 ∈ A1 : U1(a1,a2) < U1(a′1,a2)
(ii) ¬∃a′2 ∈ A2 : U2(a1,a2) < U2(a1,a′2)

For illustration, consider the following two games. In both games N = {1,2}, and A1 = {a,b},
while A2 = {c,d}. In both cases, it is optimal for player 1 (the row-player) to play a when
player 2 (the column-player) plays c, and b when 2 plays d. The difference, however, is that in
the first game player 2 strictly prefers c to d, while in the second game he strictly prefers d to
c. It is easy to check that both games have exactly one Nash equilibrium, but that the equilibria

3Benz (ms) has argued recently that this assumption is natural only when the OT constraints are context-
independent.

291



are not the same: In the first game it is the profile (a,c), while in the second it is (b,d). The
games and the Nash equilibria can be easily illustrated by the following matrices:

Game 1:
c d

a 4,2 0,0
b 0,4 2,2

Game 2:
c d

a 4,0 0,2
b 0,2 2,4

In Dekker & van Rooy’s (2000) reformulation of Bidirectional OT, the actions of speakers
are thought of as the choice of expressions, and the actions of the hearers as the choice of
interpretations. The Nash equilibria of such a game correspond with the form-meaning pairs
that are strongly optimal in Blutner’s sense. To account for his notion of weak optimality, and
thus for Horn’s division of pragmatic labor, Dekker & van Rooy (2000) make use of Nash
equilibria in so-called updated games and show that the set of Nash equilibria in the fixed-
point of such updated games correspond exactly with the weakly-optimal form-meaning pairs
in Blutner’s Bidirectional Optimality Theory.4

Although Dekker & van Rooy’s game-theoretical interpretation of Bidirectional OT is appeal-
ing, the analysis is not completely satisfying. First of all, although the authors make use of the
standard solution concept of a Nash equilibrium, this standard solution concept captures Blut-
ner’s crucial notion of weak optimality only when we consider the fixed point of the updated
games. The notion of an ‘updated game’, however, is completely foreign to standard game the-
ory, so it is not clear how far Horn’s division of pragmatic labor really follows from general
game-theoretical considerations. The reason why these updated games have to be considered
is that the actions of the interpretation game participants are thought of as concrete forms and
meanings. In particular, no justice is done to the fact that the hearer chooses his interpretation
only after he receives the form chosen by the speaker. Moreover, the game being played is
completely unsituated: it’s assumed that in whatever situation the game is played, the equilib-
ria will always be the same. There is indeed something to this when you want to account for
conventions of language use, as (arguably) Horn’s division of pragmatic labor does. But in the
way things are implemented, it seems somewhat misleading to speak of speakers and hearers
who play the game: all that is really done is to compare forms with meanings. In the rest of
the paper I want to take the role of speakers and hearers more seriously, consider the situations
in which they are playing the game, and account for the fact that the game is a sequential one:
interpretation comes only after utterance.

3 Parikh on strategic communication

3.1 Description of the framework

In a number of interesting (though somewhat similar) articles, Prashant Parikh (1991, 2000)
gives a game-theoretic analysis of when communication is possible. He argues that speaker S
communicates something to hearer H iff the discourse interaction can be described as what he
calls a game of partial information with a unique solution. I will show in this section that by
doing so Parikh in fact comes close to a general game-theoretical explanation of Horn’s division
of pragmatic labor.

4The definition of an ‘updated game’ closely follows Jäger’s (2000) algorithm for computing optimal form-
meaning pairs.
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Parikh wants to account for the fact that an, in principle, ambiguous, or underspecified, sentence
like Every ten minutes a man gets mugged in New York typically gets interpreted as meaning
that some person or other gets mugged every ten minutes, although it could, in principle, also
get interpreted as meaning that a particular man gets mugged every ten minutes. Parikh intends
to show under which circumstances only the first interpretation is part of a unique solution of
the game played between speaker and hearer. In showing why this is so, Parikh is making use
of alternative expressions and orderings of both those expressions and of the possible meanings
in a way that bears a close resemblance to Blutner’s explanation of Horn’s division of pragmatic
labor.

In abstract, the argument goes roughly as follows: A speaker used an expression, f , that in
principle could be interpreted in several ways. How f in fact should be interpreted depends
on the actual situation the speaker is in, t or t ′. With the sentence f , the speaker wants to
communicate that she is in t, if she is in t, and t ′ if she is in t ′. Although the speaker knows in
which situation she is, the hearer does not. The hearer thinks that the speaker is in situation t
with a probability of 0.8, and that she is in situation t ′ with a probability of 0.2. Moreover, this
is common knowledge. It might seem that for this reason the hearer should go for interpretation
t, for this is the most likely interpretation. But, as with other coordination problems, things are
not so simple: the hearer has to take into account the fact that the speaker used an expression
that she expects will be interpreted by the hearer in the intended way, which in turn depends on
what the speaker could have used and so on ad infinitum. Thus, just like Blutner, Parikh also
assumes that for interpreting an expression, we also have to take into account the alternative
expressions that the speaker might have used. It is assumed that besides the underspecified form
f , there are also expressions f ′ and f ′′ that can each have one meaning only: f ′ can only mean
t ′ and f ′′ only t. Parikh invites us to consider the act of interpreting form f as being part of a
larger game, and proposes that f can be interpreted as t only if this is the only solution of the
resulting game.

Assuming that speaker and hearer want to communicate successfully, we can describe the sit-
uation as a cooperative game between speaker and hearer, where the speaker has private infor-
mation about which state she is in that the hearer lacks, and where after receiving a form >from
the speaker, the hearer has to choose an action (interpret the form) that is either good for both
or bad for both.

Although the action chosen by the hearer might depend on the action of the speaker, we might
model the game as one in which they make their choices simultaneously. To do so, however,
we have to assume that they choose strategies rather than concrete actions. A strategy consists
of a rule that determines what a player will do in different circumstances. A speaker’s strategy,
S, is a function from situations to forms, i.e. an element of [{t, t ′} → { f , f ′, f ′′}], and a hearer’s
strategy, H, is a function from forms to meanings/situations, i.e. an element of [{ f , f ′, f ′′} →
{t, t ′}]. In a table, this can be displayed as follows:

Speaker :

t t ′
S1 f f ′
S2 f f
S3 f ′′ f
S4 f ′′ f ′

Hearer :
f f ′ f ′′

H1 t t ′ t
H2 t ′ t ′ t

The search for equilibria now involves the search for an optimal combination of a speaker strat-
egy and a hearer strategy. To be able to do this we have to know how the players order the
profiles consisting of a sender-hearer strategy pair, 〈S,H〉. Parikh proposes to do this in terms
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of expected utility.

To get some intuition about why expected utilities might matter for games, let’s go back for a
moment to our abstract representation of the previous section. In the analysis of strategic games
described there we assumed that both players know the game they are playing. In particular,
each player knows the payoffs of the profiles of each player. This suggests that each player has to
know what the state of nature is. But this is not really necessary in order to let a Nash equilibrium
be an appropriate solution concept. Suppose, for instance, that game 1 of the previous section is
being played in state t, while game 2 is played in state t ′. Suppose, moreover, that it is unknown
to both players what the actual state is and thus what game is actually being played: both are
commonly known to be equally likely to be played: P(t) = P(t ′) = 1

2 . What counts in such
a situation is not the actual payoffs in one particular game, but rather the expected payoffs.
The expected payoff of profile (b,d) for player 2, EU2(b,d), for instance, is determined by
∑ tP(t)×U2(t,b,d) = (1

2 × 2)+ (1
2 × 4) = 3. After calculating the expected utilities for both

agents for all profiles, the game that is being played can be pictured as follows:

Cardinal:
c d

a 4,1 0,1
b 0,3 2,3

Ordinal:

c d
a • ↔

↑ ↓
b ↔ •

So, to determine the equilibria of a game where the actual state is unknown to both players, we
have to add a set of states, T , plus a probability distribution over these states. The payoffs of
the profiles are thought of as expected utilities, or lotteries. Notice that not only the payoffs of
this game are different from the original games, also the expected plays are different: instead of
one Nash equilibrium profile we now have two of them: (a,c) and (b,d).

Thus, just like for the game described above, we also need to know the probabilities and utilities
involved in Parikh’s game to determine expected utilities. Although the speaker knows which
state she is in, Parikh implicitly assumes that this knowledge is not important for the expected
utilities of the speaker: the utility of the speaker’s use of underspecified form f depends on how
the hearer is going to interpret it, and this, in turn, depends on the hearer’s probability function,
which is common knowledge. Thus, to determine expected utility, according to Parikh, only
the hearer’s probability function, P, is relevant. Expected utility is then determined in the usual
way:

EU(S,H) = ∑ tP(t)×U(t,S,H)

Notice that in this definition I have followed Parikh assuming that because communication is a
game of coordination, speaker and hearer have the same utility function.5 So, how should we
define this function? Before we discuss Parikh’s own proposal, it’s instructive first to use the
utility function that just cares about successful communication:6

U(t,S,H) = 1, if H(S(t)) = t
= 0 otherwise

5Parikh rightly notes that his analysis does not, and should not, depend on this assumption; it is made just to
simplify matters.

6As we will see later, this is in fact the utility function used by Lewis (1969).
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Having fixed the probability and utility functions, we can calculate for each of the profiles its
expected utility as a lottery over the utilities of the profiles in states t and t ′:

t:

t H1 H2

S1 1 0
S2 1 0
S3 1 1
S4 1 1

t ′:

t ′ H1 H2

S1 1 1
S2 0 1
S3 0 1
S4 1 1

partial:

H1 H2

S1 1 0.2
S2 0.8 0.2
S3 0.8 1
S4 1 1

The idea now is that only those speaker-hearer strategy combinations could be appropriate that
form a Nash equilibrium.7 We see that if we use a utility function that only cares about success-

ful communication, the game described by Parikh has 4 Nash equilibria: 〈S1,H1〉,〈S3,H2〉,〈S4,H1〉, and 〈S4,H2〉.
Notice that we would get the same result for any other non-trivial probability distribution over
the states: in all cases the same 4 speaker-hearer strategy pairs would be Nash. Although in all
4 paired choices communication would be successful, this game does not yet ‘solve’ the com-
munication game: it remains unclear to the hearer how to interpret expression f . For successful
communication it has to be the case that the game has a unique solution.

To do better than this, and to make use of the probability distribution over the states, Parikh
proposes that the utility function is sensitive to the complexity of the expressions involved in
the following way: successful communication is most important, but success with a simple
expression (by using f ) is preferred to success with a complex expression (by using f ′ or f ′′).
Let us assume that the complexity of a form can be measured by a natural number and that
Compl( f ) = 1 , while Compl( f ′) = Compl( f ′′) = 2. Notice that Parikh’s use of a probability
distribution over states and a complexity measure over forms gives rise to ordering relations over
states and over forms that will be used in a very similar way as Blutner uses his ordering relation
in Bidirectional OT. Making use of the above complexity function, Parikh’s utility function can
be defined as follows:

U(t,S,H) = 1/Compl(S(t)), if H(S(t)) = t
= 0 otherwise

Now we can calculate for all the profiles their expected utilities as lotteries over the utilities of
the profiles in states t and t ′ again, and see which profiles form Nash equilibria:

t:

t H1 H2

S1 1 0
S2 1 0
S3 0.5 0.5
S4 0.5 0.5

t ′:

t ′ H1 H2

S1 0.5 0.5
S2 0 1
S3 0 1
S4 0.5 0.5

partial:

H1 H2

S1 0.9 0.1
S2 0.8 0.2
S3 0.4 0.6
S4 0.1 0.5

7This means that if the speaker wants to express t she must consider how to communicate t ′ as well, because
the hearer takes that into consideration. Thus, she must consider the whole game that we have described above.
Similarly, when the hearer wants to interpret f , he must consider how the speaker would communicate t and t ′, and
thus must consider the whole game as well. But this means that the inferences of speaker and hearer are essentially
the same. It is somewhat surprising to find Parikh (1991, p. 489) explicitly claiming that the hearer’s task is simpler
than the speaker’s.
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With this modified utility function, the game has two Nash equilibria: 〈S1,H1〉 and 〈S3,H2〉.
Notice that according to the first one, 〈S1,H1〉, the more probable state, or meaning, t, is ex-
pressed by the simple form f , while the less probable state, or meaning, t ′, is expressed by the
complex form f ′. Thus, 〈S1,H1〉 might be called the Horn strategy. According to the other Nash
equilibrium, however, the more probable meaning is expressed by a more complex form, while
the less probable meaning is expressed by a lighter form, the anti-Horn strategy. Thus, only if
speaker and hearer coordinate on the first Nash equilibrium we can give a game-theoretical ex-
planation of Horn’s division of pragmatic labor. But this means that in terms of Nash equilibria
we cannot yet account for Horn’s division. Worse, because there is still more than 1 equilibrium
left, we cannot yet even account for successful communication, because for that, according to
Parikh, we have to assume that the game has a unique solution. To solve the latter problem,
Parikh proposes to refine the Nash equilibrium solution concept by taking only the Pareto op-
timal Nash equilibria into account. In our case this means that we select the Nash equilibrium
which has the highest expected utility. Notice that in this way Parikh also accounts for Horn’s
division: the solution of the game is 〈S1,H1〉, the Horn-strategy pair according to which an
(un)marked expression gets an (un)marked meaning, because that profile has a higher expected
utility than 〈S3,H2〉: 0.9 versus 0.6.

Blutner and Parikh both gave an analysis of successful communication in terms of orderings
of meanings and forms. The analyses give rise to the same interpretation mappings in the
following sense: if t is more likely than t ′, t > t ′, for each state there are at least two forms that
could express that state, and f is the ‘lightest’ of those expressions, then both theories predict
that t will be expressed by f and t ′ by a more complex expression.

One problem for Blutner’s (2000) Bidirectional OT is that when f is a lighter expression than f ′,
f > f ′, f can mean both t and t ′, but f ′ can only mean t ′, and t ′ is more salient, or stereotypical,
than t, t ′ > t, the theory will predict that t cannot be expressed: the form-meaning pairs 〈 f ′, t ′〉
and 〈 f , t ′〉 will be weakly optimal, but 〈 f , t〉 will not. This prediction, however, seems to be
wrong. It is interesting to see that Parikh predicts better. The following tables will illustrate
this:

t t ′
S1 f f
S2 f f ′

f f ′
H1 t t ′
H2 t ′ t ′

t H1 H2

S1 1 0
S2 1 0

t ′ H1 H2

S1 0 1
S2 0.5 0.5

If t ′ has a higher probability than t, the game will have two Nash equilibria: 〈S1,H2〉 and
〈S2,H1〉. However, the latter – which is the only equilibrium in case P(t) > P(t ′) – will have a
highest expected utility, and will thus be chosen. But this is exactly the speaker-hearer strategy
pair according to which f gets interpreted as t.

3.2 Unsatisfying aspects of the framework

Although Parikh’s game-theoretical account of Horn’s division of pragmatic labor is more nat-
ural than the one of Dekker & van Rooy (2000) and uses more standard game-theoretical tech-
niques, it is not completely satisfying either.

First, it has some empirical problems: Suppose f > f ′, t > t ′, f ′ can only mean t, but f can mean
both. Suppose also that P(t) = 0.8 and P(t ′) = 0.2. That situation gives rise to the following
tables:
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t t ′
S1 f f
S2 f ′ f

f f ′
H1 t t
H2 t ′ t

t H1 H2

S1 1 0
S2 0.5 0.5

t ′ H1 H2

S1 0 0
S2 0 1

partial H1 H2

S1 0.8 0
S2 0.4 0.6

In this case, Parikh’s analysis will predict that there are 2 Nash equilibria: 〈S1,H1〉 and 〈S2,H2〉.
Because the first one has a higher expected utility, it will be selected. But this prediction is not
very satisfying: it means that no sign will be interpreted as t ′.8

Second, because it uses an unusual solution concept: although the selection of the Pareto op-
timal Nash equilibrium seems natural, it is not one of the standard refinements of equilibria
concept that you find in the economic literature. In fact, there is substantial literature in eco-
nomics discussing the question of how the Pareto optimal Nash equilibrium can be selected.
This almost always involves extending the game by a round of communication (or cheap talk)
before the actual game takes place. But a ‘solution’ of this kind seems very unnatural for our
case, where the main game itself is already about communication. As Parikh (1991) notes
himself, such an approach suffers from the danger of an infinite regress.

Third, Parikh’s suggestion that to account for successful communication and for Horn’s division
of pragmatic labor, we must select the speaker-hearer strategy pair with the highest expected
utility in fact makes you wonder why he first introduces his quite involved game-theoretical
setup in the first place. If we have to select the Pareto optimal Nash equilibrium, and if the
payoffs for speaker and hearer are the same, things could be accounted for much simpler in
terms of Shannon’s (1948) Information Theoretic principles of optimal coding.9

Finally, although the game that Parikh describes crucially involves private information – one
individual has some information that the other lacks – the game is not analyzed by using the
standard techniques of solving such games of private information, also known as Bayesian
games. In fact, Parikh (1991, p. 480) suggests that to analyze strategic inference in communi-
cation we have to think of new kinds of games and cannot use the tools developed to analyze
games of private information. This is strange, because on the surface, his analysis looks much
like Lewis’ (1969) well known analysis of conventional meaning in terms of the best studied
games of private information: signalling games. I will show in the next section how far Parikh’s
analysis of strategic communication can be described in terms of games of private information,
and in what sense his analysis of strategic communication is just like the strategic interactions
involved in standard signalling games.

4 Signalling games

Quine (1936) challenged conventionalists’ accounts of language to provide a satisfactory ac-
count of how the relevant conventions are set up and maintained that does not presuppose
linguistic communication or competence. Lewis (1969) responded by explaining the seman-
tic/conventional meaning of expressions in terms of equilibria of signalling games. In such
games one player can send signals, or messages, to another player about the state the former
player is in, but these messages have no pre-existing meaning; whatever meaning the messages
acquire must emerge from the strategic interaction. Conventions, and conventional meanings,
are then explained as stable Nash-equilibria.

8I won’t go into details later, but it turns out that the analysis that I will propose in section 4 predicts rightly for
this example and for the one discussed in the previous section!

9See van Rooy (2001).
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Since Lewis introduced his signalling games to explain why and how conventional meanings
can be associated with natural language expressions, these games have hardly been discussed
within semantic and/or pragmatic analyses of natural language. In economics (and in biology,
as we will see in section 5), however, generalizations of Lewis’s signalling games have been
studied extensively to throw light on, among others things, advertising and strategic pricing. In
the next section I will describe a simple variant of signalling games as they are widely studied
in economics in terms of which we can also describe Parikh’s situations of strategic interaction
in communication.

4.1 Description of the framework

A signalling game is a two-player game with a sender and a receiver. This is a game of private,
information: The sender starts off knowing something that the receiver does not know. The
sender knows the state t she is in but has no substantive payoff-relevant actions.10 The receiver
has a range of payoff-relevant actions to choose from but has no private information, and his
prior beliefs concerning the state the sender is in is given by a probability distribution P over
T ; these prior beliefs are common knowledge. The sender, knowing t and trying to influence
the action of the receiver, sends to the latter a signal of a certain form f drawn from some
set F . The other player receives this signal, and then takes an action a drawn from a set A.
This ends the game. Notice that the game is sequential in nature in the sense that the players
don’t move simultaneously: the action of the receiver might depend on the signal he received
from the sender. The payoffs to the sender and the receiver are given by functions U1 and U2,
respectively, which are elements of [T ×F ×A → R]. For simplicity we will assume here that
T , F and A are all finite.

In the econonomic literature (e.g. Crawford & Sobel, 1982; Cho & Kreps, 1987) it is standardly
assumed that the strategies of senders and receivers in signalling games are probabilistic in
nature: the sender, for instance, is allowed to send from within the same state different signals,
each with a certain probability such that they add up to one. For comparison with Parikh’s
analysis, however, I will simplify things, and assume that a sender strategy, S, is a function
from states to signals (forms): S ∈ [T → F ], and a receiver strategy, R, a function from signals
to actions: R ∈ [F → A].

An equilibrium for a signalling game is described in terms of the strategies of both players. If
the sender uses strategy S and the receiver strategy R, it is clear how to determine the utilty of
this profile for the sender, U∗

1(t,S,R), in any state t:

U∗
1(t,S,R) = U1(t,S(t),R(S(t)))

Due to his incomplete information, things are not as straightforward for the receiver. Because
it might be that the sender using strategy S sends in different states the same signal, f , the
receiver doesn’t necessarily know the unique state relevant to determine his utilities. Therefore,
he determines his utilities, or expected utilities, with respect to the set of states that he might
be in after he got message f . Let us define St to be the information state the receiver is in after
the sender who is using strategy S sent her signal in state t, i.e. St = {t ′ : S(t ′) = S(t)}. With
respect to this set, we can determine the (expected) utility of receiver strategy R in state t when
the sender uses strategy S, U∗

2(t,S,R):

10In game theory it is standard to say that t is the type of the sender.
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U∗
2(t,S,R) = ∑ t′∈StP(t ′/St)×U2(t ′,S(t ′),R(S(t ′)))

A strategy profile 〈S,R〉 forms a Nash equilibrium iff neither the sender nor the receiver can
do better by unilateral deviation. That is, 〈S,R〉 forms a (Bayesian) Nash equilibrium iff for all
t ∈ T the following two conditions are obeyed:11

(i) ¬∃S′ : U∗
1(t,S,R) < U∗

1(t,S′,R)
(ii) ¬∃R′ : U∗

2(t,S,R) < U∗
2(t,S,R′)

Let me stress again that the messages, or forms, used in these games have no pre-existing
meaning. Meanings, so it was argued by Lewis (1969), could be associated with these messages,
however, when, due to the chosen sender and receiving strategies in equilibrium, it will be the
case that the receiver acts differently (or appropriately, at least) when the sender is in different
states. In that case we might say that the sender strategy S of the equilibrium pair 〈S,R〉 fixes
meaning of expressions in the following way: for each state t,12 the message S(t) means t. But
in order for this to be possible, it has to be the case that the game has an equilibrium 〈S,R〉 which
indeed has the property that S sends different messages in different states. Following standard
terminology of economics, let us call 〈S,R〉 a separating equilibrium if it has this property. The
following game, however, shows that not all signalling games have such an equilibrium.

4.2 Beer versus Quiche

Consider the signalling game due to Cho & Kreps (1987) where the receiver, Player 2, doesn’t
know the type of the sender, player 1: in state t player 1 is a surly fellow; in t ′ he is a wimp.
Player 1 chooses whether to have beer or quiche for breakfast. Surly fellows prefer beer and
wimps prefer quiche. After observing the breakfast chosen by player 1, player 2 decides whether
to challenge agent 1 to a duel. Player 2 likes to fight wimps but fears fighting a surly fellow.
Regardless of type, player 1 loses 1 unit of payoff if he has his less favorite breakfast, and he
loses 2 units of payoff if he is challenged.

The following reasoning shows that this game has no separating equilibrium. Suppose there
were a separating equilibrium, i.e., an equilibrium where a surly fellow and wimp have different
breakfasts. Then the message sent by player 1 – the breakfast chosen – would have a ‘meaning’:
it allows player 2 to infer player 1’s type and make her decision whether to fight or not dependent
on the message. Player 2 will choose to fight if she sees a wimp’s breakfast and not to fight if she
sees a surly fellow’s breakfast. Player 1’s utility loss >from ending up fighting is greater than his
utility loss >from having a less favorite breakfast (2 > 1) regardless of his type. So, regardless
of his type, player 1 would have a surly fellow’s breakfast. But then surly fellows and wimps
act the same: a contradiction. This proves the nonexistence of a separating equilibrium.13

11Strictly speaking, this is not just a Nash equilibrium, but rather a sequential equilibrium, the standard equilib-
rium concept for sequential, or extensive form, games.

12Or a certain element of the partition of states
13The game does have two so-called ‘pooling’ equilibria, however. The pair 〈S,R〉 is called a pooling equilib-

rium, if there is a single signal f that the sender uses in all states.
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4.3 Lewis on conventional signalling

Above I have described signalling games as they are studied in economics. The games studied
by Lewis (1969) are simpler in a number of respects. First, he assumes that the messages sent
are costless. Formally this means that the utility functions are such that Ui(t, f ,a) = Ui(t,a) for
both players i. In these circumstances, it turns out, the sender can only influence the receiver’s
decision of how to act, if there is some commonality of interests between the two.14 This points
to a second simplifying assumption made by Lewis: the interests of the players coincide: for
every t ∈ T and a ∈ A it holds that U1(t,a) = U2(t,a). For this reason we can work with
one utility function U only. For ease of exposition, I will simplify matters even more and
assume that the action of the receiver is just one of interpretation,15 which means that the
range of the receiver’s strategy, A, equals the domain of the sender’s strategy, T . Thus, I will
assume that each sender strategy S is a function from states to forms: S ∈ [T → F ], and each
receiver strategy R a function from forms to states: R ∈ [F → T ]. The last special feature of
Lewisian signalling games is that for determining the utility of a sender-receiver strategy pair,
only successful communication counts. Formally this means that for each t it holds that

U(t,S,R) = 1, if R(S(t)) = t
= 0 otherwise

Such a game has several equilibria. A nice feature of Lewisian signalling games is that, if there
are enough states and signals, equilibria are guaranteed to exist in which different signals are
sent in different states which are interpreted appropriately. Such separating equilibria are called
signalling systems by Lewis, and he proposes that these are the ones with which we associate
linguistic meanings. These linguistic meanings can be called conventional if there are other
competing signalling systems, or separating equilibria, that could have been chosen instead.
In fact, a simple game with just two states, t and t ′, and two forms f and f ′, already has two
separating equilibria: f is associated with t in the one, and with t ′ in the other.16 Unfortunately,
however, Lewisian games have many other equilibria besides these: they always also have a
so-called pooling equilibrium in which the sender sends the same signal in all states, and a
so-called babbling equilibrium in which the receiver ignores the utterance of the speaker and
always ‘responds’ to the message sent by choosing the same action.17 But if all these kinds
of equilibria exist, in what sense are separating equilibria better than non-separating equilibria?
One way of answering this question is in terms of Pareto optimality. Let us define the expected
utility of a sender-receiver strategy 〈S,R〉 as before:

EU(S,R) = ∑ tP(t)×U(t,S,R)

It is easy to see that in case P assigns to at least 2 states a positive probability and there are
at least two signals, the separating equilibria have a strictly higher expected utility than the
non-separating equilibria. Thus, or so it seems, separating equilibria are chosen because they
have the highest utility. Although there is something to this suggestion, we would like to give

14See Crawford & Sobel (1982).
15In terms of Austin (1962): for meaning only illocutionary effects matter, not perlocutionary ones. See also

Schiffer’s (1972) criticism of Grice’s (1957) analysis of non-natural meaning.
16There are many games with these states and forms, because in different games the receiver might have different

probability distributions over the states.
17In distinction with separating equilibria, the resulting pooling and babbling equilibria crucially depend on the

probability function that represents the receiver’s beliefs about the state the sender is in.
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an explanation of it in terms of the interaction between sender and receiver, i.e., in terms of
game theory. In the Lewisian signalling game, however, the expected utilities as such don’t
really play a role. Notice that the ‘explanation’ suggested above is the same as the one Parikh
uses for selecting among several equilibria. Also he suggests that to account for successful
communication and for Horn’s division of pragmatic labor we must select the sender-receiver
strategy pair which has the highest expected utility.

Even if we can give a game-theoretical account of why separating equilibria are better, we
are not out of trouble. We have seen that a Lewisian game gives rise to several separating
equilibria. But which one, then, will be chosen as the convention? Following Schelling (1960),
Lewis suggests that this depends on which of those equilibria is most salient. But why would
one separating equilibrium, or signalling system, be more salient than another? Perhaps, you
might think, because one of them has the highest expected utility. Unfortunately, however, all
fully separating equilibria of a Lewisian game are equal in this respect. How, then, can they be
distinguished? Before we address this and the previous question, however, let us first show how
Parikh could have used signalling games to analyze strategic communication.

4.4 Parikhian Signalling games

It should be clear already that Parikh’s game-theoretical setup is very close to a signalling game:
the speaker, sender, has private information about the state she is in that the hearer, receiver,
lacks. The game is sequential in nature, and what counts are the strategies involved. Denoting
the set of states, {t, t ′}, by T and the set of forms, { f , f ′, f ′′}, by F , a sender strategy, S, is an
element of [T → F ] and a receiver strategy, R, an element of [F → T ]. So far, this is just like
in Lewisian games. However, Parikh’s games differ from Lewisian ones in a number of ways.
First, Parikh wants to derive the meaning of only one of three signals: he assumes that f ′ and f ′′
already have a fixed meaning. As we have seen in section 4 this means that we have to consider
only 2 strategies of the receiver:

Sender :

t t ′
S1 f f ′
S2 f f
S3 f ′′ f
S4 f ′′ f ′

Receiver :
f f ′ f ′′

R1 t t ′ t
R2 t ′ t ′ t

Second, Parikh assumes that the signals used directly enter the payoffs: his signalling game is
not one of cheap talk. As we have seen in section 3, the utility of a sender-receiver profile 〈S,R〉
in state t depends not only on whether communication is successful, R(S(t)) = t, but also on the
complexity of signal S(t):

U(t,S,R) = 1/Compl(S(t)), if R(S(t)) = t
= 0 otherwise

So far this is exactly like we have seen in section 3. The (small) difference comes up when
we determine the (Nash) equilibria of the game. Let us look again at the games that, according
to Parikh, are being played in the two states, and the resulting game. On the assumption that
P(t) = 0.8 and P(t ′) = 0.2, Parikh assumes that these two games can be reduced to the one on
the right hand side below, where the new payoffs are the expected utilities, and are assumed to
be the same for both.
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t:

t R1 R2

S1 1 0
S2 1 0
S3 0.5 0.5
S4 0.5 0.5

t ′:

t ′ R1 R2

S1 0.5 0.5
S2 0 1
S3 0 1
S4 0.5 0.5

partial:

R1 R2

S1 0.9 0.1
S2 0.8 0.2
S3 0.4 0.6
S4 0.5 0.5

Parikh assumes that 〈S,R〉 is a Nash equilibrium of the whole game when it is a Nash equilibrium
of the resulting game of ‘partial’ information on the right hand side.

When, however, we analyze things as signalling games, i.e. as a game with private information,
the games played in t and t ′ are not really as described above, but depend on what the receiver
believes when a signal is sent to him. This means that the payoff functions U∗

1 and U∗
2 of

sender and receiver, respectively, need not be the same, even though U1 and U2 are. For Parikh’s
example this only has an effect when the sender uses the same signal in both states, i.e., when
she is using strategy S2. Only in that case do the payoffs of the receiver depend on his prior
belief about which state the sender is in. As a signalling game, the payoffs in each game look at
follows:

t:

t R1 R2

S1 1,1 0,0

S2 1,0.8 0,0.2

S3 0.5,0.5 0.5,0.5

S4 0.5,0.5 0.5,0.5

t ′:

t ′ R1 R2

S1 0.5,0.5 0.5,0.5
S2 0,0.8 1,0.2
S3 0,0 1,1

S4 0.5,0.5 0.5,0.5

For 〈S,R〉 to be an equilibrium in a signalling game it has to be a Nash equilibrium in all pos-
sible states, i.e., both in t and in t ′. Although the solution concept used by Parikh is somewhat
different >from the one used in signalling games, it turns out that for the example under discus-
sion, it doesn’t really matter: in both cases the complete game has two equilibria: 〈S1,R1〉 and
〈S3,R2〉. In fact, given the setup of the games Parikh considers, there cannot be a difference in
outcome. I conclude that Parikh could just as well have analyzed his communicative situations
in terms of standard signalling game.18

But wait! Parikh assumes that communication is successful only in case the game has a unique
outcome, and doesn’t he determine this outcome not in terms of a notion, i.e. expected utility,
that plays no role in signalling games? Yes, and no. True, you (almost) don’t find expected
utilities in the tables for t and t ′ above. But no, if we take over Parikh’s assumption that the

18Actually, he should have analyzed things by using signalling games. Consider, again, the following problem
for Parikh’s analysis that we discussed earlier: with f > f ′, t > t ′, f ′ can only mean t, but f can mean both, and
P(t) = 0.8 and P(t ′) = 0.2. This gave rise to the following tables.

t t ′
S1 f f
S2 f ′ f

f f ′
R1 t t
R2 t ′ t

t R1 R2

S1 1,0.8 0,0
S2 0.5,0.5 0.5,0.5

t ′ R1 R2

S1 0,0.8 0,0
S2 0.5,0 0.5,1

We saw that Parikh’s analysis predicts that 〈S1,R1〉 should be chosen, which means that no sign will be inter-
preted as t ′. According to the signalling game analysis, however, only 〈S2,R2〉 will be a Nash equilibrium, and this
is intuitively the right one.
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probabilities that the receiver assigns to the states are important for the payoffs of both the
receiver and the sender, there is no reason why we could not calculate expected utilities in the
same way as well. However, the signalling game reformulation of Parikh’s framework strongly
suggests that there is no good reason for doing so. But this means that Parikh’s proposal to
select the unique solution in terms of Pareto optimality is very suspicious too. All that standard
game theory can offer us when we describe the communication situation as a game between two
rational players in a particular conversational situation is that either one of the two equilibria
should come out. To determine which one this is is not so much a matter of strategic inference
in this particular situation, or so I would claim, but rather a matter of the players knowing a
convention of language use that says that (un)marked expressions typically should be interpreted
in (un)marked ways. But then, how could we explain this convention, how could it come about?
To answer this question we will turn to evolutionary game theory.

5 Evolving Horn strategies

5.1 Evolutionary Game Theory

Until now we have not yet discussed the problem as to what equilibrium is likely to emerge. One
way of resolving this problem is to introduce evolutionary or natural-selection considerations
to game theory. But how could evolution explain game-theoretical equilibria? These equilibria
are based on an analysis of rational choice, but what rational choices does an insect make? The
idea behind evolutionary game theory (cf. Weibull, 1995) is that the players in a game are not
taken to be the organisms under study, but rather the (genetic) strategies that both (i) determine
the actual play of the organism, and (ii) replicate themselves. Payoffs are defined in terms of
expected number of offspring, or replicants.19

Imagine a large uniform population of organisms who randomly encounter one another in pair-
wise interactions. In each match each organism takes an action from the same set of possible
modes of behavior. Each organism plays only once, but leaves its offspring behind. The off-
spring of an organism playing a certain strategy depends on the strategy played by the organism
with which it is matched. After many plays of the game, a strategy yielding a higher number of
expected offspring will gradually come to be used by larger and larger fractions of the popula-
tion. If the dynamic evolutionary process leads to a population all playing some single strategy
such that mutants cannot invade it, then that strategy is evolutionary stable. Maynard Smith &
Price (1973) have characterized such evolutionary stable strategies in the following way:

Strategy α is evolutionary stable (an ESS) iff for all β ∈ A such that β �= α either U1(α,α) >
U1(β,α) or U1(α,α) = U1(β,α) and U1(α,β) > U1(β,β). Equivalently, α is evolutionary
stable if for all β ∈ A it holds that

(i) U1(α,α) ≥U1(α,β), and
(ii) if U1(α,α) = U1(β,α), then U1(α,β) > U1(β,β)

Notice that the first condition guarantees that for strategy α to be evolutionary stable, it has
to be the case that profile (α,α) is a Nash equilibrium in the corresponding symmetric game
between all strategies of A. However, it might be that (α,α) is a Nash equilibrium without α

19If A is the set of strategies, the expected number of offspring of an organism playing strategy α, EU(α), is
∑ β∈AP(β)×U1(α,β), where P(β) is the proportion of organisms playing strategy β.
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being evolutionary stable: it might be that U1(β,α) = U1(α,α), but U1(β,α) ≤U1(β,β). This
means that the standard equilibrium concept in evolutionary game theory is a refinement of its
counterpart in standard game theory. Can this refinement be used to select between the several
Nash equilibria in our signalling games discussed above?

5.2 Evolution in signalling games

The refinement can only be of some use if we can think of sender-receiver strategy pairs in sig-
nalling games to be more the result of inherited behavior than the outcome of reasoned choice.
But that doesn’t seem to be a strange idea: a linguistic convention can be seen as a behavioral
phenomenon and if it does not serve the needs of the population, evolutionary forces will act to
improve its functioning.20

In order to understand how and why a language changes, the linguist must keep in
mind two ever-present and antinomic factors: first, the requirements of communi-
cation, the need for the speaker to convey the message, and second, the principle of
least effort, which makes him restrict his output of energy, both mental and physi-
cal, to the minimum compatible with achieving his ends. (Martinet, p. 139)

Thus, the idea is to think of sender-receiver strategy pairs as conventions that can spread over a
population if it is successful through imitation or other kinds of adaptive behavior. A strategy
pair is succesful when (i) it accounts for successful communication, and (ii) it does so with
small effort.

Let us first only consider the first condition for being successful, i.e. let us focus our attention
first on Lewisian utility functions. Look at signalling games with two equally likely states only:
t and t ′; two signals that the sender can use: f and f ′; and two ways that the receiver can
interpret signals: as a and as a′, such that a corresponds with t, a′ corresponds with t ′, and the
utility function is Lewisian in the sense that only successful communication counts. Sender and
receiver each have four strategies:

Sender :

t t ′
S1 f f ′
S2 f f
S3 f ′ f
S4 f ′ f ′

Receiver :

f f ′
R1 a a′
R2 a′ a
R3 a a
R4 a′ a′

If all individuals are of a single population, we can assume that they each take the role of sender
and receiver half of the time. An individual’s strategy must then consist of both a sender strategy
and a receiver strategy. There are obviously 16 such strategy pairs. For each individual strategy
α we can determine its expected payoff when it plays against strategy β. The following two
tables show the payoffs of 〈S1,R1〉 and 〈S2,R3〉 in their sender (Us) and receiver (Ur) role when
they play against 〈S1,R1〉.

〈S1,R1〉 :
Us Ur

t 1 1
t ′ 1 1

〈S2,R3〉 :
Us Ur

t 1 1
t ′ 0 0

20See also Rubinstein’s (2000) recent book.
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Notice that the expected payoff of strategy 〈S1,R1〉 playing against itself is (1
2 × (∑ tP(t)×

Us(t))) + (1
2 × (∑ tP(t)×Ur(t))), which is (1

2 × ((0.8× 1) + (0.2× 1))) + (1
2 × ((0.8× 1) +

(0.2× 1))) = 1. This is strictly higher than the expected payoff of strategy 〈S2,R3〉 playing
against 〈S1,R1〉, which is (1

2 × ((0.8×1)+(0.2×0)))+(1
2 × ((0.8×1)+(0.2×1))) = 0.8. In

fact, there is no strategy that plays as good as or better against strategy 〈S1,R1〉 than this strat-
egy itself. But this means that 〈S1,R1〉 is evolutionary stable. Doing all the calculations for all
the strategies, it is easy to see that there are only two individual strategies that are evolutionary
stable: 〈S1,R1〉 and 〈S3,R2〉. Notice that these two individual strategies are exactly the two sep-
arating Nash equilibria in the corresponding Lewisian signalling game. As shown by Warneryd
(1993), something more general holds: For any sender-receiver game of the kind introduced
above, with the same number of signals as states and actions, a strategy is evolutionary stable if
and only if it is a separating Nash equilibrium. Notice that in this way Warneryd has given us a
purely game-theoretical explanation of why separating Nash equilibria should evolve.21,22

Notice, however, that even for the simple signalling game under discussion, there are already
two stable strategies. But only one of the two will evolve. Lewis (1969) suggested that this will
be the salient one. But there is no reason for one to be more salient than the other. Can’t we
give a purely game-theoretical explanation of selection among the equilibria? Skyrms (1996)
shows that we can if we also take into account the dynamic process by which such stable states
can be reached.

What this so-called replicator dynamics (Taylor & Jonker, 1978) shows us is that the strategy
which dominates the population at a fixed point of the dynamic process, the evolutionary stable
strategy,23 depends on the proportion of the different strategies of the population in the initial
state. Different initial states might give rise to different fixed points in the replicator dynamics,
and thus to different evolutionary stable strategies to evolve. We have seen before that it is
necessary that a separating Nash equilibrium will evolve in our signalling games. Now we see
that the particular one that will evolve is a matter of chance. Skyrms (1996) concludes that if the
evolution of linguistic conventions goes anything like in replicator dynamics, there is no need
to make use of the psychological notion of salience to explain selection of equilibria.

5.3 The evolution of alarm calls

We have seen above that to account for Horn’s division of pragmatic labor, Parikh could not
rely only on the standard game-theoretic solution concept of a Nash equilibrium, but had also
to make use of the notion of Pareto optimality. Parikh discussed a signalling game with 2 states,
3 forms (or signals), and 2 meanings (or actions). Two sender-receiver pairs constituted a Nash
equilibrium, but one of the two had a higher expected utility than the other. Can we give a
natural game-theoretic explanation of why we in fact only see the former equilibrium – which
respects Horn’s division – but not the latter? The notion of an evolutionary stable strategy is
more fine-grained than that of a Nash equilibrium, so perhaps we can find the solution here,
especially when we also take effort (costs) into account.

21For simplicity I have considered only pure strategies. Skyrms (1996) shows that if we also consider mixed
strategies, we need to take into account the replicator dynamics to explain why only separating Nash equilibria will
evolve.

22As stressed by Skyrms (1996), Warneryd shows even more: Lewis’s (1969) requirement of common knowl-
edge is not needed to explain why a linguistic signalling convention (i.e., a stable strategy in an evolutionary
signalling game) can be sustained.

23Where the fixed points are really the asymptotically stable points, and where we consider real or ‘reduced’ 2
× 2 games. For explanation of these notions and a more detailed characterization, see Weibull (1995).
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Noble (2000) has recently given an evolutionary account of the emergence of a signalling system
that seems to correspond closely to what we are after. Noble wants to explain why animals
send signals if they are in certain situations (when there is food, or danger) and not in others.
According to Noble’s signalling game, we have 2 states, t and t ′, the sender either sends signal
f or f ′, and the receiver either chooses a or a′, where only the latter is appropriate (useful)
for both in t ′. These signalling games come with 4 sender strategies, and 4 receiver strategies,
which give us 16 combined sender-receiver strategies.

So far this is exactly like the signalling games we have been discussing above. However, he
makes some extra assumptions: (i) sending signal f is cost-free, but sending f ′ is not; (ii)
taking action a is cost-free, but taking action a′ is not; and (iii) the sender is ambivalent about
the receiver’s response in state t.

Assuming that utility Ui is determined by subtracting the cost Ci from the payoff Pi, the utili-
ties of 〈S1,R1〉 and 〈S1,R4〉 in their sender (Us) and receiver (Ur) role when they play against
〈S1,R1〉 can be given by the following two tables:

〈S1,R1〉:
Us Ur

t 0 0
t ′ Ps −Cs Pr −Cr

〈S1,R4〉:
Us Ur

t 0 −Cr

t ′ Ps −Cs Pr −Cr

Assuming that each individual plays her sender and receiver role half of the time and that the
states are equally likely, we can see that on average the utility of 〈S1,R1〉 playing against herself
is Ps−Cs+Pr−Cr

4 , and that the average utility of 〈S1,R3〉 playing against 〈S1,R1〉 is Ps−Cs+Pr−2Cr
4 .

Noble’s purpose in describing this signalling game was to determine under which conditions
the honest strategy 〈S1,R1〉 is the only one that is evolutionary stable. Because this is the
strategy that reminds us of the Horn strategy, i.e., the strategy that implements Horn’s division of
pragmatic labor, it seems that Noble’s characterization of the conditions is also highly relevant
for us. He calculates that this is the case iff Ps > Cs > 0 and Pr > Cr > 0. These requirements
all are very intuitive: that the costs should be positive is obvious; that both Ps and Pr are positive
means that sender and receiver are co-operative, and that the payoffs are higher than the costs
means that in t ′ it is good for both if the receiver responds appropriately.

Can we conclude from Noble’s discussion that this characterization also accounts for Horn’s
division of pragmatic labor? Well, unlike the models we discussed above, Noble’s analysis is
based on the assumption that the states t and t ′ are equally likely. Payoffs change if we give
up this assumption. However, this doesn’t have any qualitative effect: the characterization stays
the same. Unfortunately, there is another, perhaps less obvious, difference between our models
and the ones described by Noble. In the latter the sender is supposed to be ambivalent about
the receiver’s response in state t, but this doesn’t make much sense in normal communicative
situations. In normal communicative situations both the sender and the receiver prefer that
the receiver also performs the one appropriate action a in state t, i.e., interprets the signal as
‘meaning’ t.

But why is that a problem? Just assume that also in state t both the sender and the receiver get
positive payoffs Ps and Pr when the receiver performs action a. Unfortunately, however, when
we make this move, strategy 〈S1,R1〉 is no longer the only one that is evolutionary stable: this
is also the case for sender-receiver strategy 〈S3,R2〉. This should not really surprise you, for we
have seen above that both strategy pairs are separating Nash equilibria. We are back to where
we started.24

24But suppose that the payoffs of successful communication in t, i.e. Pt
s and Pt

r, might be different from the
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Our first trial to characterize Horn’s division of pragmatic labor in evolutionary terms failed.
The notion of an ESS – even when we took costs into account – did not bring us what we had
hoped for. There is actually a very general reason why it could not have worked. Think again
of 〈S1,R1〉 and 〈S3,R2〉 as sender-receiver strategy pairs in the non-evolutionary setting. By
determining the utilities as proposed by Parikh, both are (separating) Nash equilibria. But, in
fact, they are even stronger than that: they are strict Nash equilibria. Profile (α,β) is a strict
Nash equilibrium if there is no α′ such that U1(α,β)≤U1(α′,β) and no β′ such that U1(α,β)≤
U1(α,β′). We have seen above that it’s a necessary condition for α to be evolutionary stable
that (α,α) is a Nash equilibrium in a symmetric game between all strategies. It is easy to see
that it’s also a sufficient condition for α to be evolutionary stable that (α,α) is a strict Nash
equilibrium. But then it follows that not only 〈S1,R1〉 but also 〈S3,R2〉 must be evolutionary
stable in the sense of being an ESS.25

Where does this leave us? We tried to get rid of the unwanted Nash equilibrium profile 〈S3,R2〉
by using evolutionary game theory, but we have just seen that there is no hope of doing so by
using its standard solution concept. Are there other possible ways to go? Yes, there are, if we
take correlation into account.

5.4 Correlation and the evolution of Horn strategies

It is well known in Biology that vervet monkeys, Cercopithecus aethiops, use vocal alarm sig-
nals to warn their fellow troop members of at least three quite distinct kinds of predators. Dif-
ferent alarms are given for different kinds of predators, and at different alarm calls their fellow
troop members respond in different ways. This looks much like communication and we even
see a separating Nash equilibrium at work here: a Lewisian signalling system. As we have seen
in section 5.2, such signalling systems can evolve if payoffs of sender and receiver are equal.
This, however, doesn’t seem to be the case here. In a community of vervet monkeys it is prof-
itable to be a receiver: you are alerted for predators. But how could it be profitable for a vervet
monkey to send an alarm call? The monkey already knows about the predator, and giving the
alarm call does not only cost energy, but might even attract the attention of the predator itself.
In fact, it turns out that if utility is just measured in terms of fitness, the strategy 〈S1,R1〉 in the
signalling game played by vervet monkeys is not evolutionary stable, because it can be invaded
by the free rider strategy 〈S2,R1〉 that does not send, but reacts appropriately. Why don’t we
see free riders by vervet monkeys? The reason is, or so it is suggested by Skyrms (1996), that
‘honest’ monkeys don’t pair at random with free riders, although this random pairing is im-
plicitly assumed in the replicator dynamics behind the ESS solution concept. If we assume that
there exists enough of a positive correlation between pairings of similar sender-receiver strate-
gies, Skyrms shows that free riders can be driven to extinction by honest senders. In fact, with
enough positive correlation, ‘honest’ strategy 〈S1,R1〉 cannot be invaded by free rider 〈S2,R1〉
and is evolutionary stable again, but now in a more general sense. Skyrms (1994) defines a

payoffs in successful communication in t ′, i.e. Pt′
s and Pt′

r. Are there circumstances under which 〈S1,R1〉 is again
the only evolutionary stable strategy? Yes, this is the case when 0 ≤ Pt

s < Cs, 0 ≤ Pt
r < Cr, Pt′

s > Cs > 0 and
Pt′

r > Cr > 0. Although these conditions are in a sense natural, i.e., it is more dangerous to mistake the emergency
call for ‘all’s well’ than conversely, it is not exactly what we want. To account for Horn’s division of pragmatic
labor we also have to assume that in state t it is useful to send signals as well.

25In the second chapter of Rubinstein (2000) several aternative evolutionary solution concepts are discussed,
some of them involve complexity considerations. However, in case (α,α) is a strict Nash equilibrium, it will also
be evolutionary stable according to all these alternative solution concepts.
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more general stability concept for evolutionary settings, adaptive ratifiability,26 and shows that
if a strategy is adaptive ratifiable, it is an attractive equilibrium in the more general replicator
dynamics where random pairing is no longer assumed, and correlation is possible.

How does this help us to account for the linguistic convention that (un)marked forms are typi-
cally associated with (un)marked meanings? Well, note first that also for linguistic communi-
cation, positive correlation is the rule rather than the exception: we prefer and tend to commu-
nicate with people that use the same linguistic conventions as we do, otherwise communication
will fail in lots of circumstances. Think now of a situation where individuals have the choice
between the two sender-receiver strategies that were separating Nash equilibria in the signalling
game suggested by Parikh: 〈S1,R1〉 and 〈S3,R2〉. In the evolutionary setting we then have a
symmetric 2 × 2 coordination game with the following payoff matrix:

〈S1,R1〉 〈S3,R2〉
〈S1,R1〉 0.9 0
〈S3,R2〉 0 0.6

Notice that when both are playing the same sender-receiver strategy they get exactly the payoff
that Parikh calculated as its expected utility in his game of partial information. Thus, although
these expected utilities didn’t really play a role in a standard signalling analysis, they are crucial
in an evolutionary setting.

Our problem was that although the second Nash equilibrium is Pareto-dominated by the first,
it is still evolutionary stable when random pairing, i.e. no correlation, is assumed. When we
assume positive correlation, however, things change. Let us call strategy α strictly efficient
if in interaction with itself it has a higher utility than any other strategy β in selfinteraction:
U(α,α) > U(β,β). Then Skyrms (1994) shows that when correllation is (nearly) perfect, the
strictly efficient strategy is (the unique) equilibrium of the replicator dynamics.27 For our pur-
poses this means that, others things being equal, when people tend to speak only with others
who use the same linguistic conventions, it is predicted that – slowly but surely – only strictly
efficient linguistic conventions will evolve. In particular, it means that communities that use the
anti-Horn strategy will die out in favor of communities that use the Horn strategy. Thus, we can
give an evolutionary explanation of Horn’s division of pragmatic labor.
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