
MEANWHILE, WITHIN THE FREGE BOUNDARY∗

Paul Dekker
University of Amsterdam

Abstract

With this squib I want to contribute to understanding and improving upon Keenan’s
intriguing equivalence result about reducible type 〈2〉 quantifiers (Keenan, 1992). I give an
alternative proof of his result which generalizes to type 〈n〉 quantifiers, and I show how the
reduction of a reducible type 〈n〉 quantifier to (the composition of) n type 〈1〉 quantifiers
can be effectuated.

1 Introduction

Edward Keenan (Keenan 1992) has shown that type 〈2〉 quantifiers (properties of binary rela-
tions) which are reducible to two type 〈1〉 quantifiers (properties of unary relations) are identical
if they behave the same on relations which are products. This is remarkable because it allows
us to draw universal conclusions about two predicates (over a domain of relations) from their
behavior over a highly restricted domain of relations (products, basically). Normally, know-
ing that two predicates behave uniformly over a small domain (that the nice students are the
good students, for instance), does not generalize to larger domains (that nice humans are good
humans, a non-sequitur).

Keenan’s result is useful because it allows us to actually prove quite a few type 〈2〉 quantifiers to
be not reducible to two type 〈1〉 quantifiers. However, the result is not entirely satisfying since
it leaves a few questions unanswered. Firstly, Keenan himself already realized that we can not
use this result to show, for any irreducible type 〈2〉 quantifier, that it is irreducible. Secondly, it
does not give us a method for deciding, given the behaviour of a type 〈2〉 quantifier on relations
which are products, what its possible reduction to two type 〈1〉 quantifiers could be. Thirdly, it
has so far been unclear if, or how, Keenan’s result generalizes to type 〈n〉 quantifiers, properties
of n-ary relations.

In this squib I answer these questions. I will generalize Keenan’s result to type 〈n〉 quantifiers,
I will show that if we are given the behaviour of any type 〈n〉 quantifier on products, we can
determine whether it is reducible or not, and, if it is, what are the n type 〈1〉 quantifiers to which
the type 〈n〉 one can be reduced. Section 2 states the setting and terminology. Section 3 presents
my generalizations of Keenan’s reducibility results and section 4 winds up the results.

2 Keenan on type 〈2〉 Quantifiers

Let E be our universe of at least two individuals. A type 〈1〉 quantifier f is a property of sets
of individuals: f ∈ P (P (E)), a type 〈2〉 quantifier F2 is a property of binary relations between

∗I thank Marcus Kracht for directing me towards a simplification of Keenan’s results which goes further than
the one published in a previous version of this paper. The research for this work is supported by a grant from the
Netherlands Organization for Scientific Research (NWO) which is gratefully acknowledged.

31

In: Graham Katz, Sabine Reinhard, and Philip Reuter, eds. (2002), Sinn & Bedeutung VI,
Proceedings of the Sixth Annual Meeting of the Gesellschaft für Semantik, University of Osnabrück

individuals: F2 ∈ P (P (E2)) and, more generally, a type 〈n〉 quantifier Fn is a property of n-ary
relations over individuals: Fn ∈ P (P (En)). For a type 〈n〉 quantifier Fn and Rn ∈ P (En), I will
write Fn(Rn) = 1 if Rn ∈ Fn and Fn(Rn) = 0 otherwise.

By means of a rule of division (Geach) a type 〈m〉 quantifier can also be applied to a relation R
of arbitrary arity n+m, yielding an n-ary relation Fm(R) as the result:

Fm(R) =

{〈d1, . . . ,dn〉 | Fm({〈dn+1, . . . ,dn+m〉 | 〈d1, . . . ,dn+m〉 ∈ R}) = 1}
(Notice that if n = 0, indeed Fm(R) is either {〈〉}, the truth value 1, or /0, the truth value 0.)
Using the rule of division type 〈1〉 quantifiers f and g can be composed to produce a type 〈2〉
quantifier. Thus, ∀R ∈ P (E2):

(f ◦g)(R) = f (g(R)) = f ({d | g({d′ | 〈d,d′〉 ∈ R}) = 1})
For readers familiar with montague grammar, f ◦g is indeed the property of relations R satisfy-
ing: T (λx T ′(λy S(x)(y))), with T interpreted as f , T ′ as g and S as R. For example, consider
the composition given by “every cat — a mouse”:

([[every cat]]◦ [[a mouse]])(R) = 1 iff

[[cat]] ⊆ {d | [[mouse]]∩{d′ | 〈d,d′〉 ∈ R}
= /0}
This type 〈2〉 quantifier holds of any relation R (such as chase, for instance) iff every cat Rs
(chases) a mouse.

A both philosophically and linguistically interesting question is concerned with the possibility
of characterizing type 〈2〉 quantifiers by means of the composition of two type 〈1〉 quantifiers.
(Keenan 1992) presents a number of natural language examples which can not, and he actually
proves they are not. The key concept is that of reducibility:

Definition 1 (Reducibility) A type 〈2〉 quantifier F2 is reducible iff there are type 〈1〉 quanti-
fiers f and g: F2 = f ◦g.

If a type 〈2〉 quantifier is not reducible, Keenan has it that it lives beyond the Frege boundary.
Keenan’s observations are backed up by two theorems, the first one of which we focus upon
here:

Theorem 1 (Reducibility Equivalence) If F2 and G2 are reducible type 〈2〉 quantifiers, then
F2 = G2 iff ∀P,Q ∈ P (E): F2(P×Q) = G2(P×Q).

Reducible quantifiers have the special property that if they behave the same on relations which
are products, they behave the same on all relations. (A product (P×Q) is of course the relation
{〈d,d′〉 | d ∈ P & d′ ∈ Q} holding between all members of P and Q, respectively.) This is an
intriguing and remarkable result which can be used to show certain type 〈2〉 quantifiers to be
not reducible.

Consider an arbitrary type 〈2〉 quantifier and the question whether it is reducible or not. Of
course, if we take [[every cat]] ◦ [[a mouse]] we know it is reducible because the type 〈2〉 quan-
tifier is defined in terms of two type 〈1〉 quantifiers. But then consider a property like that of
transitivity or reflexivity. Transitivity and reflexivity are (contingent) properties of relations so
they are type 〈2〉 quantifiers as defined above. Can we define these properties using two type

32

〈1〉 quantifiers? Now one may try to do this, and one may fail to succeed in reducing these
quantifiers but this does not need to show that they are not reducible. Maybe one has not tried
hard enough! Keenan here offers an ingenious method to establish that these quantifiers are
indeed not reducible. Consider what transitivity and reflexivity say about product relations. It
turns out that:

TRANS(P×Q) = 1 (∀P,Q ∈ P (E))

REFL(P×Q) = 1 iff P = Q = E

This means that transitivity and reflexivity display precisely the same truth value pattern on
product relations as the type 〈2〉 quantifiers (�◦�) and (ALL ◦ ALL), respectively. (Here, �
is the type 〈1〉 quantifier true of all sets of individuals.) Notice that the latter two type 〈2〉
quantifiers are reducible, because they are each defined in terms of two type 〈1〉 quantifiers.
With Keenan’s theorem (1) we now know that if transitivity and reflexivity are reducible then
TRANS = (�◦�) and REFL = (ALL ◦ ALL). But since the latter two equations are definitely
false, the assumptions that transitivity and reflexivity are reducible must be false as well. A
proof of the non-reducibility of a type 〈2〉 quantifier F2 thus consists in defining a type 〈2〉
quantifier f ◦ g which behaves the same as F2 on product relations. If f ◦ g is not in general
equal to F2 we know F2 to be not reducible.

Before we proceed, let us look at three natural language examples.

(1) Lois and Clark posed the same two stupid questions.

(2) Every student criticised himself.

(3) A sum total of five theories handled a sum total of five sentences.

If we only look at models where “posed” may denote relations which are products P×Q, then
(1) is true iff (i) Lois and Clark are in P and (ii) there are exactly two questions in Q. But these
are precisely the same products for which “Lois and Clark posed exactly two stupid questions” is
true. Since ([[Lo+Cl]]◦ [[ex2stqu]]) is reducible and not equal to {R | [[Lo+Cl V sa2stqu]]V/R = 1},
the latter is not reducible. Similarly, only looking at product interpretations of “criticised”,
example (2) is true iff “Every student criticised every student” is true, but certainly the two
sentences are not generally equivalent. The same finally goes for example (3) (on the cumulative
reading) and “Exactly five theories handled exactly five sentences.” These observations thus
show that the examples (1)–(3) cannot be analyzed (compositionally) as involving a relation
and two type 〈1〉 quantifiers. See (Keenan 1992) for more discussion.

Keenan’s Reducibility Equivalence is a truly interesting result, but it leaves us with a couple
of questions. Firstly, it is not quite clear exactly why reducible type 〈2〉 quantifiers behave as
Keenan’s theorem says they do. What makes it that their behaviour on the full domain P (E2)
is, in a sense, determined by their behaviour on P (E)×P (E)? I must submit that, although I
could follow Keenan’s own proof of theorem (1), it did not give me the feeling I could see what
is at stake. (Notice that it is certainly not the case that (f ◦g)(R) = (f (d(R))∧g(r(R))), where
d(R) indicates the domain of R and r(R) its range.) Secondly, Keenan’s theorem is only partly
helpful in proving non-reducibility. For to prove type 〈2〉 F2 not reducible we still have to find
a (different) quantifier (f ◦g) which behaves the same as F2 on products. But if we do not find
such a composition of two type 〈1〉 quantifiers it at best shows that F2 is not reducible or, again,
we have not tried hard enough! Besides, as we will see below, there are type 〈2〉 quantifiers,
viz., the property of being a symmetric relation, the behaviour of which on products can not be
characterized by any reducible quantifier. Thirdly, it has so far been an open question whether
Keenan’s reducibility equivalence generalizes to type 〈n〉 quantifiers. The following section is

33

devoted to answer these questions.

3 Generalizing Keenan’s Result

Let us first generalize our notion of reducibility:

Definition 2 (Type 〈n〉 Reducibility) A type 〈n〉 quantifier Fn is (n)-reducible iff there are n
type 〈1〉 quantifiers f 1, . . . , f n: Fn = f 1 ◦ . . .◦ f n.

One of the key concepts which Keenan also uses is that of a quantifier which is ‘positive’. A
quantifier Fn (of arbitrary type 〈n〉) is positive iff Fn(/0) = 0. Our observations in this squib
will be stated for the most part with respect to positive quantifiers and with respect to type 〈n〉
quantifiers which are reducible to n positive type 〈1〉 quantifiers, without loss of generalization.
For:

Observation 1 If Fn is an (n)-reducible type 〈n〉 quantifier then there are n positive type 〈1〉
quantifiers f 1, . . . , f n such that Fn = f 1 ◦ . . .◦ f n or Fn = ¬ f 1 ◦ . . .◦ f n.

Proof. Suppose Fn is (n)-reducible so that Fn = f 1 ◦ . . .◦ f n. Starting from i = n up to i = 1, if
f i is not positive, use ¬ f i instead, which is positive, and, if i > 1, use f i−1¬ in stead of f i−1.
Obviously, f i−1¬◦¬ f i = f i−1 ◦ f i. This, thus, is a recipe for characterizing an (n)-reducible
type 〈n〉 quantifier Fn or ¬Fn by means of n positive type 〈1〉 quantifiers. We will also use a
generalization of the following observation from Keenan:

Observation 2 For a positive type 〈1〉 quantifier f and any P,Q ∈ P (E): f (P × Q) = P if
f (Q) = 1 and f (P×Q) = /0 otherwise.

Proof. If d
∈ P, d
∈ f (P×Q), since f is positive; if d ∈ P, d ∈ f (P×Q) iff f (Q) = 1. The
generalization we use is this:

Observation 3 If Fn = f 1 ◦ . . .◦ f n and the f i are positive, then
Fn(Q1 × . . .×Qn) = 1 iff f 1(Q1) = . . . = f n(Qn) = 1.

Proof. Assuming that f 1(Q1) = . . . = f n(Qn) = 1, n−1 applications of observation (2) give us
that Fn(Q1 × . . .×Qn) = (f 1 ◦ . . . ◦ f n)(Q1 × . . .×Qn) = (f 1 ◦ . . . ◦ f n−1)(Q1 × . . .×Qn−1) =
. . . = f 1(Q1) = 1. Furthermore, if, for any i (1 < i ≤ n) f i(Qi) = 0, Fn(Q1 × . . .× Qn) =
(f 1 ◦ . . . ◦ f n)(Q1 × . . .×Qn) = f 1(/0) = 0 (because the f i are positive), and otherwise, if only
f 1(Q1) = 0, (f 1 ◦ . . .◦ f n)(Q1 × . . .×Qn) = f 1(Q1) = 0 as well.

Now suppose Fn and Gn are (n)-reducible type 〈n〉 quantifiers. We can for the sake of conve-
nience assume that Fn = f 1 ◦ . . . ◦ f n and Gn = g1 ◦ . . . ◦ gn, with all of the f i and gj positive.
(Otherwise, use ¬Fn and/or ¬Gn, cf. observation 1). Keenan’s theorem is now easily general-
ized:

Theorem 2 (Type 〈n〉 Reducibility Equivalence) If Fn and Gn are type 〈n〉 quantifiers (n)-
reducible to positive type 〈1〉 quantifiers, then Fn = Gn iff ∀Q1, . . . ,Qn ∈ P (E): Fn(Q1 × . . .×
Qn) = Gn(Q1 × . . .×Qn).

34

Proof. Let Fn be reducible so that Fn = f 1 ◦ . . . ◦ f n with all of the f i positive. This means
Fn(Q1 × . . .×Qn) = 1 iff f i(Qi) = 1 for all i: 1 ≤ i ≤ n. The same goes for Gn = g1 ◦ . . .◦gn,
with the gj positive. If Fn and Gn behave the same on products, the f i must be identical to the
gi so that Fn = Gn. (Obviously, if Fn = Gn, they behave the same on products.)

Keenan’s findings about (2)-reducible type 〈2〉 quantifiers are thus generalized to type 〈n〉. The
behaviour of n-reducible type 〈n〉 quantifiers on arbitrary n-ary relations is somehow determined
by their behaviour on relations which are products of n sets of individuals. An obvious next
question is this. Given the behaviour of a quantifier Fn on products, can we determine what,
if any, are type 〈1〉 quantifiers f 1, . . . , f n such that Fn = f 1 ◦ . . . ◦ f n? We can, if Fn shows a
certain invariance, defined as follows:

Definition 3 (Invariance) A type 〈n〉 quantifier Fn is invariant for sets in products iff ∀Q1, . . . ,Qn,Q1
′, . . . ,Qn

′
(all non-empty) and for any i (1 ≤ i ≤ n):

if Fn(Q1 × . . .×Qi × . . .×Qn) = Fn(Q1
′ × . . .×Qi

′ × . . .×Qn
′) = 1

then Fn(Q1 × . . .×Qi
′ × . . .×Qn) = 1.

If we are given the behaviour of a type 〈n〉 quantifier on products we can now determine whether
that behaviour can be generated by n type 〈1〉 quantifiers. The point is not that Fn is invariant
iff Fn is reducible, but the idea comes close:

Theorem 3 (Reducible Product Equivalents) A type 〈n〉 quantifier Fn or ¬Fn is invariant for
sets in products iff there is a product equivalent (n)-reducible correlate Gn of Fn.

Proof, Only if. Suppose Fn is invariant for sets in products. Define, for non-empty Qi: g1(Q1) =
. . . = gn(Qn) = 1 iff Fn(Q1× . . .×Qn) = 1, g2(/0) = . . . = gn(/0) = 0 and g1(/0) = Fn(/0). By Fn’s
invariance this is well-defined. Take Gn = g1 ◦ . . .◦gn. By its definition Gn is equivalent with Fn

on product relations and (n)-reducible. Furthermore, if ¬Fn is invariant, construct the correlate
Gn = g1 ◦ . . . ◦ gn of ¬Fn and then ¬Gn = ¬g1 ◦ . . . ◦ gn is the reducible product equivalent of
Fn.

If. Let Gn = g1◦ . . .◦gn be a product equivalent (n)-reducible correlate of Fn. Using observation
(1) we can assume the gi to be positive for 1 < i ≤ n. First assume g1 is positive as well.
Then Fn(Q1 × . . .× Qn) = Fn(Q1

′ × . . .× Qn
′) = 1 iff (product equivalence) Gn(Q1 × . . .×

Qn) = Gn(Q1
′ × . . .×Qn

′) = 1 iff (observation 3) gi(Qi) = gi(Qi
′) = 1, for any 1 ≤ i ≤ n. But

then Gn(Q1 × . . .×Qi
′ × . . .×Qn) = 1 (observation 3) and Fn(Q1 × . . .×Qi

′ × . . .×Qn) = 1
(product equivalence). Hence, Fn is invariant. Now assume g1 is not positive. Then ¬Gn is the
composition ¬g1 ◦ . . .◦gn of n positive quantifiers which is product equivalent with ¬Fn and we
can use the very same method to show that ¬Fn is invariant.

Theorem (3) tells us, when we know the behaviour of a type 〈n〉 quantifier (¬)Fn on products,
we know whether there is an (n)-reducible quantifier which has that behaviour. Moreover, the
proof above gives us a method for defining this reducible quantifier as the composition of n
constructively defined type 〈1〉 quantifiers. Thus we can sharpen our findings about reducibility:

Corollary 1 (Decomposition) If a type 〈n〉 quantifier Fn is invariant for sets in products, then
Fn is (n)-reducible iff Fn = Gn = g1 ◦ . . .◦gn, with the gi defined as in the proof of theorem (3).

Proof. If Fn is invariant it has a reducible product equivalent correlate Gn (theorem 3) and if Fn

is reducible as well it must be identical with Gn (theorem 2). Theorem (3) also helps us further
in proving non-reducibility, for:

35

Corollary 2 (Non-reducibility) If a type 〈n〉 quantifier Fn and its negation are not invariant
for sets in products, then Fn is not (n)-reducible.

Proof, by contraposition. Suppose Fn is (n)-reducible. Then Fn has a product equivalent cor-
relate Gn, namely Fn itself, which is (n)-reducible by supposition. So, by theorem (3), we find
that Fn or ¬Fn is invariant for sets in products.

The previous observations give us a precise method for establishing reducibility results. Given
a type 〈n〉 quantifier Fn, first check whether Fn and ¬Fn are invariant for sets in products. If
they are not invariant, they are not reducible (corrolary 2). If one of them is, then construct the
reducible product equivalent correlate Gn of Fn (theorem 3) and check whether Fn = Gn. If
they are not the same, Fn is not reducible (theorem 2); if they are the same, then, of course, Fn

is reducible.

4 Conclusion

With this squib I have hoped to contribute to understanding Keenan’s result from (Keenan 1992).
Reducible type 〈2〉 quantifiers that behave the same on product relations are the same. I have
given an alternative proof of this result, which applies to type 〈n〉 quantifiers in general. Not only
is this a new and welcome generalization, it also gives some insight into the intimate relation
between (n)-reducible type 〈n〉 quantifiers and n-ary product relations. If type 〈n〉 quantifier
Fn is (n)-reducible, that is, if Fn = f 1 ◦ . . . ◦ f n (with the f i positive), then Fn is satisfied by
Q1 × . . .×Qn iff each composing f i is satisfied by Qi.

Corollary (1) and the construction used in the proof of theorem (3) furthermore prove useful if
we want to use Keenan’s theorem (1) to establish non-reducibility results. Take transitivity and
reflexivity again. Transitivity is true of all products and trivially invariant for sets in products.
The construction used in the proof of theorem (3) automatically gives us G2 = (� ◦ SOME) as
the one and only (2)-reducible type 〈2〉 quantifier which behaves thus on products. (Of course,
(� ◦ SOME) = (�◦ g) for arbitrary g.) Since TRANS
= (� ◦ SOME), we know transitivity is
not reducible. Reflexivity holds only on the product E ×E, so it is invariant, too. The reducible
product equivalent correlate of REFL is G2 = (g1 ◦g2), with g1(Q) = g2(Q′) = 1 iff Q = Q′ = E.
This is indeed the reducible quantifier (ALL ◦ ALL), different from REFL. So reflexivity is not
reducible either.

Theorem (3) also helps us settle the matter about type 〈2〉 quantifiers such as SYMM. Products
(P×Q) are symmetric iff P = Q or one of them is empty. But certainly SYMM is not invari-
ant for sets in products in SYMM: SYMM(P×P) = SYMM(Q×Q) = 1 while SYMM(P×Q) =
SYMM(Q×P) = 0 if /0
= P
= Q
= /0. Thus, SYMM and ¬SYMM are not invariant and theo-
rem (3) tells us that there is no (2)-reducible type 〈2〉 quantifier with the same behaviour as
(non-)symmetry on products. This explains why we can not use Keenan’s theorem (1) to show
symmetry not to be reducible. And it also explains why we do not at all need theorem (1) for
that purpose. Theorem (3), or, rather, corollary (2), already tells us that it is not reducible. The
generalization of Keenan’s theorem presented in this squib not only improves our understanding
of it, but it also extends its range of application.

References

[1] Keenan, E. L. Beyond the Frege boundary. Linguistics and Philosophy, 15(2): 199–221,
1992.

36

