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Abstract 
 

This paper analyzes the conjunction of the ‘adjectives of quantity’ many and few 
with ordinary gradable adjectives. It is shown that the facts surrounding this 
construction support an analysis of adjectives of quantity as ‘degree predicates’: 
predicates of intervals on the scale of cardinality. It is further shown that gradable 
adjectives also have a secondary interpretation as degree predicates.  

�

1 Introduction 
 
The subject of this paper is the construction exemplified in (1), in which an ordinary 
gradable adjective is conjoined with many or few, words that I will refer to as adjectives 
of quantity (Q-adjectives for short). 
 
(1) a. Professor Jones’ many and important contributions to the field… 
 b. The flaws in the proposal were many and serious 
 c. The stains on the shirt were few and small 
 d. The ingredients are simple and few 
 
Examples such as these are not entirely colloquial, ranging in register from the slightly 
formal to the poetic; but they are nonetheless quite common, and as such require some 
sort of account. 
 
My goal at the simplest level is to provide a semantic analysis of this construction. 
While this is perhaps a small question, I believe it is nonetheless interesting, for two 
reasons: first, because cases such as (1) have not, to my knowledge, been the subject of 
any serious semantic investigation; second, and more importantly, because the 
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availability of conjunctions of this form yields insights into the semantics of Q-
adjectives, and of gradable adjectives more generally. I will show that the facts 
surrounding this construction support an analysis of Q-adjectives as ‘degree predicates’ 
– predicates of intervals on the scale of cardinality – and furthermore point to the 
existence of a secondary interpretation of this type for ordinary gradable adjectives. 
 
The organization of the paper is the following. In Section 2, I outline the broader 
question that these data are relevant to. In Section 3, I present the crucial data on the 
availability of conjunctions of the sort in (1). Section 4 develops an analysis of these 
facts, and Section 5 discusses some implications of this analysis. Section 6 summarizes 
with conclusions and remaining questions. 
 

2 The Broader Question 
 
What makes the data in (1) interesting is that they yield insight into the correct semantic 
analysis of Q-adjectives. As has been observed repeatedly in the literature (e.g. 
Hoeksema 1983; Partee 1989; Kayne 2005), many and few are notable in that their 
behaviour straddles that of quantifiers and adjectives. They may occur in the same 
syntactic positions (in a pretheoretic sense) as quantifiers such as most (2):  
 
(2) a.  Many/few lawyers are greedy 
 b. All/most/some/no lawyers are greedy 
 
But they inflect like gradable adjectives, having comparative and superlative forms (3); 
and like ‘ordinary’ adjectives they may occur as (apparent) attributive modifiers and 
sentential predicates (4): 
 
(3) more, most; fewer, fewest 
 
(4) a. His many/few good qualities…. 
 b. His good qualities are many/few 
 
One approach to these facts holds that Q-adjectives in fact have the semantic type of 
adjectives, perhaps in addition to a quantificational type (Milsark 1977; Hoeksema 
1983; Partee 1989). That is, they denote cardinality predicates – predicates of groups or 
plural individuals that hold true if the group is large (for many) or small (for few), as 
shown in the entries in (5a), or the more explicitly gradable entries in (5b): 
 
(5)  a. 〚many〛 = �X.Xis large  〚few〛 = �X.Xis small 
 b. 〚many〛 = �d�X.X ≥ d 〚few〛 = �d�X.X ≤ d 
 
On this view (particularly with the representations in (5b)), the semantics of Q-
adjectives are directly parallel to what is commonly assumed for gradable adjectives: 
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 (6)  〚expensive〛=  �d�x.COST(x) ≥ d 
  
This analysis also aligns to a broader tradition in which cardinal numbers are analyzed 
as predicates or modifiers (Krifka 1999; Landman 2004; Ionin & Matushansky 2006). 
 
On another (less established) view, Q-adjectives are analyzed as predicates, but not 
predicates of groups or individuals themselves. Rather, they are predicated of something 
in the domain of degrees – a degree or set of degrees associated with a group of 
individuals or situation (Schwarzschild 2006; Rett 2006; Heim 2006 on little; see also 
Kayne 2005 for a parallel syntactic analysis). This approach could be captured with the 
preliminary entries in (7), where I is a set of degrees (a scalar interval): 
 
 (7)  〚many〛 = �I<dt,t>.I is large   〚few〛 = �I<dt,t>.I is small 
 
In other work (Solt 2007a, 2007b), I have argued that the predicate-of-degrees account 
represented in (7) overcomes several shortcomings of the predicate-of-individuals 
account in (5). One case involves the differential uses of Q-adjectives, as in (8); 
crucially, many in (8) cannot be analyzed as predicated of a group or plurality (there is 
no plurality that has the property of ‘many-ness’), but can readily be analyzed as 
predicated of the gap or interval between the number of students who attended and 100.  
 
 (8)  Many fewer than 100 students attended the lecture  
 
Additionally, many and few as defined in (7) are degree operators, scope-taking 
elements that we would expect to interact scopally with other operators (cf. Heim 2006). 
This provides an approach to analyzing so-called split scope readings (as in (9a), whose 
preferred interpretation is that paraphrased in (9b)): 
 
(9) a.  They need few reasons to fire you 
 b.  ‘it is not the case that they need a large # of reasons…’ 
 
The same mechanism also allows for the derivation of a quantificational interpretation 
for few via simple existential closure, without giving rise to what has come to be known 
as ‘van Benthem’s problem’ (van Benthem 1986), where application of existential 
closure to a monotone decreasing predicate incorrectly produces an ‘at least’ reading. 
The solution offered by the predicate-of-degrees (i.e., degree-operator) analysis in (7) is 
that for type-driven reasons, few necessarily takes scope over the existential quantifier, 
such that (10a) receives the correct representation in (10b), not the incorrect 
representation in (10c): 
 
(10) a.  Few trees died 
 b.  few({d: ∃X[tree(X) ∧ died(X) ∧ |X| ≥ d]})  ����  
 c.  ∃X[tree(X) ∧ died(X) ∧ few(X)]    ���� 
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The broader question that I address in this paper is which of these two accounts is the 
correct one. The relevance of the construction exemplified in (1) is that it provides 
evidence towards answering this question, in that the two theories discussed above 
seemingly make different predictions in this area. Specifically, under the predicate-of-
individuals account, we would predict that conjunctions of ordinary adjectives and Q-
adjectives would be possible, in that they would reflect the simple intersection of two 
properties: 
 
(11)  〚many and important〛�=  〚many〛∩�〚important〛� � �
� � � = �X.many(X) ∧ important(X) 
 
Conversely, under the predicate-of-degrees account, we would predict that this sort of 
conjunction would be disallowed, given the typical restriction of conjunction to 
elements of the same semantic type.  
 
On the surface, then, the existence of examples such as (1) would appear to support the 
first of these possible theories (predicate-of-individuals), and to offer strong evidence 
against the second (predicate-of-degrees). 
 
In what follows, however, I will argue that the situation is not as simple as this. An 
examination of the constraints on the conjunction of Q-adjectives with ordinary 
adjectives in fact supports the predicate-of-degrees account, and is incompatible with 
the predicate-of-individuals account. A corollary of the analysis will be the finding that 
gradable adjectives have a secondary interpretation of predicates of degrees.  
 

3 The Data: Constraints on Conjunction 
 
To start, a broad range of adjective types may be conjoined with Q-adjectives, including 
adjectives of size (12a), other physical characteristics (12b,c), age (12d), and cost or 
value (12e), as well as evaluative adjectives (12f,g): 
 
(12)  a.  The holes in the sail were many and large  
 b.  The fans were many and loud 
 c.  The lights in the room were few and dim 
 d. The documents in the archive were many and old  
 e.  Air links to Europe and Asia are few and expensive 
 f. The waiters were few and surly  
 g.  His many and beautiful possessions… 
 h. The opportunities available to our students are many and diverse  
 
Both collective and distributive interpretations are possible for the conjoined adjective. 
For example, large in (12a) distributes over the holes (they must be large individually, 
not just in aggregate), whereas in (12h) diverse true of the opportunities as a whole. 
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As seen above, the Q-adjective is typically the first conjunct, though the reverse is 
possible (as in (1d)). Finally, conjunctions of this sort may occur in predicative (13a) 
and attributive (13b) positions, though are less felicitous when many or few has a 
quantificational use (13c): 
 
(13) a.  The problems were many and serious 
 b. The many and serious problems… 
 c. ?? We discovered many and serious problems  
 
But despite the broad availability of Q-adjective/adjective conjunctions, there are two 
crucial semantic constraints on this construction. First, only gradable adjectives can be 
conjoined with Q-adjectives, as illustrated by the contrasts in (14)-(16): 
 
(14) a.  The fans were many and loud 
 b.  ??The fans were many and American 
 
(15) a.  The tables in the hall were many and large 
 b.  ??The tables in the hall were many and octagonal 
 c.  ??The tables in the hall were many and wooden 
 
(16) a.  The stains on the shirt were few and small 
 b.  ??The stains on the shirt were few and green 
 
Already we see the behavior of Q-adjectives diverging from that of ordinary gradable 
adjectives: While there are some constraints on how adjectives may be conjoined, there 
is no general prohibition against the conjunction of the gradable adjectives with their 
non-gradable counterparts, as seen below:  
 
(17) a.  The tables in the hall were large and octagonal 
 b. The stains on the shirt were small and green 
 c.  The floor was wooden and smooth 
 d. I got the shoes because they were red and cheap 
 e.  We had heard that most of the guests were American and rude 
 
The gradability restriction can be overridden if a non-gradable adjective is coerced into 
a gradable interpretation, or interpreted as a point on a scale  Thus (18a) is fine on the 
interpretation of black as serious (cf. his sins are blacker than mine), while (18b) is 
acceptable with mostly American describing the proportion of Americans in the crowd. 
Even the initially bizarre (18c) is perfectly acceptable if we imagine ourselves in the 
world of Flatland (Abbott 1884), where everyone and everything is two-dimensional, 
and the more angles one has, the higher his or her social status. 
 
 (18) a.  His sins were many and black 
 b. The attendees were few and mostly American 
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 c. Her friends were many and octagonal 
 
The second constraint has to do with the interpretation that Q-adjective/adjective 
conjunctions may receive. In each of the examples introduced above, the conjoined Q-
adjective and adjective are in a sense interpreted jointly. Specifically, the adjective is 
interpreted as in some way amplifying the cardinality established by the Q-adjective (or 
vice versa). In (12a) the holes were not only numerous, but large as well; in (12c), the 
lights were not only few in number, but dim as well; in (12e), not only are there few air 
connections to Europe, but those that exist are expensive; and so forth.  
 
To put this another way, in each case the Q-adjective/adjective conjunction can be 
interpreted as positioning the subject relative to some compound dimension formed on 
the basis of cardinality and a dimension consistent with the gradable adjective: in (12a) 
the total area of the holes (a function of their number and the size of each); in (12c) the 
total intensity of the lights (a function of their number and their individual intensity), in 
(12e) perhaps the availability of good air links to Europe and Asia (a function of their 
number and cost). Appropriate compound dimensions can likewise be found in the other 
examples introduced above.  
 
In the cases discussed up to this point, the relationship between the dimensions could be 
termed multiplicative. A different sort of relationship, which might be termed causal, is 
exemplified below. (19a) implies that the clothes you pack need to be versatile because 
they must be few. Similarly, in (19b), a line from a once-popular song, we likewise get 
the impression that the moments we can share are precious precisely because they are 
few; if they were fewer still they would be even more precious.  Here too it seems that 
we have a single compound dimension, in that the two components vary together, not 
independently. 
 
(19) a.  The clothes you pack should be few and versatile 
 b.  Precious and few are the moments we two can share 
  
As evidence that some relationship between dimensions is actually required for the 
interpretation of Q-adjective/adjective conjunctions, consider the following example: 
 
(20) ?The senators supporting the proposal were many and tall 
 
On first reading (20) is quite odd, there being no obvious way that the senators’ height 
amplifies their ‘many-ness’ (or is correlated with it). But it improves considerably when 
we imagine a scenario in which the number of votes a senator has is proportional to his 
or her height, such that a group of senators who are many and tall has greater voting 
power than a group who are many but average height or short. In other words, (20) is 
rescued by inferring some complex dimension on which the subject can be measured. 
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Turning again to a comparison with ordinary gradable adjectives, we see a different 
pattern: While there may sometimes be a similar sort of relationship between the 
dimensions referenced by two conjoined adjectives, it is relatively easy to find or 
construct examples in which this is not the case, as in the examples below (this is also 
particularly true of the examples in (17)):    
 
 (21) a.  The villages in the surrounding area are small and beautiful 
 b. Our conversations were short and friendly 
 
Thus the behaviour of Q-adjective/adjective conjunctions differs from that of 
conjunctions of ordinary adjectives in two significant respects. This is unexpected under 
the predicate-of-individuals analysis, in which Q-adjectives are taken to have the same 
semantic type as gradable adjectives such as expensive. Below, I will argue that these 
facts receive a neat account under the predicate-of-degrees analysis.  
 

4 The Analysis 
 
The basic idea behind the analysis is the following: Q-adjective/adjective conjunctions 
are predicates of degrees on the scale of a compound dimension formed on the basis 
of number and a dimension associated with the gradable adjective.  
 
I begin with some formal preliminaries. I assume an ontology that includes degrees as a 
primitive type (type d). A scale S consists of a set of degrees D ordered by some 
ordering relationship > relative to some dimension DIM. Dimensions include amount 
dimensions (the monotonic dimensions of Schwarzschild 2006), such as volume and 
weight, and non-amount dimensions such as height, area, cost, etc. A special case of an 
amount dimension is cardinality (number), whose associated scale is the set of natural 
numbers (or perhaps the rational or real numbers; cf. Fox & Hackl 2006).  
 
Here, I take degrees to be points, contra recent interval-based accounts such as that of 
Kennedy (2001). But as suggested above, the notion of an interval is a crucial one. I 
therefore define an interval as an uninterupted set of degrees, expressed formally as:  
 
(22)    A set of degrees I ⊂ D is an interval iff    
    ∀d, d', d" ∈ D such that d > d" > d',  (d ∈ I ∧  d' ∈ I) � d" ∈ I 
 
Let us then take (23) as the lexical entries for the Q-adjectives many and few1: 
 
 

                                                 
1To be precise, the entries in (23) should be viewed as the result of the composition of more basic 
gradable entries for many/few with a null positive morpheme POS (von Stechow 2006; Heim 2006). For 
simplicity of representation, I do not show this step. 
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# John’s good qualities 
                       

   1   2    3 …...     
N# 

(23) a.  〚many〛 = �I#.I is ‘large’ b. 〚few〛 = �I#. I is ‘small’ 
   = �I#.N# ⊂ I    = �I#.N# ⊂ INV(I) 
 
Here, the subscript # indicates that the interval in question lies on the scale of 
cardinality. N# is the ‘neutral range’ on that scale, the range of values that would be 
considered neither large nor small with respect to the context (von Stechow 2006; Heim 
2006). Finally, INV is a function that maps an interval to the join complementary 
interval. On this view, many is true of an interval if it is ‘large’, defined as fully 
containing the neutral range; few is true of an interval it is ‘small’, defined as fully 
excluding that same neutral range. 
 
Turning now to how Q-adjectives (predicates of scalar intervals) may combine with 
nominal expressions (predicates of individuals), I follow Schwarzschild (2006) in taking 
the linking function to be played by a phonologically null functional head Meas, whose 
semantic content is the measure function in (24): 
 
(24)  〚Meas〛= �X�d.MeasDIM(X) ≥ d 
 
Meas associates a (possibly plural) individual X with a set of degrees on the scale 
associated with some dimension DIM. As will become clear below, Meas does not 
encode a specific dimension; the specific dimension must be ‘filled in’ on interpretation. 
 
To see how these pieces come together, consider a simple case of predicative many: 
 
(25) John’s good qualities are many  
 
I propose that here, the subject is a MeasP, such that the logical form is that in (26a). 
The semantic interpretation is then that in (26b), which corresponds to the situation 
depicted visually in (26c): 
  
(26) a. [[MeasP Meas [DP John’s good qualities]] are many] 

 b. 〚many〛(〚[MeasP Meas [DP John’s good qualities]]〛) 
     = ∃DIM [(�I#.N# ⊂ I)(�d.MeasDIM(John’s good qualities) ≥ d))] 
    = ∃DIM [N# ⊂ {d: MeasDIM(John’s good qualities) ≥ d}] 
     = N# ⊂ {d: Meas#(John’s good qualities) ≥ d} 
 

  
 
  
 c.  
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   1   2    3 …...     
N# 

# John’s good qualities 
                       

Here, the formal representation can be taken to involve existential quantification over 
the dimension introduced by Meas (as in the second line of (26b)); but since many itself 
is restricted to operating on intervals of cardinality, this can be translated to a simpler 
cardinality-based representation can be given (as in the fourth line of (26b)). 
 
The derivation is identical in the case of few, with the exception that the INV function 
maps the original interval to the join complementary interval, as in (27b) and the 
diagram in (27c): 
 
 (27) a. [[MeasP Meas [DP John’s good qualities]] are few] 

 b. 〚few〛(〚[MeasP Meas [DP John’s good qualities]]〛) 
     = ∃DIM [(�I#.N# ⊂ INV(I))(�d.MeasDIM(John’s good qualities) ≥ d))] 
    = ∃DIM [N# ⊂ INV({d: MeasDIM(John’s good qualities) ≥ d})] 
    = ∃DIM [N# ⊂ ({d: MeasDIM(John’s good qualities) ≤ d})] 
     = N# ⊂ {d: Meas#(John’s good qualities) ≤ d} 
 

  
 
  
 c.  
 
 
 
Importantly, in (26) and (27) it is the presence of the Q-adjective many or few that 
allows us to infer that the dimension in question is cardinality. In the presence of a 
different expression of quantity, such as a measure phrase, a different dimension will be 
inferred. For example, in (28a) we assume a dimension on which wine can be measured, 
and whose measure can be two gallons; that dimension is of course volume: 
 
(28) a We drank two gallons of wine 
 b. ∃DIM [2-gallons ⊂ {d: ∃X[wine(X) & drank(we,X) & MeasDIM(X)≥d]}] 
    = 2-gallons ⊂ {d: ∃X[wine(X) & drank(we,X) & MeasVOLUME(X)≥d]} 
 
To apply this approach to the Q-adjective/adjective conjunctions that are the subject of 
this paper, we need only to introduce one further extension: the dimension introduced 
by Meas may be a complex dimension formed on the basis of two component 
dimensions. Thus in the ’multiplicative’ cases exemplified in (12), we may view the 
measure function Meas as asociating an individual with a set of degrees each of which 
is analyzable as the product of two component degrees. Equivalently, Meas itself may 
be viewed  decomposable into two component measure functions: 
 

(29) 〚Meas〛(X)  = �d.MeasDIM(X) ≥ d, where d= d1 × d2 
   = < �d1.MeasDIM1(X) ≥ d1, �d2.MeasDIM2(X) ≥ d2> 
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With this in place, we are now ready to provide a formal analysis of Q-adjective/ 
adjective conjunctions. Consider again an example such as (12a), repeated below, which 
as discussed earlier can be interpreted as asserting that the total area of the holes (a 
function of their number and their individual size) was large.  
 
(30) The holes in the sail were many and large 
  
In the interval-based approach developed here, we can in turn interpret this as stating 
that on the scale associated with the compound dimension total area (a product of 
number and individual size), the two-dimensional ‘interval’ corresponding to the 
number and size of the holes was large. Large, again, can be formalized as fully 
containing the relevant neutral range (here, a two-dimensional one). Visually: 
 
 
(31) 
 
 
 
 
 
 
 
 
Formally, the semantic derivation proceeds as follows: 
 
(32) 〚many and large〛(〚[MeasP Meas [the holes]]〛)  

    = ∃DIM  [〚many and large〛(�d=d1 × d2. MEASDIM(the holes) ≥ d)]  

    = ∃DIM=DIM1 × DIM2 [〚many〛(�d1. MEASDIM1(the holes) ≥ d1) 
∧〚large〛(�d2.∀x∈ the holes[MEASDIM2(x) ≥ d2]) ] 

     = ∃DIM=DIM1 × DIM2 [N# ⊂ {d1: MEASDIM1(the holes) ≥ d1}                        
∧ NSIZE ⊂ {d2: ∀x∈the holes[MEASDIM2(x) ≥ d2]}]  

 
Here, Meas introduces some dimension DIM, which we interpret as total area. DIM is 
then factored down into its two component dimension DIM1 and DIM2, allowing many 
and large to be predicated of intervals on their respective scales; here, note that the 
second dimension (size) distributes over the elements of the holes. The final 
representation describes the situation in (31). 
 
The derivation proceeds identically in the case of few and a negative adjective, with the 
exception that here the relevant two-dimensional interval is stated to be small (defined 
as excluding the compound neutral range): 

N# 

NSIZE 

• 
Total Area 

 
size 

number 
 

number  
x 

(individual)  
size  

of the holes 
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(33) The lights in the room were few and dim 
 
(34) 
 
 
 
 
 
 
 

 

(35)  〚few and dim〛(〚[MeasP Meas [the lights]]〛) 

     =  ∃DIM [〚few and dim〛(�d=d1× d2.MEASDIM(the lights) ≥ d)]  

     =  ∃DIM=DIM1 × DIM2 [〚few〛(�d1.MEASDIM1 (the lights) ≥ d1) 

∧〚dim〛(�d2.∀x∈the lights[MEASDIM2 (x) ≥ d2])]  

     =  ∃DIM=DIM1 × DIM2 [N# ⊂ INV({d1: MEASDIM1(the lights) ≥ d1})             
∧ NINT ⊂ INV({d2: ∀x∈the lights[MEASDIM2(x) ≥ d2]})] 

    =  ∃DIM=DIM1 × DIM2  [N# ⊂ {d1: MEASDIM1(the lights) ≤ d1}                      
∧ NINT ⊂ {d2: ∀x∈the lights[MEASDIM2(x) ≤ d2]}]  

 
Again, the result of this derivation matches the situation depicted in (34). 
 
Before moving on, let me briefly examine the ‘causal’ conjunctions exemplified in (19). 
Consider again one of these examples, repeated below: 
 
(36) The clothes you pack should be few and versatile 
 
As discussed earlier, the relationship in (36) between the dimensions of number and 
versatility has a causal flavor: the clothes you pack must be versatile precisely because 
they must be few; if you could pack more, they would not need to be so versatile. As a 
first approximation we might capture this by allowing Meas to introduce a compound 
dimension that is factored into two causally related dimensions: 
 

(37) 〚Meas〛(X)  = �d.MeasDIM(X) ≥ d, where d=< d1, f(d1)> 
 
I believe, however, that it is possible to assimilate this type of conjunction to the 
multiplicative cases discussed above. To continue with this specific example, we may 
again interpret the number and the versatility of the clothes as two components of a 

N# 

NINT 

• 

Total Intensity 
 

inten-
sity 

 

number 
 

number  
x 

(individual)  
intensity   

of the lights 
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compound dimension that we might loosely describe as ‘use’ (i.e. the use one gets from 
a set of clothes is a function of the number of items and the versatility of each). Then if 
we hold use constant (say, at what we need for our trip to Bermuda), then number of 
clothes is inversely correlated to their versatility: the fewer the clothes, the more 
versatile they must be to yield the same use. Few and versatile can then be interpreted 
as positioning the subject along the curve that results; (36) asserts that the situations 
should be that in (38a), not that in (38b): 
 
(38) a.           b. 
 
 
 
 
 
 
 
 
The causal cases are thus a special case of the multiplicative cases discussed earlier, one 
in which the value of the primary dimension is held fixed. 
 
Let us take stock of where we are.  The predicate-of-degrees analysis developed in this 
section provides a framework that allows an account of Q-adjective/adjective 
conjunctions, which can be analyzed as predicates of ‘intervals’ on the scale of some 
compound dimension. Furthermore, and importantly, the constraints on this 
construction, which were puzzling under the predicate-of-individuals analysis, now 
receive a principled explanation. First, only gradable adjectives can be conjoined with 
Q-adjectives, because gradability is necessary to introduce a dimension that can 
combine with number to produce the required compound dimension. Secondly, a 
relationship must exist between number and the dimension associated with adjective; 
otherwise, it is not possible to infer the appropriate compound dimension. 
 
To better appreciate this latter point, contrast the representations that we derive for a Q-
adjective/adjective conjunction (as in (33)) and the equivalent sentential conjunction: 
 
(39) a. The lights in the room were few and dim     
 b. =  ∃DIM=DIM1 × DIM2  [ N# ⊂ {d1: MEASDIM1 (the lights) ≤ d1}                     

∧ NINT ⊂ {d2: ∀x∈the lights[MEASDIM2(x) ≤ d2]}]  
 

(40) a. The lights in the room were few, and they were dim 
 b. ∃DIM1[N# ⊂ {d1: MEASDIM1(the lights) ≤ d1}] ∧ ∃DIM2 [NINT ⊂ {d2: 

∀x∈the lights[MEASDIM2(x) ≤ d2]}]  
 
(39b) and (40b) are truth conditionally equivalent; but the former imposes the additional 
condition that the two dimensions be interpretable as components of some compound 

N# 

NVERS 

• 

Use 
 

versa-
tility 
                       

number 
 N# 

NVERS 

• 

Use 
 

versa-
tility 
                       

number 
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dimension. It is this that is responsible for the second of the constraints on conjunction 
discussed above (though we will see below that there is something to be said about the 
treatment of the gradable adjective small in (40b)). 
 

5 Some Consequences 
 
It has perhaps not escaped notice that the analysis presented in Section 4 rests on some 
non-standard assumptions about the semantics of gradable adjectives, and of 
conjunction. I turn to this now. 
 
Most importantly, the preceding analysis requires that in conjunction with Q-adjectives, 
gradable adjectives must also be interpreted as predicates of scalar intervals; that is, they 
too require a predicate-of-degrees analysis. On the surface incompatible with the 
standard view of gradable adjectives as predicates of individuals (per (6) above). But 
importantly, this possibility is independently motivated. Examples such as the following 
demonstrate that a gradable adjective can be predicated of a degree (41), or of a 
dimension associated with an individual (42), rather than the individual itself: 
 
(41) a. Six feet is tall (cf. Fred is tall) 
 b. Fifty dollars is expensive (cf. that shirt is expensive) 
 
(42) a.  John’s tall height made him a natural choice for the basketball team 
 b.  Although the size of the stains was small, they were so obvious that I 
  couldn’t wear the shirt 
 c.  Fred was wise despite his young age 
 
We therefore must have a secondary interpretation for gradable adjectives, as in (43b): 
 
 (43)  a. 〚expensive<d,et>〛= �d�x.COST(x) ≥ d 
          b. 〚expensive<d,<dt,t>>〛= �d�ICOST.d ∈ I 
 
One might ask, then, whether the same sort of ambiguity could be present in the case of 
Q-adjectives. That is, could both the predicate-of-individuals and predicate-of-degrees 
accounts be correct?  The answer, I would argue, is no. Using occurrence in the small-
clause complement of consider as a test for predicative interpretations, the contrasts in 
(44) suggest that gradable adjectives have both predicate-of-individuals and predicate-
of-degrees interpretations, while Q-adjectives have only the latter (though the precise 
reason for the ungrammaticality of (44c) requires further investigation). 
 
(44) a. I consider the shirt expensive 
 b. I consider fifty dollars expensive 
 c. *I consider the guests many 
 d. I consider fifty many 
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A second question arises regarding the semantics of and. In the Q-adjective/adjective 
conjunctions under consideration, and cannot be analyzed in terms of set intersection; 
many and large is not the intersection of sets denoted by many and large. Rather, the 
effect of the conjunction is to form the set product of two degree predicates, though the 
result of this is ultimately expressed in terms of Boolean conjunction. Again this 
possibility is found elsewhere in the grammar; in particular, Heycock & Zamparelli 
(2005) show that NP conjunctions such as father and grandfather in (45) must be 
analyzed as involving an operation of set product formation:  
 
(45) My father and grandfather were both sailors 
 
In short, Q-adjective/adjective conjunctions not only provide evidence as to the correct 
semantic analysis of the Q-adjectives many and few, but also shed light on the 
interpretive possibilities available to ordinary gradable adjectives, and to conjunction. 
 

6 Conclusions 
 
I began this paper with an exploration of a little-studied type of conjunction, and a 
question about the correct semantic analysis of the adjectives of quantity many and few. 
I have shown that a pattern of constraints on the conjunction of Q-adjectives and 
ordinary adjectives can be explained by analyzing the former as predicates of scalar 
intervals. The facts from this small domain thus add to other evidence supporting the 
predicate-of-degrees account of Q-adjectives over the predicate-of-individuals account. 
This analysis further highlights the availability of a similar interpretation for gradable 
adjectives. Degree predication, as we might call this phenomenon, is thus one means by 
which natural language expresses quantity and degree. 
 
Some questions arise from this analysis. What other types of expressions might have 
predicate-of-degrees interpretations?  Cardinal numbers and vague quantity nominals 
such as a lot are obvious candidates, but only a fuller investigation will show if this is 
correct. And to the extent that an intepretation at this type is available to gradable 
adjectives, how is this constrained?  I must leave these as questions for future study. 
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