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Abstract

We call approaches which use decision theoretic explications of Grice’ relevance maxim

for selecting best answers and calculating implicatures relevance scale approaches. In this

paper we discuss these approaches with respect to the questions: Are intuitively optimal

assertions identical to assertions with maximal relevance? Can classical relevance implica-

tures be explained by the assumption that propositions are implicated to be false exactly if

they are more relevant than what the speaker has actually asserted? The answers to both

questions are negative. We will show that there exists a decision theoretically defined rele-

vance scale which the hearer can use for calculating implicatures, but we will also see that

this hearer related scale is only defined after the speaker’s assertion is known and, therefore,

cannot be presupposed by a definition of Grice’ relevance maxim.

1 Introduction

A clarification of status and satisfying formulation of the Relevance principle is one of the major

desiderata of Gricean pragmatics. In the traditional formulation, the three maxims of (Quality),

(Quantity), and (Relevance) can be taken together as: (QQR) Be truthful and say as much as you

can as long as it is relevant. Applications often rely on an intuitive everyday understanding of

relevance. That this is insufficient for a useful theory of implicatures can be seen from example

as the following from Grice (1989, p. 32):

(1) A is standing by an obviously immobilized car and is approached by B, after which the

following exchange takes place:

A: I am out of patrol.

B: There is a garage round the corner. (G)

+> The garage is open. (H)

Grice notes that because B’s remark can only be relevant if the garage is open A can conclude

that H. A possible derivation of this implicature along the lines of the standard theory (Levinson

1983) could proceed as follows: let H denote the negation of H:

(2) 1. B said that G;

2. H, that the garage is not open, is relevant and G∧H is more informative than G;

3. B observes (QQR), hence the only reason for not saying that H can be that H is false;

4. Hence H.

But, in the given context, H, that the garage is open, can also be called relevant. Hence, the

same argument can be made with H and H interchanged, which leads to the conclusion that H
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2 Anton Benz

is implicated. The weak point of such derivations, clearly, is the fact that H and H can both be

called relevant.

Relevance is a central notion in decision theory (Pratt, Raiffa and Schlaifer 1995). It is de-

fined as the value of information to a decision problem of a single agent. In this paper we

discuss approaches that use decision theoretic measurer as explications of Grice’ notion of rel-

evance. Such measures of relevance have been discussed e.g. by (Merin 1999), (Rooij 2004),

and (Schulz and Rooij to appear). Decision theoretic relevance measures define a linear pre–

order on propositions. In analogy to the standard theory of quantity implicatures, we can call

these linear pre-orders relevance scales, and the approaches employing these scales relevance

scale approaches. We discuss relevance scale approaches with respect to three questions: Are

intuitively optimal assertions identical to assertions with maximal relevance? Can classical rel-

evance implicatures be explained by the assumption that propositions are implicated to be false

exactly if they are more relevant than what the speaker has actually asserted? Do these decision

theoretic explications make inference (2) valid? In this paper, we show that all three questions

receive a negative answer:

1. Negative Result: If we assume that the speaker maximises the relevance of his utterances,

then no suitable decision theoretic explication of the notion of relevance can avoid mis-

leading answers.

2. Negative Result: No relevance scale approach can avoid unintended implicatures in cases

like the Out-of-Petrol example (1).

If the speaker cannot follow (QQR) for selecting his utterances, nor the hearer rely on it as an

interpretative principle, then two fundamental properties of conversational maxims are violated.

This point is confirmed by the third negative result:

3. Negative Result: The relevance of propositions that makes the inference in (2) valid is itself

implicated information and can therefore not define a conversational maxim.

The paper divides into three parts. In the first part, Section 2, we provide a non–technical

overview and discussion of our results. In the second part, Sections 3–4, we introduce the

general structures that characterise relevance scale approaches. We contrast them with a game

theoretic model for deriving optimal assertions (Benz 2006, Benz and Rooij to appear). Finally,

in Sections 5–7, we prove the three negative results.

2 Overview

An essential feature of Grice’ theory of conversational implicatures is the assumption that there

is a joint purpose underlying every talk exchange. In the following, we concentrate on answering

situations which are subordinated to a decision problem of the inquirer. The question which

creates the answering situation provides an explicit shared discourse goal. We include cases

where the question remains implicit as in the Out-of-Petrol example (1), where we can assume

that B’s assertion is an answer to the question “Where can I buy petrol for my car?” Implicatures

will always be treated as particularised conversational implicatures. We restrict considerations

to situations where the inquirer and the answering expert are fully cooperative, where the expert

knows everything the inquirer knows, and where these facts are common knowledge. We use

game and decision theory to represent these situations. Our discussion of Example (1) showed

that a precise definition of relevance is necessary for a useful theory of relevance implicatures.
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On Relevance Scale Approaches 3

Game and decision theory are attractive frameworks as they allow us to explicitly study the

interaction of such central pragmatic concepts as speaker and hearer’s preferences, information,

choice of action, and coordination of interpretation.

(Grice 1989) only gave a brief formulation to the third maxim: Be relevant! Grice noted that

there are analogues to most conversational maxims that relate to non-linguistic joint projects.

For the maxim of relevance, he illustrated this point by the following non–linguistic example

(Grice 1989, p. 28): “If I am mixing ingredients for a cake, I do not expect to be handed a good

book, or even an oven cloth (...).” In this situation, both persons seems to be equally competent

to decide what is relevant and what is not; it is even more likely that the helping person is less

competent than the person using the help. But in questioning and answering situations it is the

inquirer who lacks information and it is the answering person, we call this person expert, who

has the information. Grice didn’t specify from whose perspective relevance has to be defined.

In principle, there are two possibilities.

The main concern of our discussion is the question whether we need a game or a decision the-

oretic explication of Grice notion of relevance. Game and Decision theory differ in the number

of decision makers which are involved in decision making. Decision theory is concerned with

the decision making of single agents. Context parameters are the possible actions the decision

maker can choose from, their outcomes, and the decision maker’s preferences over these out-

comes. Game theory is concerned with the inter-depended decision making of several agents.

Hence, the general question that underlies our discussion is the question whether we need an

interactional model of communication in order to explain the choice of answers and their impli-

catures, or whether a non-interactional model is sufficient. The latter path was taken by previous

approaches to pragmatics which are based on classical game or decision theory.1 We will show

that hearer centred explications of relevance are insufficient for both, choosing useful answers

and defining implicatures, even if we consider only highly favourable dialogue situations.

There seems to be a strong a priori argument in favour of the non–interactional view that stems

from the calculability of implicatures. Calculability presupposes that interlocutors have access

to the necessary contextual parameters. This seems to imply that the hearer must possess some

measure of relevance that depends only on the semantics of utterances and common background

knowledge but not on the speaker’s private knowledge. Furthermore, in order to coordinate the

meaning of utterances successfully, it seems necessary that the speaker uses the same definition

of relevance depending on the same parameters. This reasoning leads to a hearer centred defi-

nition of relevance, and hence to a decision theoretic explication based on the hearer’s, i.e. the

inquirer’s, decision problem. We will see that this reasoning is not conclusive. Before we ad-

dress the argument of calculability, we first discuss relevance as a principle for choosing optimal

answers and relevance scale explanations of implicatures.

2.1 Choosing Answers

In the following, we use the term relevance if we refer to decision theoretically defined mea-

sures for the value of information. “Be relevant!” is then interpreted as meaning that the speaker

should choose answers that have a positive value of information. In order to understand its ef-

fects, we first consider the maxim of quantity. In Grice (1989) original formulation, the quantity

maxim divided into two parts:

1. Make your contribution as informative as required (for the current purpose of exchange).

2. Do not make your contribution more informative than is required.

1See (Parikh 1992, Parikh 2001), (Parikh 1994), (Merin 1999), (Rooij 2004), (Schulz and Rooij to appear).
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Grice himself noted that the second sub-maxim may be superfluous if we take relevance into

account. If we see quantity and relevance in interaction, then we can simplify the first sub-

maxim of quantity to “Say as much as you can,” and restrict it by “Say only what is relevant.”

Hence, we can take the maxim of quantity and the relevance maxim together and phrase them as

Say as much as you can as long as it is relevant. It is commonly assumed that information can

be more or less relevant. The two maxims together then lead to the constraint that the speaker’s

utterance should provide the most relevant information possible. This principle is restricted by

the maxim of quality which states that the speaker can only say what he believes to be true.

Hence, we end up with a constraint (QQR) that says that the speaker can only choose the most

relevant proposition which he believes to be true. Let us contrast (QQR) with a principle that

combines only quality and quantity (QQ) “Say as much as you can as long as it is true.” We

consider the following example:

(3) Somewhere in the streets of Amsterdam...

I: Where can I buy an Italian newspaper?

E: At the station and at the Palace but nowhere else. (SE)
E: At the station. (A) / At the Palace. (B)

The inquirer has to decide where to go for buying an Italian newspaper. Let us assume that the

answering expert knows that (SE) is true. What should he answer?2 If we assume (QQ), then he

should say everything he knows, hence only SE would conform to the maxims. But intuitively,

in the given situation, A and B are equally appropriate with respect to their usefulness. This is

what (QQR) predicts.

We provide an explicit model of relevance scale approaches in Section 4.2. Our representation

of an answering situation σ will consist of a decision problem Dσ and the answering expert’s

expectations about the state of the world. We denote by Admσ the set of all propositions which

the experts believes to be true. We call our representation σ a support problem. Relevance

is a property of propositions and depends on a given decision problem. Propositions can be

compared according to their relevance. These very general properties of relevance can be rep-

resented by real-valued functions R with two arguments, decision problems and propositions. If

Dσ is a decision problem and A,B two propositions, then R(Dσ,A) < R(Dσ,B) means that A is

less relevant for the decision problem Dσ than B. We call these functions relevance measures.

Hence, the set MRσ of all maximally relevant propositions that the answering expert believes

to be true consists of all those propositions in Admσ which are maximally relevant to Dσ with

respect to a given relevance measure R. MRσ will be defined in (4.17).

The characterisation of relevance remains very general. Special measures which have been

widely tested are sample value of information and utility value of information (Pratt et al. 1995).

By EU(a) we denote the expected utility of performing action a given the current background

knowledge. By EU(a|A) we denote the expected utility of performing a after learning propo-

sition A. Let a∗ denote the action that an agent would choose before learning anything. As

we assume that agents are rational, it must hold that EU(a∗) = maxa EU(a). Sample value of

information A is defined as follows:

SV I(A) := max
a

EU(a|A)−EU(a∗|A). (2.1)

Utility value of information A is defined as:

UV (A) := max
a

EU(a|A)−max
a

EU(a). (2.2)

2From now on we assume that the inquirer is female and the answering expert male.
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On Relevance Scale Approaches 5

We see that SV I(A) can never be negative. It can only become positive if learning A induces the

agent to choose a different action. In contrast, the utility value of a proposition A can become

negative. It becomes positive if the maximal expected utility after learning A is higher than the

maximal expected utility before learning A. In Example (3), both measures of relevance make

the correct prediction if we assume that the station and the Palace are places where Italian news-

papers might be available and that both possibilities are equally probable and optimal. But if

we assume that there is a slightly higher a priori expectation that there are Italian newspapers at

the station, then using sample value of information would predict that only the answer B, there

are Italian newspapers at the Palace, is relevant because only this proposition would lead to a

different choice of action. If we use utility value as an explication of relevance, then the rel-

evance principle would require the answering expert to increase the inquirer’s expectations as

much as possible. Even without example, it is clear that such a prescript must lead to mislead-

ing answers. (Benz 2006) provides a proof for support problems with completely coordinated

preferences but diverging expectations. Section 5 contains an analogous result for support prob-

lems where the answering expert’s expectations are derived from the inquirer’s expectations by

a Bayesian update. In order to prove this result we have to make stronger assumptions about

relevance scales. We look at the following two examples to motivate these assumptions:

(4) There is a strike in Amsterdam and therefore the supply with foreign newspapers is

a problem. The probability that there are Italian newspapers at the station is slightly

higher than the probability that there are Italian newspapers at the Palace, and it might

be that there are no Italian newspapers at all. All this is common knowledge between I

and E. Now E learns that (N) the Palace has been supplied with foreign newspapers. In

general, it is known that the probability that Italian newspapers are available at a shop

increases significantly if the shop has been supplied with foreign newspapers.

(5) We assume the same scenario as in (4) but E learns this time that (M) the Palace has

been supplied with British newspapers. Due to the fact that the British delivery service

is rarely affected by strikes and not related to newspaper delivery services of other coun-

tries, this provides no evidence whether or not the Palace has been supplied with Italian

newspapers.

What is of interest is the relation between the propositions N, M, and the uninformative proposi-

tion Ω, i.e. saying nothing. It is M ⊆ N ⊆ Ω and, as M has no influence on the expected success

of going to the station or going to the Palace, M and Ω must be equally relevant to the underly-

ing decision problem. In both examples, I’s decision problem, i.e. her information, preferences

and choices of action, are the same. This means that in both examples either N is more relevant

than Ω, or it is not. But this means that N is either the most relevant answer in (5), or irrelevant

in (4). Both predictions are counterintuitive. The standard relevance measures introduced in

(2.1) and (2.2) e.g. both predict that N is the most relevant answer in (5).

Intuitively, in (5), E has nothing relevant to say because the most informative answer he could

give has no influence on the expected utilities of any action. We can generalise this observation

as follows: If A represents the expert’s knowledge, and if A and Ω are equally relevant, then there

must be no A ⊆ C ⊆ Ω which is more relevant than Ω. This condition would be sufficient for

our purposes but, in order to have a constraint that does only depend on the inquirer’s decision

problem, we formulate a slightly more general monotonicity condition: if A ⊆ B, then B must

not be more relevant than A. This monotonicity condition is quite strong and rules out measures

like (2.1) and (2.2).

In order to explain (5) we have to assume that relevance measures are monotone. In order to

explain examples like (3) we have to assume that propositions A and B which lead to identical

5
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expected utilities are equally relevant: if ∀aEU(a|A) = EU(a|B), then the relevance of A and

B must be equal. We call this property the Italian newspaper property. Finally, in situations

where the answering expert thinks that saying nothing would induce the inquirer to choose a

sub-optimal action there must exists some relevant answer that he can choose. The precise defi-

nitions of these properties are stated in Section 5, Def. 5.1. A fourth condition is that relevance

measures must not prescribe misleading answers. In Lemma 5.2 we show that no relevance

measures can satisfy all four of these properties.

As mentioned before, in principle the value of information can be determined from two per-

spectives, the speaker’s and the hearer’s. In Grice’ example of handing someone ingredients for

making a cake, a relevance based analogue would demand that I evaluate the ingredients accord-

ing to the receiver’s expectation. But why should I do so? Especially, if I am more competent

than the receiver and know exactly what she is going to do with the ingredients. It would be

more reasonable to deliberate first how she can handle the different ingredients and then choose

those ingredient she can make the best use of. Applied to answering situations, this means that

the answering expert should first find out what are the optimal actions for the inquirer, and then

choose an answer that will induce her to choose one of them. In order to do this, the expert has

to calculate which action the inquirer will choose after receiving the different possible answers.

This leads to a game theoretic model in which the expert E calculates backward from the final

outcome of I’s actions a to his own decision situation where he chooses an answer A. We in-

troduce the game theoretic model in Section 4.1. The associated set of optimal answers Opσ is

defined in (4.11). It is identical to the set of all non-misleading answers.

2.2 Implicatures

Relevance scale approaches typically embrace the following assumptions: (1) propositions can

be ordered according to their relevance to the joint purpose of the talk exchange, (2) speaker

and hearer know this order, (3) the speaker is presumed to maximise the relevance of his talk

contributions, and (4) whatever is not said but would have been more relevant is implicated to

be false. The fourth assumption is a consequence of the third assumption: If the speaker is

presumed to maximise relevance and asserted a proposition A which is not maximally relevant,

then there must have been a reason for it. Ignoring reasons as e.g. complexity or politeness,

the only explanation is that A is the most relevant proposition which the speaker knows to be

true. But if speakers cannot be assumed to maximise relevance, as shown before, then the

relevance based account lacks a proper foundation. Moreover, we will show in Section 6 that

this approach necessarily predicts undesired implicatures. The Italian newspaper example is a

case where there are two propositions, “At the station” A1 and “At the Palace” A2, which must

be equally relevant in order to explain why the answer A1 does not implicate A2 and vice versa.

In the Out-of-Petrol example we found a case where an answer A1 implicates some stronger

proposition H2. By merging these two examples, we get the ultimate counter example against

relevance scale approaches:

(6) Somewhere in Berlin... Suppose I approaches the information desk at the entrance of

a shopping centre. He wants to buy Argentine wine. He knows that staff at the infor-

mation desk is very well trained and know exactly where you can buy which product in

the centre. E, who serves at the information desk today, knows that there are two super-

markets selling Argentine wine, a Kaiser’s supermarket in the basement and an Edeka

supermarket on the first floor.

I: I want to buy some Argentine wine. Where can I get it?

E: Hm, Argentine wine. Yes, there is a Kaiser’s supermarket downstairs in the basement

6
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On Relevance Scale Approaches 7

at the other end of the centre.

We show that no relevance scale approach can explain the (non-)implicatures in this example.

We consider the following propositions:

1. A1: There is a Kaiser’s supermarket in the shopping centre.

2. A2: There is an Edeka supermarket in the shopping centre.

3. H1: The Kaiser’s supermarket sells Argentine wine.

4. H2: The Edeka supermarket sells Argentine wine.

A1 and A2 are equally relevant to the joint goal of finding a shop where I can buy Italian wine.

Due to the linearity of the pre-order induced by a real valued relevance measure, all implicatures

of A2 must also be implicatures of A1. As answering Ai implicates Hi, it follows from a relevance

scale approach that answering A1 must also implicate H2. But the assertion that there is a

Kaiser’s supermarket clearly does not implicate that there is an Edeka supermarket which sells

Argentine wine.

2.3 Calculability

The perhaps strongest argument in favour of relevance approaches seems to be the argument

from calculability. Implicatures are part of what is communicated, hence speaker and hearer

have to agree on their content, and especially the hearer has to be able to calculate them given

a relevance measure that is defined relative to his local information, i.e. relative to his decision

problem Dσ. If optimality of answers can only be calculated when taking into account the

speaker’s expectations, then, it seems, that a game theoretic approach cannot explain how the

hearer is able to calculate implicatures. But this reasoning does not take into account that

the hearer already knows the answer A when calculating implicatures A +> H. The hearer’s

local information must be identified with the pair (A,Dσ). As we will see, this is sufficient

information for calculating implicatures in an optimal answer model. We provide two criteria

which can be used for calculation. The first, Lemma 4.2, allows to calculate implicatures of the

form A +> H from the fact that the action aA which the hearer will choose when learning A

is optimal. The second, Lemma 7.1, is based on a relevance scale. As we saw in the previous

section, relevance measures that define a linear per-order on propositions cannot, in general, be

used for calculating implicatures. Lemma 7.1 makes use of the sample value of information,

see (2.1), after learning answer A. In contrast to the relevance scale approaches discussed before,

this relevance measure is defined relative to the posterior probability PI( . |A). It depends on the

pair (A,Dσ). We will see in Section 7 that this notion of relevance makes the inference in

(2) valid. Both criteria are only applicable if certain epistemic conditions are satisfied. The

preconditions of the second criterion are stronger than the preconditions of the first.

In the standard theory (Levinson 1983, Ch. 3), implicatures follow logically from the semantic

content of an utterance and the assumption that the speaker adheres to a number of conversa-

tional maxims. It is a defining property of conversational maxims that their knowledge is a

logical precondition for determining the speaker’s utterance. But, as our results show, the ap-

propriate notion of relevance that makes inferences like (2) valid can only be measured after the

answer has been given. The fact that a proposition is relevant is itself implicated information.

Hence, maximising relevance cannot be a maxim. The proper explication of Grice’ concept

of relevance and the meaning of relevance in (2) cannot be the same thing. This is the third

negative result about relevance measures.

7
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The remainder of the paper contains the technical results. We first introduce our representations

of answering situations, which we call support problems, in Section 4. Then we present two

approaches to finding solutions to support problems. First we present the optimal answer ap-

proach, which is a game theoretic approach; then we characterise relevance scale approaches

as described before. In sections 5–7 we show three negative results about relevance scale ap-

proaches. In Section 5 we show that relevance approaches cannot avoid misleading answers;

in Section 6 we show that there are certain non-implicatures which cannot be explained by any

relevance scale approach; in Section 7 we argue that the appropriate notion of relevance that

makes (2) valid does not define a conversational maxim.

3 Support Problems

A decision problem is characterised by the possible states of the world, the decision maker’s

expectations about the state of the world, a set of actions the decision maker can choose from,

and the decision maker’s preferences over the outcomes of his actions. Let Ω be the set of

all possible states of the world. We restrict our considerations to situations with finitely many

possibilities. We represent an agent’s expectations about the world by a probability distribution

over Ω, i.e. a real valued function P : Ω → R with the following properties: (1) P(v) ≥ 0 for

all v ∈ Ω and (2) ∑v∈Ω P(v) = 1. For sets A ⊆ Ω we set P(A) = ∑v∈A P(v). The pair (Ω,P) is

called a finite probability space. We represent an agent’s preferences over outcomes of actions

by a real valued function over action–world pairs. We collect these elements in the following

structure:

Definition 3.1 A decision problem is a triple
〈

(Ω,P),A ,u
〉

such that (Ω,P) is a finite proba-

bility space, A a finite, non–empty set and u : A ×Ω → R a function. A is called the action set,

and its elements actions. u is called a payoff or utility function.

It is standard to assume that rational agents try to maximise their expected utilities. The expected

utility of an action a is defined by:

EU(a) = ∑
v∈Ω

P(v)×u(a,v). (3.3)

In general, there might be several a ∈ A with EU(a) = maxb∈A EU(b). In order to make sure

that there is always a unique solution to a decision problem, we assume that the decision maker

has intrinsic preferences over the actions in A which come only to bear if there are several

optimal actions. Hence, we add a linear order < to our decision problem and assume that

the decision maker chooses a = max{a ∈ A |∀b ∈ A EU(b) ≤ EU(a)}, where max is defined

relative to <. We call
〈

(Ω,P),(A ,<),u
〉

a decision problem with tie break rule.

In the following, a decision problem
〈

(Ω,P),(A ,<),u
〉

represents the inquirer’s situation before

receiving information from an answering expert. We will assume that this problem is common

knowledge. In order to get a model for the full questioning and answering situation we have to

add a representation for the answering expert’s situation. We only add a probability distribution

PE that represents his expectations about the world:

Definition 3.2 A support problem is a five–tuple
〈

Ω,PE ,PI,(A ,<),u
〉

where (Ω,PE) is a finite

probability space and
〈

(Ω,PI),(A ,<),u
〉

a decision problem with tie break rule. We assume:

∀X ⊆ Ω PE(X) = PI(X |K) for K = {v ∈ Ω |PE(v) > 0}. (3.4)

8
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On Relevance Scale Approaches 9

Condition (3.4) implies that the expert’s beliefs cannot contradict the inquirer’s expectations,

i.e. that for A,B ⊆ Ω:

PE(A) = 1 ⇒ PI(A) > 0 and PI(A|B) = 1 & PE(B) = 1 ⇒ PE(A) = 1. (3.5)

For support problems σ =
〈

Ω,PE ,PI,(A ,<),u
〉

we denote by Dσ the associated decision prob-

lem
〈

(Ω,PI),(A ,<),u
〉

with tie break rule.

4 Solving Support Problems

A support problem represents just the fixed static parameters of the answering situation. We

assume that I’s decision does not depend on what she believes that E believes. Hence her

epistemic state (Ω,PI) represents just her expectations about the actual world. E’s task is to

provide information that is optimally suited to support I in her decision problem. Hence, E

faces a decision problem himself, where his actions are the possible answers. The utilities of

the answers depend on how they influence I’s final choice. We find two successive decision

problems:

Expert E I decides Evaluation

answers for action

↓ ↓ ↓

•
A

−−→ •
a

−−→ •
↑ ↑ ↑

expectations expectations utility

of E of I function

(Ω,PE) (Ω,PI) u(a,v)

We assume that the answering expert E is fully cooperative and wants to maximise I’s final

success; i.e. E’s payoff is identical with I’s (our representation of the Cooperative Principle).

E has to choose his answer in such a way that it optimally contributes towards I’s decision.

We first introduce a game theoretic solution based on (Benz 2006). Afterwards, we provide a

characterisation of relevance scale approaches.

4.1 The Optimal Answers Approach

I’s Decision Situation

The expected utility of actions may change if the decision maker learns new information. To

determine this change of expected utility, we first have to know how learning new informa-

tion affects the inquirer’s beliefs. In probability theory the result of learning a proposition A

is modelled by conditional probabilities. Let H be any proposition and A the newly learned

proposition. Then, the probability of H given A, written P(H|A), is defined by:

P(H|A) := P(H ∩A)/P(A). (4.6)

This is only well–defined if P(A) /= 0. In terms of this conditional probability function, the

expected utility after learning A is defined by:

EU(a|A) = ∑
v∈Ω

P(v|A)×u(a,v). (4.7)

9
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I will choose the action which maximises her expected utilities, i.e. she will only choose actions

a where EU(a,A) is maximal. In addition, we assume that I has always a preference for one

action over the other. We represented this preference by a linear order < on A . For A ⊆ Ω we

can therefore denote the inquirer’s unique choice by

aA := max{a ∈ A |∀b ∈ A EUI(b|A) ≤ EUI(a|A)}. (4.8)

E’s Decision Situation

As we assume that E is fully cooperative, E has the same preferences over outcomes as I. E has

to choose an answer that induces I to choose an action that maximises their common payoff.

We can see E’s situation as a separate decision problem where he has to choose between the

answers A⊆Ω. With aA defined as before, we can calculate the expected utilities of the different

answers as follows:

EUE(A) := ∑
v∈Ω

PE(v)×u(v,aA). (4.9)

We add here a further Gricean maxim, the Maxim of Quality. We call an answer admissible if

PE(A) = 1. The Maxim of Quality is represented by the assumption that the expert E does only

give admissible answers. This means that he believes them to be true. For a support problem

σ =
〈

Ω,PE ,PI,(A ,<),u
〉

we set:

Admσ := {A ⊆ Ω |PE(A) = 1} (4.10)

Hence, the set of optimal answers for σ is given by:

Opσ = {A ∈ Admσ |∀B ∈ Admσ EUE(B) ≤ EUE(A)}. (4.11)

The expert may always answer everything he knows, i.e. he may answer K := {v ∈ Ω |PE(v) >
0}. From condition (3.4) it trivially follows that EUE(aK) = maxa∈A EUE(a), hence:

∃A ⊆ Ω : EUE(aA) = max
a∈A

EUE(a); (4.12)

Let us call an answer C misleading iff EUE(aC) < maxa∈A EUE(a). It follows from (4.12) that

Opσ is the set of all non–misleading answers.

Calculating Implicatures from Optimal Answers

From the previous model we can derive a technical definition of what is an implicature. In the

standard model (Levinson 1983), implicatures A +> H follow logically from the fact that A

has been uttered and the assumption that the speaker adheres to the conversational maxims. In

our context, this means that implicatures follow from the fact that the utterance of A implies

that it must be an optimal answer. If we assume that the speaker has true knowledge, then

the truth of a proposition H follows if the speaker believes it to be true. Implicatures may

depend on additional, contextually given information. This information can be represented by a

subclass Ŝ of support problems. The following definition applies only to propositions that can

be represented as subsets of Ω, i.e. it does not capture situations where H attributes a certain

belief to the speaker.

10
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On Relevance Scale Approaches 11

Definition 4.1 (Implicature) Let σ =
〈

Ω,PE ,PI,(A ,<),u
〉

be a given support problem, σ ∈

Ŝ ⊆ S . For A,H ∈ P (Ω), A ∈ Opσ we define:

A+> H :⇔ ∀σ̂ ∈ [σ]
Ŝ

: A ∈ Opσ̂ → Pσ̂
E (H) = 1, (4.13)

where [σ]
Ŝ

:= {σ̂ ∈ Ŝ |Dσ = Dσ̂}.

Let O(a) be the set of all worlds where a is an optimal action:

O(a) := {w ∈ Ω |∀b ∈ A u(a,w) ≥ u(b,w)}. (4.14)

As a special case, we find:

Lemma 4.2 Let Ŝ be the set of all support problems with ∃a ∈ A PE(O(a)) = 1.

Let σ ∈ Ŝ , A,H ⊆ Ω, A ∈ Opσ, and A∗ := {w ∈ A |PI(w) > 0}. Then it holds that:

A+> H iff A∗∩O(aA) ⊆ H. (4.15)

We first show that

∃a ∈ A Pσ
E (O(a)) = 1 & A ∈ Opσ ⇒ Pσ

E (O(aA)) = 1. (4.16)

Suppose Pσ
E (O(aA)) < 1. Let a be such that Pσ

E (O(a)) = 1. Then EUσ
E (aA) = ∑v∈O(a) Pσ

E (v) ·
u(aA,v) < ∑v∈O(a)∩O(aA) Pσ

E (v) · u(a,v) + ∑v∈O(a)\O(aA) Pσ
E (v) · u(a,v) = EUσ

E (a), in contradic-

tion to A ∈ Opσ.

Proof of Lemma 4.2: We first show that A∗∩O(aA) ⊆ H implies that A +> H. Let σ̂ ∈ [σ]
Ŝ

be such that A ∈ Opσ̂. We have to show that Pσ̂
E (H) = 1. By (4.16) Pσ̂

E (O(aA)) = 1 and by (3.4)

Pσ̂
E (A∗) = 1; hence Pσ̂

E (O(aA)∩A∗) = 1, and it follows that Pσ̂
E (H) = 1.

Next we show A+> H implies A∗∩O(aA)⊆H. Suppose A∗∩O(aA) /⊆H. Let w∈ A∗∩O(aA)\
H. Let σ̂ be such that Dσ = Dσ̂ and Pσ̂

E (w) = 1. As w ∈ O(aA), it follows that A ∈ Opσ̂. Due to

A+> H, it follows that Pσ̂
E (H) = 1, in contradiction to w /∈ H.

Both, A∗ and O(aA) are known to the inquirer. The condition A∗∩O(aA) ⊆ H is equivalent to

PI(O(aA)∩H|A) = 1. Hence, this result explains how the inquirer can calculate implicatures

using her local information after learning answer A.

4.2 Relevance Scale Approaches

Any definition of relevance will define a real valued function R which orders propositions ac-

cording to their relevance. For the question how to choose a maximally relevant answer, we can

abstract away from other desirable properties of relevance measures and assume that they are

general functions R(D, . ) : P (Ω) → R for decision problems D =
〈

(Ω,P),A ,u
〉

. Given such a

relevance measure, we can define the set of maximally relevant answers. This set is restricted

to the propositions which the speaker believes to be true. Let σ =
〈

Ω,PE ,PI,(A ,<),u
〉

be any

support problem. Then, the set of maximally relevant answers MRσ is given by

MRσ := {A ∈ Admσ |∀B ∈ Admσ R(Dσ,B) ≤ R(Dσ,A)}. (4.17)

I call a theory about relevance implicatures a relevance scale approach iff it defines or postu-

lates a linear pre-order ≺ on propositions such that an utterance of proposition A implicates a

proposition H iff A ≺ ¬H; i.e.:

11
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12 Anton Benz

A ≺ ¬H ⇔ A+> H (4.18)

The reasoning behind this kind of approach is roughly as follows: (1) The speaker said A; (2)

¬H would have been more relevant but the speaker didn’t say that ¬H; (3) as the speaker should

say as much as he can as long as it is relevant, it follows that ¬H must be false; (4) hence H.

The pre-order ≺ may again depend on a given decision problem. A representation by a pre-

order is equivalent to a representation of preferences by a real valued function. Furthermore,

implicatures may depend on commonly known background assumptions. The following defini-

tion makes these dependencies explicit. In addition, it adds the constraint that a relevance scale

implicature H can only arise if the speaker is known to know whether H.

Definition 4.3 (Relevance Scale Implicature) Let Ŝ be a subset of S and σ ∈ Ŝ . Let R(Dσ, .) :

P (Ω) → R be a given relevance measure. Then, it holds in σ that A+> H iff

∀σ̂ ∈ [σ]
Ŝ

: (Pσ̂
E (H) = 1∨Pσ̂

E (H) = 1)& R(Dσ,A) < R(Dσ,H), (4.19)

where [σ]
Ŝ

:= {σ̂ ∈ Ŝ |Dσ = Dσ̂}.

In the following sections we discuss relevance scale approaches. We will show that there are se-

vere principled limitations to this approach. First, we will show that maximising relevance must

necessarily lead to misleading answers even under extremely favourable conditions. Secondly,

we will show that relevance scale approaches necessarily over-predict implicatures. These re-

sults show already that the maximisation of relevance and the derived explanation of implica-

tures cannot be principles of conversations which speaker and hearer are presumed to follow. As

a last result, we will introduce a relevance measure that makes the relevance based reasoning in

the Out-of-Petrol example valid but cannot qualify as an explication of the relevance principle.

5 First Negative Result

In this section we show that maximisation of relevance leads necessarily to misleading answers.

Technically this will be achieved by comparing the set of maximally relevant answers with

the set of optimal answers defined by the optimal answer approach. We know that the set of

optimal answers is identical to the set of all non–misleading answers. Hence, if we know that the

intersection of maximally relevant and optimal answers is empty for a given support problem,

then, in this case, all maximally relevant answers must be misleading. In the previous section,

we introduced relevance measures as functions R(D, . ) : P (Ω) → R. In order to achieve our

result, we have to assume that the relevance measures satisfy some additional properties. We

motivated these properties in Section 2.1:

Definition 5.1 Let R : P (Ω) → R and A ⊆ B ⊆ Ω. We call R a monotone relevance measure iff

1. ∀a ∈ A EU(a|A) = EU(a|B) ⇒ R(A) = R(B) (Italian newspaper);

2. ∀a ∈ A (EU(a|B) = maxb EU(b|B) ⇒ EU(a|A) < maxb EU(b|A)) ⇒ R(B) < R(A);

3. R(B) ≤ R(A) (monotonicity).

The following lemma shows that there cannot be a relevance measure that satisfies these prop-

erties and avoids misleading answers.
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Lemma 5.2 For each support problem σ ∈ S let R(Dσ, . ) : P (Ωσ) → R be a monotone rele-

vance measure. Then, for some σ ∈ S :

MRσ ∩Opσ = /0. (5.20)

Proof: Let us assume that there are support problems σ1,σ2 with Dσ1
= Dσ2

such that there are

sets A ⊆C ⊆ B with ∀a ∈ A EU(a|A) = EU(a|B) and

(Σ1) A,B,C ∈ Admσ1
, A,B ∈ Opσ1

, and C /∈ Opσ1
;

(Σ2) B,C ∈ Admσ2
, A /∈ Admσ2

, B /∈ Opσ2
, and C ∈ Opσ2

.

Suppose now that for all σ ∈ S : MRσ ∩Opσ /= /0. Then, if (Σ1), it follows with monotonicity

conditions 1. and 3. that R(Dσ,C) ≤ R(Dσ,B).3 But if (Σ2), it follows with monotonicity con-

dition 2. that R(Dσ,C) > R(Dσ,B). Hence, the lemma follows if we can show that there are

support problems σ1, σ2 such that (Σ1) and (Σ2) hold.

We first define the shared decision problem D = 〈Ω,A ,PI,u〉 of σ1, σ2. Let Ω = {v1,v2,v3,v4},

PI(v1) = PI(v2) = 4
14

and PI(v3) = PI(v4) = 3
14

. Let A := {a,b} with:

u(a,vi) =

{

1, for i = 1,2
0, else

, u(b,vi) =

{

0, for i = 1,2
1, else

.

We set A := {v1,v3}, B := Ω, and C := {v1,v3,v4}. Let σ1 be the support problem with PE(X) :=
PI(X |A), and σ2 the support problem with PE(X) := PI(X |C). Then σ1 has property (Σ1), and

σ2 property (Σ2). This completes the proof.

6 Second Negative Result

The last section showed that relevance scale approaches cannot successfully account for the

choice of answers. This does not necessarily entail that they cannot successfully account for

relevance implicatures. The following lemma shows that relevance scale approaches have prin-

cipled problems avoiding certain implicatures. If a proposition A1 is equally relevant as a second

proposition A2, then whatever A2 implicates is also implicated by A1. This massively over-

generates implicatures.

Lemma 6.1 Let Ŝ be the set of support problems σ where for each of the propositions X ∈
{A1,A2,H1,H2} it is commonly known that E knows whether X, i.e. where it is commonly known

that Pσ
E (X) = 1∨Pσ

E (X) = 1. There exists no relevance measure R(Dσ, .) : P (Ω)→ R such that

the following set of implicatures are satisfied in any σ ∈ Ŝ .

1. A2 +> H2;

2. not A1 +> ¬A2;

3. not A2 +> ¬A1;

4. not A1 +> H2.

3For this argument it suffices that A,B,C ∈Admσ1
. The lemma can be proven with the following slightly weaker

conditions (IN1)–(IN3) if we take into account all conditions of (Σ1). Let K := {v |PI(v) > 0} and K ⊆ B. Then

let (IN1) be the Italian newspaper condition from Definition 5.1, (IN2) EU(aK |K) > EU(aB|K) then R(Dσ,B) <
R(Dσ,K), and (IN3) R(Dσ,K) = R(Dσ,Ω) ⇒∀C(K ⊆C ⊆ Ω ⇒ R(Dσ,C) ≤ R(Dσ,Ω).
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Proof: For fixed σ ∈ Ŝ and relevance measure R we write A ≺ B iff R(Dσ,A) < R(Dσ,B).
Hence, ≺ satisfies (4.18). We show that the above set of implicatures cannot be satisfied:

1. not A1 +> ¬A2 implies A1 /≺ A2;

2. not A2 +> ¬A1 implies A2 /≺ A1;

3. hence, A1 ≈ A2 from lines1 and 2;

4. A2 +> H2 implies A2 ≺ ¬H2;

5. hence, A1 ≺ ¬H2 from lines 3 and 4;

6. not A1 +> H2 implies A1 /≺ ¬H2, in contradiction to line 5.

This and the last result show already that the relevance principle cannot have the status of a

conversational maxim. In the standard theory it is assumed that implicatures are derived from

the assumption that the speaker adheres to the maxims. The first negative result shows that

the relevance principle is not responsible for the choice of answers, hence the hearer cannot

presume that the speaker is adhering to it. The second negative result shows that it necessarily

produces unintended implicatures. Both results contradict what is commonly seen as a defining

property of maxims, namely to be the basic principles that govern the speaker’s language use

and thereby being the reason that generates implicatures.

7 The Third Negative Result

In the introduction, we considered the Out-of-Petrol–Example (1) and two opposing derivations

of implicatures. The validity of the inference in (2) depends on G∧H being more relevant than

G. We show that there is a reliable explication of relevance that makes this inference true. In

the last section we saw that the linearity of a relevance order implies that for every two equally

relevant propositions A1,A2 it follows that whatever A1 implicates is also implicated by A2.

We can avoid this problem if we construct a new relevance scale for each answer. We will do

this using a variant of sample value of information (2.1). We have to define it relative to the

addressee’s posterior probability, i.e. relative to the probability after learning the answer.

Lemma 7.1 Let σ =
〈

Ω,PE ,PI,(A ,<),u
〉

be a given support problem. Let O(a) be defined as

in (4.14), A,H ⊆ Ω, and let Ŝ be the set of support problems where ∃a ∈ A PE(O(a)) = 1. The

sample value of information K posterior to learning A, SV I(K|A), is defined by:

SV I(K|A) := EUI(aA∩K,A∩K)−EUI(aA|A∩K). (7.21)

Then it holds for all σ ∈ Ŝ with A ∈ Opσ that

If ∀K ⊆ H SV I(K|A) > 0, then A+> H, (7.22)

Proof: Let σ̂ ∈ Ŝ be any support problem with A ∈ Opσ̂ and Dσ̂ = Dσ. We have to show

that Pσ̂
E (H) = 1. As Dσ̂ = Dσ, it follows that ∀K ⊆ H SV I(K|A) > 0 holds also for σ̂. By

(4.16) it holds that Pσ̂
E (O(aA)) = 1. By assumption, it holds that for all v ∈ H: if Pσ̂

E (v) > 0,

then SV I(v|A) > 0. But 0 < EUI(a{v},{v})−EUI(aA,{v}) = u(a{v},v)− u(aA,{v}) implies

v /∈ O(aA). Therefore, Pσ̂
E (v) = 0 for v ∈ H. It follows that Pσ̂

E (H) = 0.

By definition SV I(A|A) = 0, hence the answer A is always the most irrelevant proposition. The

relative relevance scales SV I( . ,A) cannot be combined to a linear order on P (Ω), hence they
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On Relevance Scale Approaches 15

do not allow to compare the absolute relevance of two arbitrary propositions. This violates two

essential assumptions about Grice’ notion of relevance.

The question whether a proposition H is relevant or not is meaningful only after an answer

A is known. It follows logically from the fact that A is optimal. Hence, H’s relevance is a

consequence of the fact that the speaker adheres to the conversational maxims represented in

the optimal answer model. But this means that it is itself implicated information. Hence, the

posterior sample value of information cannot be used for defining a conversational relevance

maxim. This is the third negative result.
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