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Abstract. A striking property of scalar adjectives is that they allow for inferences like the fol-
lowing: If John is tall, and Mary is taller than John, then Mary is tall. This inference can be
made because if an individual falls in the extension of the adjective, then any individual that
has the property to a greater degree also will. We call this universal of adjectival semantics
monotonicity. In this paper, we present an evolutionary account of monotonicity and support it
with three computational models. In the first model, we study which of the possible meanings
of scalar adjectives evolve under a pressure for simplicity alone, and we observe degenerate
meanings that are unlike natural language adjectives. In a second model, we combine the pres-
sure for simplicity with a pressure for communicative accuracy. Under these pressures, mostly
non-monotonic meanings evolve. In the third model, we equip the agents with pragmatic rea-
soning skills. In the third condition monotonic meanings prevail. We conclude that adjectival
monotonicity is caused by a combined pressure for semantic simplicity and communicative
accuracy, given human pragmatic skills.

Keywords: Iterated Learning, cultural evolution, universals, Rational Speech Act.

1. Introduction

Scalar adjectives like “tall”, “fast” and “full” are used in predicative position to relate individ-
uals to degrees of properties. The degree is specified precisely in measure uses, e.g. “Mary
is 190cm tall”, and imprecisely in bare uses, e.g. “Mary is smart”. Bare uses convey that the
degree to which the individual possesses the property falls in a certain portion of the scale,
the bare extension of the adjective in the conversational context of the utterance. For instance,
“Mary is tall” means that Mary’s height is greater than a certain threshold, and “Mary is short”
means that Mary’s height is lower than a certain threshold. A striking property of scalar ad-
jectives is that they allow for inferences like the following: If John is tall, and Mark is taller
than John, then Mark is tall. These inferences can be made due to the property of increasing
(decreasing) monotonicity: if an individual falls in the extension of the adjective, then any in-
dividual that has the property to a greater (lower) degree will also fall in the extension of the
adjective. More formally, we call a bare extension P monotonically increasing (decreasing) iff
for any two degrees di and d j, if di � d j (d j � di) and d j 2 P, then di 2 P. P is monotonic iff
it is monotonically increasing or decreasing. We call monotonic those adjectives whose bare
extension is monotonic in every conversational context.2

In the semantic literature, although scalar adjectives have been modelled in several different
1We would like to thank Kenny Smith, Jennifer Culbertson, Robert Truswell, Shane Steinert-Threlkeld, Jakub
Szymanik, and Isabelle Dautriche for helpful discussion.
2In some of the literature (see below), all adjectives are increasing monotonic. This is because negative adjectives
refer to different scales from their positive counterparts. For instance, “short” is increasing monotonic because its
bare extensions consists of every degree of shortness higher than a threshold. There are numerous arguments for
this analysis (Kennedy, 2001; Bierwisch, 1989). In the following, we will talk as if adjectives of opposite polarity
extended on the same scale, e.g., the scale of height for “tall” and “short”. However, this is for ease of presentation
and is easy to reformulate in a way that is consistent with the literature.
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ways (Klein, 1980; Kennedy and McNally, 2005; Kennedy, 2007), the monotonicity assump-
tion is considered uncontroversial. However, monotonicity is not semantically necessary. Prima
facie, English could have included a scalar adjective “schtall” such that “Mary is schtall” means
that Mary is either shorter than 150cm or taller than 190cm. This possibility raises the question
of why monotonicity is a general property of scalar adjectives. The topic of generally occurring
patterns in semantic structure (or semantic universals; von Fintel and Matthewson (2008)) has
seen a recent increase in attention. Important questions about how we can functionally explain
these patterns are being addressed, quite recently, in learning experiments as well as various
types of computational model.

Properties to do with scalarity have been studied particularly in the domain of quantifiers.
While not identical, quantificational and adjectival monotonicity are similar. Consider a quan-
tifier Q of type hhe, ti ,hhe, ti , tii. Q is (right-)monotone iff for any sets A and B either Q(A,B)^
B ✓ B0 =) Q(A,B0) or Q(A,B)^B0

✓ B =) Q(A,B0) (we omit the model M for simplicity).
If we order the sets by inclusion and call QA the set {B |Q(A)(B) =True}, Q is monotone iff for
any sets A, B and B0, either B 2 QA

^B  B0 =) B0

2 QA or B 2 QA
^B0

 B =) B0

2 QA. In
this formulation, quantificational monotonicity is strikingly similar to adjectival monotonicity.

Steinert-Threlkeld and Szymanik (forthcoming) focus on monotonicity from the point of view
of learning, corresponding to the level of single agents in the model below. They pose the
challenge to provide a model of learning on which monotonic quantifiers are easier to learn
than non-monotonic ones. They propose long short-term memory (LSTM) recurrent neural
networks (NN) as a model of learning, and show that LSTM NNs require fewer observations
to learn monotonic quantifiers than non-monotonic quantifiers. Furthermore, they argue that
LSTM NNs have the advantage of being domain-general and biologically plausible. In virtue of
their generality, LSTM could provide a unified learning model for quantifiers, scalar adjectives
and other scalar phenomena. This would in turns provide a cognitively plausible foundation for
the computational model below.

Further experimental evidence for an advantage of monotonicity in learning comes from Chemla
et al. (forthcoming). The authors conducted an experiment in which participants were pre-
sented with collections of objects and were taught a rule (resembling a quantifier) associated
with specific collections . They show that participants were significantly faster at learning rules
corresponding to monotonic quantifiers than those corresponding to non-monotonic quantifiers.
This result supports the hypothesis that monotonicity in scalar concepts simplifies learning.

Brochhagen et al. (2016) develops an account similar to the one presented in this paper. It
focuses on the large class of scalar expressions, encompassing quantifiers, scalar adjectives, and
numerals. The aim is to explain the lack of upper bounds in the semantics of scalar expressions.
The authors also propose a model that combines Rational Speech Act agents with pressures for
communicative accuracy and simplicity. The approach we follow in this paper is related to that
presented in Brochhagen et al. (2016), but there are crucial differences, which we will discuss
in the discussion section below.

In this paper, we present a picture of the evolution of monotonicity as an adaptation to the
competing pressures for learnability and communicative accuracy. Section 2.1 studies the ef-
fects of a pressure for learnability alone on the semantic structure of scalar adjectives. The
languages that evolve are monotonic but they do not convey information about the world, and
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are therefore unlike natural language. In section 2.2, we add a pressure on the languages to
be communicatively accurate. This causes a prevalence of non-monotonic languages. Finally,
in section 2.3 we implement more sophisticated, pragmatically skilful agents. Monotonic lan-
guages evolve. Presenting three different models that explore how these pressures affect the re-
sulting languages, we conclude that monotonicity is a consequence of the combined pressures
for learnability and communicative accuracy in a population of pragmatically skilful agents.

2. A model for the evolution of monotonicity

2.1. Model 1: Pressure from learning

The need to be culturally transmitted creates a pressure on language to be learnable. Learn-
ability itself depends, among other things, on the cognitive biases of the learner. The Iterated
Learning (IL) modelling paradigm is a way to study how the cognitive biases of the learners
shape the evolution of cultural phenomena (See Smith (2018) for a recent overview). In this
section, we use an IL model and find that on its own it does not suffice to account for the
emergence of monotonicity.

A standard IL model consists of a number of chains. Each chain consists of a number of
generations h0,h1, ...,hn. The life of agents in each generation hi>0 has two stages. In the first
stage, agents in hi�1 are selected to be cultural parents of the agents in hi, and proceed to teach
the language to their cultural children. In the second stage, the agents in hi become the cultural
parents of agents in hi+1. In the case of h0, the languages of the agents are picked at random
from the set of all possible languages. We consider the frequency of each language type across
all runs of the simulation for all generation after a burn-in period.

2.1.1. Language model

In our model, the world W has two components. First, an ordered set O = {D,�D} modelling
a scale, where D is a set of three degrees. Second, a uniform probability distribution PD over
D modelling the probability of specific degrees being observed. The set M of meanings is the
set of sets of degrees, i.e. P(D) (See figure 1). Each language l is a set { fl,S,Bl}, where S
is a set of three signals that is identical for all languages, Bl is a set of three possibly identical
meanings 2 M and fl : Sl 7! Bl is a function from each signal to its corresponding meaning. In
each language, each signal is associated with exactly one meaning, which means that there is
no homonymy. However, two meanings in Bl can be identical, which means that synonymy is
possible. We added the restriction that in every language there is at least one meaning to refer
to each degree. The languages are holistic in the sense of Kirby et al. (2015) because signals
have no internal structure. Each language therefore models a system of three adjectives in their
bare use, e.g. “x is small”, “x is big”, “x is huge”, with a fixed conversational context.

2.1.2. Bayesian learning model

We model the learning process in a Bayesian framework. In the first model, each agent has
an initial prior probability distribution over languages which models its expectation about the
language to learn. As an agent observes more and more data produced by its cultural parent,
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the prior distribution gets updated and tends to give higher probability to the language that the
cultural parent is speaking. A learning event in generation hi unfolds as follows. An agent ap is
selected from hi�1 to be the cultural parent, and an agent ac is selected from hi to be the cultural
child. Then, ap observes degree d and sends a signal sp to ac describing d in ap’s own language.
Agent ac receives both sp and d and updates its probability distribution over languages. For
each language l, updating follows Bayes’ rule:

p(l |d,sp) µ p(d,sp | l)p(l) µ p(d)p(sp |d, l)p(l) (1)

Since the probability of observing a degree is uniform across degrees, eq. 1 becomes:

p(l |d,sp) µ p(sp |d, l)p(l) (2)

After learning from the data, the child picks a language to use when teaching the following
generation. Two kinds of agents can be defined based on how the pick their language given a
posterior distribution. Sampling agents sample a language from the posterior distribution. MAP
(maximum a posteriori) agents pick the language with the highest posterior (Kirby et al., 2014).
We show the simulation results with both MAP and sampling agents.

2.1.3. Simplicity based prior, and likelihood

The prior distribution is based on work showing that learners prefer simpler, i.e., more com-
pressible, languages (Culbertson and Kirby, 2016; Kirby et al., 2015). The prior probability for
each language l is:

p(l) µ 2�gL (l) (3)

Where g models the strength of the bias for simpler languages and L (l) is the description
length of language l. L (l) is the sum of the description lengths of the meanings expressed
by the signals of l. We calculate the description length of each meaning as the number of bits
needed to encode it.

We encode meanings as follows. Every meaning is a portion on the scale, namely that portion
of the scale where the meaning applies (see figure 1). We call transitions the degrees where
a meaning goes from applying to not applying or from not applying to applying. To encode
a meaning, we first encode the position of all the meaning’s transitions. Then, we specify
whether the meaning applies at the start of the scale. This coding scheme allows to compress
any meaning in 1+ c log(n� 1) bits, where c is the number of transitions in the meaning and
n� 1 is the number of possible transitions in the scale (fig. 1). Due to this coding scheme,
monotonic meanings are attributed a higher prior probability than non-monotonic ones. If a
meaning has no transitions, it can be compressed in one bit, which says whether the meaning
contains all the degrees or is empty. We call such meanings degenerate.

Finally, the likelihood p(s | d, l) is the probability of signal s being sent by a speaker of lan-
guage l after observing a degree d. Calculating the likelihood requires a model of production,
describing how agents pick a signal given a degree. There are two relevant cases to model.
First, the probability of the agent producing a signal whose meaning does not contain the ob-
served degree is 0. Second, if one or more available meanings are compatible with the observed
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A B C

Degenerate

A B C

Monotonic

A B C

Non-monotonic

1 bit < 1+ log(2) bits < 1+2log(2) bits

Figure 1: “A”, “B”, and “C” are the scale’s three degrees. Each meaning is represented as a line
extending over the degrees that belong to it. We estimate the complexity of a meaning as the
length of a lossless encoding of the meaning.

degree, the agents need to choose which one to use for communication. For the simple agents
in this model, the only semantic criterion for choosing between meanings is compatibility, so
all compatible signals are equally likely to be chosen. This behaviour can be modelled as:

p(s |d, l) =

8

<

:

0, if d /2 fl(s)
1

|{h | h 2 Bl ^d 2 h}|
if d 2 fl(s)

(4)

The production model in equation 4 has a number of desirable consequences. If a language
only has one signal to refer to the observed degree, then the production probability is 1. A
language that could not have produced a combination of signal and degree is judged impossible.
Moreover, if two languages are equally probable a prior but one can only refer to refer to the
observed degree with a single signal while the other has multiple signals, the former language
is more probable.

The probability of each language is evaluated by the learner on a sequence of tuples hdegree,signali.
Given equation 4, the probability of a sequence G = hhs1,d1i , ...,hsn,dnii being produced by a
speaker of language l is:

p(G | l) = ’
hsi,dii2G

1
|D|

p(si | di, l) (5)

2.1.4. Results

We ran a pure IL condition for 3000 generations with a population of 10 agents for both MAP
and sample agents. We discarded the first 500 generations as a burn-in. In figure 2 we plot
the frequency of each language type across all agents and generations. The results show that
in a simple IL condition both MAP and sample agents across all generations mostly learn
degenerate languages. This result is predicted by the literature on IL. IL alone creates a pressure
for languages to get increasingly learnable, i.e. conform to the prior expectations of the agents,
and the prior favours simple languages.

However, degenerate languages are not what we observe in real world adjectival systems. Real
world adjectives allow speakers to convey information about amounts of properties. The interim
conclusion is therefore that a pressure for simplicity alone does not account for the evolution
of non-degenerate monotonicity. The crucial advantage of non-degenerate meanings is their
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Figure 2: Frequency of monotonicity types under a learnability pressure alone averaged over
100 runs of the simulation.

greater expressiveness. We implement this idea in the next section by adding a pressure for
communicative accuracy.

2.2. Model 2: Communicative pressure

2.2.1. Communication

In the present section, we add a selective pressure for accurate communication. After agents
picked a language from their posterior distributions, communication in the population proceeds
as follows. First, two agents aS and aH are picked to be the speaker and the hearer respectively.
Agent aS observes a degree dS 2D produced by the world and picks a meaning mS with uniform
probability among the ones in aS’s language that contain dS . Then, aS produces a signal sS that
expresses mS in sS’s own language, as described in equation 4. Then, aS sends the signal to
aH . Finally, aH considers the meaning mH expressed by sS and picks a degree dH with uniform
probability among the degrees compatible with mH in aH’s own language. The communication
event is successful if dS = dH . Communication can be unsuccessful, either when speaker and
hearer use different languages, or when more than one degree is compatible with the signal that
was communicated. Given this picture of communication, the expected communicative success
of an agent aH with language lH listening to an agent aS with language lS is:

c(aH ,aS) = Â
h

di,s ji2D⇥S

p(s j | di, lS)p(di | s j, lH) (6)

where p(s j | di, ld) is the probability described by equation 4 of aS producing signal s j and
p(di | s j, lH) is the probability of aH guessing degree di.

The pressure for communicative accuracy is implemented by selecting agents to be cultural
parents as a function of their communicative success:

p(a j is selected) µ exp(e · c(a j,ai)) (7)
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Figure 3: Frequency of monotonicity types with pressures for learnability and communicative
accuracy averaged over 100 runs of the simulation.

where e > 0 determines the strength of the selection and ai is the cultural parent of a j. The
consequence of this way of calculating fitness is that languages that often provoke a failure in
communication are taught less often to the following generation.

2.2.2. Results

We ran the model for 3000 generations with a population of 10 agents for both MAP and
sample agents. Fig. 3 shows the frequency of each language type across all runs of the model,
again with a burn-in period of 500 generations. Adding a pressure for communicative accuracy
decreases the frequency of monotonic languages. Monotonic languages are communicatively
less accurate than non-monotonic languages, and this affects the fitness of its agents negatively.

In section 2.1, degenerate monotonic meanings prevail in virtue of their simplicity. In the
present section, non-monotonic languages prevail in virtue of their greater accuracy. However,
both models fail as an evolutionary account of adjectival monotonicity. The communicative
suboptimality of completely monotonic languages is tied with the way in which agents produce
and understand signals. Agents in this model are literal, in the sense that they produce and
understand signals as a function of their compatibility with observations alone. In section 2.3,
we study the effects of implementing a more realistic model of communication that takes into
account human pragmatic skills.

2.3. Model 3: Pragmatic agents

The literal agents in the models above base their linguistic behaviour purely on the semantics of
their language, without exploiting the additional information that comes from interacting with
cooperative rather than merely truthful agents (Grice, 1991). In the present section, we add a
more sophisticated model of production and understanding, the so-called Rational Speech Act
(RSA) model (Goodman and Frank, 2016).
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2.3.1. Rational Speech Act agents

RSA is a way of modelling the way in which pragmatic communication follows from agents
capable of thinking about each other’s minds. An RSA pragmatic listener L1 reasons about a
pragmatic speaker S1 which in turn reasons about a literal listener L0. Literal listeners L0 are
agents of the sort we encountered in section 2.1.

Pragmatic speakers S1 observe a degree d and calculate the utility that each signal s has for a
literal listener L0:

US1(s;d) = log(pL0(d | s)) (8)

were PL0(d | s) is the probability that the literal listener attributes to degree d after having
received signal s.3 Signals that maximize the listener’s posterior for the degree observed by the
speaker have higher utility. Pragmatic speakers then choose the signal to utter with a probability
proportional to the utility for the literal listener:

pS1(s | d) µ exp(aUS1(s;d)) (9)

where a determines the strength of the increase in the probability of picking an utterance given
an increase in utility.

Finally, pragmatic listeners L1 perform Bayesian inference on the basis of the behaviour of S1
agents. After receiving a signal s with meaning m from a speaker, L1 calculates the probability
of each degree:

pL1(d | s) µ pS1(s | d)pL1(d) (10)

where pL1(d) is the prior probability that the listener attributes to the degree being observed.

2.3.2. Results

We ran 100 chains of 3000 generations each for both MAP and sample agents, with a population
of 10 pragmatic agents per chain. We excluded the first 500 generations of each chain as a
burn-in. Figure 4 shows the proportion of the languages spoken in the remaining generations
by type.

The third model makes the correct prediction, namely that systems of adjectives evolve to be
non-degenerate and monotonic. Implementing pragmatic skills, which gives artificial agents
the ability to calculate scalar implicatures, allows agents to accommodate the prior preference
for monotonic extensions without losing in terms of communicative accuracy. Monotonic, non-
degenerate languages are the best trade-off between communicative and learnability pressure
only if agents are pragmatically skilful.

3. Discussion

With our models, we have provided an evolutionary account for the monotonicity property of
scalar adjectives: monotone adjectival meanings constitute the best solution for learnability and
communicative accuracy, if we assume that language users are capable of pragmatic reasoning.
As mentioned above, Brochhagen et al. (2016) develop an account that is similar to ours but
3We simplify the original model by assuming that the utterance cost is the same for all adjectives.
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Figure 4: Frequency of monotonicity types with pragmatic agents averaged over 100 runs of
the simulation.

differ in some crucial respects. The meanings are less structured than in the models above. The
structure of each meaning is a function of its relation to an upper bound; each meaning can
cover what is below the upper bound, what is above, both, or neither, and is therefore encoded
with two bits. This modelling choice has two consequences. The first is that there are no
degenerate meanings in the sense we have used above. A meaning that is true for both states in
Brochhagen et al. (2016) is not degenerate, but rather simply one that lacks an upper bound, e.g.
the meaning of English “some”. In the models above, we concluded that a simplicity pressure
alone was insufficient because it resulted in degeneracy. On the other hand, Brochhagen et al.
(2016) exclude a pressure for simplicity alone because it results in all the signals getting the
same meaning, i.e. the monotonic meaning. The two models offer therefore different arguments
for the insufficiency of a simplicity pressure alone: avoidance of degeneracy in our model and
of synonymy in Brochhagen et al. (2016).

Additionally, since Brochhagen et al. (2016) focus on a very general sense of scalarity, there is
no obvious way to add structure to the model in a way that encompasses all the relevant seman-
tic structures. As a consequence, the higher complexity of non-monotonic meanings and the
size of this difference are stipulated in the model. While this is an explicit modelling choice to
avoid introducing assumptions, it makes it harder to extend the measure of complexity beyond
two signals. Since the model in Brochhagen et al. (2016) only has two states, there is not much
need for an explicit functional form for complexity. One can simply specify how much more
complex the non-monotonic meaning is than the monotonic one, and a great variety of com-
plexity measures could fit the two picked complexity values for some parameters specification.
On the other hand, calculating the complexity level of three or more meanings requires a de-
cision about their relative complexity, ideally as a function of the differences in their semantic
structure. Using scales to model the meaning structure of scalar adjectives allowed us to model
the relations between the different meaning structures and their complexity. In sum, having a
simple semantic model makes the model in Brochhagen et al. (2016) suitable to discuss dif-
ferent cases of scalarity, but working with only two states and two signals implies that their
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model cannot detect differences between degeneracy and monotonicity. Conflating degeneracy
and monotonicity is problematic, given that experimental work shows that under a pressure for
learning only, people prefer degenerate systems (Kirby et al., 2015).

In a related and more recent paper, Brochhagen et al. (2018) narrow their focus to quantifiers,
and provide an explicit measure of complexity based on the set-theoretic analysis of generalized
quantification. In this paper, the semantic model has more complexity, and includes three states,
i.e. a representation of meaning that is more similar to what we did. However, other differences
from the model above are introduced. Crucially, in Brochhagen et al. (2018) degenerate mean-
ings are excluded from the set of possible meanings. The spread of degenerate languages was
our reason for introducing a pressure for communicative accuracy. Instead, Brochhagen et al.
(2018) introduces the communicative pressure to explain how the population converges to a
single shared language. A second difference between our and Brochhagen et al. (2018)’s pa-
per is how communicative fitness is calculated. In Brochhagen et al. (2018) what matters is
how well agents can speak with the other agents in the same population. Letting agents inter-
act within their generation is useful when studying convergence to a single language. On the
other hand, we calculate communicative accuracy between cultural parent and offspring, im-
plementing communication in a more restricted manner (and allowing for more variability in
the population). Spike et al. (2017) compare various implementations of communication pres-
sure in a computational model, and their results suggest that the direction of communication
(horizontal vs. vertical) does not make a huge difference for obtaining a conventional signaling
system. I.e., the two models may produce very similar results. However, how and whether the
differences work out in the case of scalar meanings is still an open question.

Finally, we would like to go back to the observation that scalar adjectives are monotonic. Even
though this statement seems largely uncontroversial among semanticists, the claim is not un-
challenged. A claim against monotonicity as a general property of scalars can be found in
Verheyen and Égré (2018). The authors propose an analysis of the meaning of gradable ad-
jectives based on prototypes. More specifically, gradable adjectives have prototypes not in
isolation, but only once they are relativised to a specific comparison population. Given the
prototypes, the scale is carved into categories by letting each point belong to the category of its
closest prototype4. This process induces a so-called Voronoi tessellation on the space (Garden-
fors, 2004). Two features of Voronoi tessellations are problematic when they are used to model
adjectival semantics. Firstly, Voronoi tessellations produce extensions that are convex. For sys-
tems of two prototypes on a one-dimensional space, the convex categories will be monotone.
On the other hand, a system with three prototypes or more necessarily produces at least one
convex non-monotone category. Verheyen and Égré (2018) consider systems of two adjectives
of opposite polarity, e.g., “cold”/“warm”. However, systems of real adjectives also include
more extreme adjectives such as “hot”. An account of the semantics of scalar adjectives has
to explain why further adjectives do not limit the other adjectives in the system, making them
non-monotonic. Our model explains this under the assumption that scalar adjectives are en-
coded in terms of threshold. However, an account based on prototypes cannot account for this
using that explanation.

The second problem with an analysis based on prototypes is that Voronoi tessellations cover the
4The model of Verheyen and Égré (2018) is more complex, since each category is associated with multiple proto-
types. However, this aspect of their model is not relevant to the present discussion.
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whole space. This prima facie contradicts the existence of what has traditionally been called
the zone of indifference (Sapir, 1944), i.e., a part of the scale between adjectives of opposite
polarity that is not covered by either. (See Franke, 2012 for a game-theoretical account). For
instance, people of average height are neither tall nor short and therefore fall in the zone of
indifference. A possible way to reconcile the prototype account with the existence of the zone
of indifference is to claim that the latter corresponds to a vague threshold. The vagueness of
the threshold should explain the intuition that the degrees in the zone of indifference do not
clearly fall under either of the antonyms. This is what Verheyen and Égré (2018) propose. The
discussion therefore hangs on whether one thinks that at least some degrees in the zone of indif-
ference clearly do not belong to either antonym. More experimental data and clearer empirical
predictions from the threshold account are required to establish which analysis conforms better
to linguistic intuitions.

We defined a ubiquitous property of scalar adjectives we named monotonicity. We then devel-
oped an evolutionary account of monotonicity. The simulations we presented give a novel ex-
planation for the universal of monotonicity in scalar language. The mechanism underlying the
spreading of monotonicity rests on a combination three facts, namely that monotonic meanings
are simpler than non-monotonic meanings, that of language is shaped by both IL and pressure
for accurate communication, and that human beings are capable of pragmatic reasoning.
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