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Abstract

We present a formal game-theoretic model towards the explanation of implicatures

based on the computation of iterated best responses: literal meaning of signals

constitutes their default interpretation, and rational communicators decide about

their communicative strategies by iteratively calculating the best response to this

default strategy. We demonstrate by means of several examples how the resulting

pragmatically rationalizable strategies account for different types of implicatures.

1 Signaling Games

In order to introduce the basic concepts of the underlying game-theoretic model (see

e.g. Osborne and Rubinstein, 1994, for an introductory textbook on game theory), let us

look at a simple scenario where communication makes a decisive difference. Suppose

Robin invited Sally for dinner where he wants to serve some thai curry. While slicing the

chili he realizes that he is unsure about whether Sally likes her curry hot or not. Robin

obviously wants to offer his guest the curry in her preferred way. In other words, they

both prefer the outcome where Sally receives her favorite type of curry over the other

outcome, where she finds it inedible because of the lack or the abundance of chili.

We may formalize this scenario as follows. There are two possible worlds, w1 and

w2. In w1 Sally prefers mild curry; in w2 she likes it hot. Robin has a choice between two

actions: preparing a mild curry would be action amild, and preparing a hot curry action

ahot. Sally knows how she likes her curry, i.e. she knows which world they are in, but

poor Robin does not. But although he does not know for sure, he may have some a priori

belief about Sally’s liking, i.e. about the probabilities of each world. Maybe Robin has

seen her eat jalapeño spiced taco burgers on another occasion such that he assumes w2 to

be more likely than w1. In our concrete example, let us assume that he is totally clueless

– he assigns both worlds an a priori probability of 50%.

This scenario can be represented formally as follows. In game theory, the pref-

erences are usually encoded by assigning numerical values, called utilities or payoffs, to

each outcome for each player. For instance, as Robin prefers the outcome of performing

action amild in world w1 over the outcome of performing the same action in w2, we may
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assign 1 to the first and 0 to the second outcome and use the ≥-order on natural numbers

to reflect the preference order. Continuing like that we arrive at the following utility ma-

trix. Rows represent possible worlds and columns represent Robin’s actions. The first

number in each cell gives Sally’s payoff for this configuration, and the second number

Robin’s payoff.

amild ahot

w1 1,1 0,0
w2 0,0 1,1

(1)

Without any further coordination between the players, Robin will remain clueless and

he will have to prepare one type of curry hoping to guess the right one. His expected

utility/payoff for performing action a is as follows (given his prior belief p∗, the set of

possible worlds W and his utilities uR(w,a) for the outcome (w,a)):

EU(a) = ∑
w∈W

p∗(w) ·uR(w,a) (2)

In the case at hand he receives an expected payoff of 0.5 for either action, and (because

of their identical preferences/utilities) Sally will also receive an expected payoff of 0.5.

They can do better though if they communicate. Sally might simply tell Robin her

favourite type of curry. Suppose Robin expects that Sally says “mild” in w1 and “hot” in

w2. Then the rational course of action for Robin is to perform amild if he hears “mild”,

and to perform ahot upon hearing “hot”. In other words, Robin learns the actual world

from Sally’s utterance, i.e. revises his belief, and acts accordingly. On the other hand, if

Sally beliefs that Robin will react to these signals in this way, it is rational for her to say

“mild” in w1 and “hot” in w2. If they follow this rational course of behaviour they both

will obtain an overall payoff of 1.

So adding the option for communication may improve the payoff of both players.

Technically, the original scenario (which is not really a game but a decision problem

because Sally has no choice between actions) is transformed into a signaling game.

Here the sender (Sally in the example) can send signals, and she can make her choice

of signal dependent on the actual world. Formally, the sender’s behaviour is given by a

sender strategy, which is a function from possible worlds to signals. The receiver (Robin

in the example) can condition his action on the signal received. So a receiver strategy

is a function from signals to actions. We will represent strategies graphically as tables

indicating the corresponding functions:

Sally’s strategy s : Robin’s strategy r :
[

w1 → “mild”

w2 → “hot”

] [

“mild” → amild

“hot” → ahot

]

(3)

The above example suggests that rational players will benefit from the option of commu-

nication. Things are not that simple though. Consider the following pair of strategies:

Sally’s strategy s′ : Robin’s strategy r′ :
[

w1 → “hot”

w2 → “mild”

] [

“hot” → amild

“mild” → ahot

]

(4)
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If Sally and Robin play these strategies they will also end up with the maximal payoff of

1. Pure reason does not provide a clue to decide between these two ways to coordinate.

It is thus consistent with rationality that Sally assumes Robin to use r′ and thus to signal

according to s′, while Robin assumes Sally to use s, and thus will interpret her signals

according to r. In this situation, Robin will perform ahot in w1 and amild in w2. Both

players would receive the worst possible expected payoff of 0 here.

These considerations ignore the fact that the two signals have a conventional

meaning which is known to both players. In our example, we would say that the conven-

tional meaning of “mild” is the proposition JmildK = {w1} whereas the meaning of “hot”

is JhotK = {w2}. Then (s,r) is a priori more plausible than (s′,r′) because in (s,r) Sally

always says the truth and Robin always believes the literal meaning of Sally’s message.

However, rational players cannot always rely on the honesty/credulity of the other

player. Consider the following scenario. Rasmus also invites Sally for dinner but he

cannot stand her. He wants to annoy her by preparing the curry the way she does not

like. So while Sally will still prefer to receive her favoured type of curry, Rasmus will

be happy only if he manages to prepare her disfavoured type.

amild ahot

w1 1,−1 −1,1
w2 −1,1 1,−1

(5)

Here the interests of Sally and Rasmus are strictly opposed; everybody can only win as

much as the other one looses. Again we assume that Sally can send two signals “mild”

and “hot” with the conventional meaning as above. If Rasmus is credulous, he will react

to “mild” with ahot and to “hot” with amild. But if Sally believes this and is rational,

she will be dishonest and send “hot” in w1 (where she actually likes mild curries) and

“mild” in w2 (where she actually likes hot curries). But Rasmus might anticipate this. If

he is not quite so credulous, he may switch his strategy accordingly, and react to “mild”

with amild etc. This again might be anticipated by Sally and she might revert to the lying

strategy, which again might be anticipated by Rasmus, etc. In fact, it turns out that any

strategy is rationalizable in this game.1 In other words, no real communication ensues.

The lesson here is that communication might help in situations where the interests of the

players are aligned, but it does not make a difference if these interests are completely

opposed.

Gricean Reasoning

The kind of reasoning that was informally employed in the last section is reminiscent

to pragmatic reasoning in the tradition of Grice (1975). For instance, information can

only be exchanged between rational agents if it is in the good interest of both agents that

this information transfer takes place. This intuition is captured by Grice’s Cooperative

Principle. Furthermore, we mentioned the default assumption that messages are used

1A strategy s is rationalizable if there is a consistent set of beliefs such that s maximizes the expected

payoff of the player, given these beliefs and the assumption that rationality of all players is common

knowledge.
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according to their conventional meaning, unless overarching rationality considerations

dictate otherwise. This corresponds to Grice’s Maxim of Quality.

To illustrate how game theoretic reasoning can account for pragmatic reasoning

let us consider the prime example of a scalar implicature, namely the strengthening of

the conventional meaning of “some” to “some but not all”. You can imagine that Robin

wants to know who was at the party last night, and Sally knows the answer. In w∀ all

girls were at the party and in w∃¬∀ some but not all girls were there. Again, Robin is

completely unsure, i.e. he considers each world to be equally likely. Considering Robin’s

actions let us assume that there are three of them: two actions a∀ and a∃¬∀ that are

appropriate in and only in worlds w∀ and w∃¬∀, respectively, and a kind of default action

a?. For each world, both Sally and Robin prefer Robin to perform the appropriate action

to Robin performing the default action, which they in turn prefer to Robin performing

the inappropriate action. The following payoff structure reflects this preference order.

a∀ a∃¬∀ a?

w∀ 10,10 0,0 9,9
w∃¬∀ 0,0 10,10 9,9

(6)

Furthermore we have three different messages with their corresponding conventional

meaning.

f∀ = “All girls were at the party.” J f∀K = {w∀}
f∃¬∀ = “Some but not all girls were at the party.” J f∃¬∀K = {w∃¬∀}

f∃ = “Some girls were at the party.” J f∃K = {w∀,w∃¬∀}

Obviously f∃¬∀ is more complex than the other two messages, which are approximately

equally complex. This is covered by the assignment of costs to signals which the sender

has to pay. Formally this is implemented by a cost function c that assigns some numerical

value to every signal. Let us say that in this example we have c( f∀) = c( f∃) = 0 and

c( f∃¬∀) = 2. So the sender’s utility is now a three-place function uS that depends on

the actual world, the message sent, and the action that the receiver takes. If vS(w,a) is

the distribution of sender payoffs that is given in the payoff table (6) above, the sender’s

overall utility is now

uS(w, f ,a) = vS(w,a)− c( f ) (7)

According to Gricean pragmatics, Sally would reason about her strategy roughly as fol-

lows:

If I am in w∀ I want Robin to perform a∀ because this gives me a utility of 10.

a∀ is what he would do if he believed that he is in w∀. I can try to convince him of this

fact by saying f∀. It is not advisable to say f∃¬∀, because if Robin believed it, he would

perform a∃¬∀, which gives me a utility of a mere −2. Also saying f∃ is not optimal. If

Robin believes it, this will not settle the issue which world we are in for him and thus he

will perform a?, because his expected utility in this case is 9 while his expected utility

for the other two actions is only 5. This would give me also a utility of 9. So it seems

reasonable to send f∀ in w∀.

If I am in w∃¬∀, it might seem reasonable to say f∃¬∀ because if Robin believes

it, he will perform a∃¬∀, which is my favorite outcome. However, I will have to pay the



Pragmatic Rationalizability 5

costs of 2, so my net utility is only 8. If I say f∃ and Robin believes it, he will perform

a?. Since f∃ is costless for me, my net utility is 9 in this case, which is better than 8.

So in w∃¬∀ I will send f∃. After this reasoning, Sally will hence settle on the following

strategy:
[

w∀ → f∀ (“All girls were at the party.”)

w∃¬∀ → f∃ (“Some girls were at the party.”)

]

(8)

Robin in turn will anticipate that Sally will reason this way: If I am confronted with the

message f∀, I know that the world is w∀, hence I will perform a∀. If I hear f∃, I know

that the world is w∃¬∀, hence I will perform a∃¬∀ after all. Therefore his strategy will

look as follows:
[

f∀ (“All girls were at the party.”) → a∀
f∃ (“Some girls were at the party.”) → a∃¬∀

]

(9)

Sally, being aware of this fact, will reason: Taking into consideration Robin’s reasoning

and his eventual strategy, it is even more beneficial for me to send f∃ if I am in w∃

because this will give me the maximal payoff of 10. So I have no reason to change the

plan of sending f∀ in w∀ and f∃ in w∃¬∀.

Hence she will stick to her strategy in (8). In a further round of deliberation

Robin will realize this and thus also stick to his strategy (9). Any further deliberation of

Sally and Robin will not change anything.

This iterated reasoning procedure explains the emergence of the scalar implica-

ture. It leads to a sender strategy where f∃ is sent if and only if {w∃¬∀} is true. In other

words, the literal meaning of f∃, which is {w∀,w∃¬∀}, has been pragmatically strength-

ened to a proper subset {w∃¬∀}. The information that w∀ is not the case is a scalar

implicature — “some” is pragmatically interpreted as “some but not all”.

As in the examples discussed in the previous section, the inferences that are used

here start with a default assumption that messages are used according to their literal

interpretation, but this is only a provisional assumption that is adopted if this is not in

contradiction with rationality.

2 Iterated Best Response

The reasoning pattern that is used here makes implicit use of the notion of the best

response of a player to a certain probabilistic belief. A best response (that need not be

unique) to such a belief is a strategy that maximizes the expected payoff of the player as

compared to all other strategies at his disposal, given this belief state. For a player to be

rational means then to always play some best response, given his belief.

Let us now assume the position of an external observer who wants to formally

model the notion of a best response, say Sally’s best response to her belief about Robin’s

strategies. If we denote the set of strategies available to Robin at some point with R, we

know that 1. Sally believes that Robin will play some strategy from R, 2. Sally holds all

strategies in R possible, i.e. she cannot exclude any strategy for sure. Despite that we do

not have any further information about Sally’s belief – maybe she holds all strategies in

R equally possible, or maybe she considers some strategies more likely than others. The

best we can do as external observer is to take all possible beliefs for Sally into account.
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Formally we can do this by modeling a belief of Sally as a probability distribution

over the set of strategies R such that it does not assign zero probability to any element of

R (i.e. Sally cannot exclude any strategy for sure). Let us therefore define the following

sets of probability distributions over X for a non-empty and finite set X :

∆(X)
.
=

{

p ∈ X → [0,1]
∣

∣

∣ ∑x∈X
p(x) = 1

}

(10)

∆+(X)
.
=

{

p ∈ X → (0,1]
∣

∣

∣ ∑x∈X
p(x) = 1

}

(11)

The difference is subtle but important. Both ∆(·) and ∆+(·) can be used to model prob-

abilistic beliefs. If we say that a player holds a belief from ∆(X), say, this means that

he may exclude some elements from X with absolute certainty. On the other hand, if

he holds a belief from ∆+(X), then he may have certain guesses, but he is not able to

exclude any element from X with certainty. In the case discussed above, Sally’s believe

about Robin’s strategies R is modeled some ρ ∈ ∆+(R). Hence any best response of

Sally’s to any such belief is a potential best response for Sally against R. All that we as

an external observer can predict with certainty if we assume Sally to be rational, is that

she will play some potential best response against R.

The iterative inference process that was used in the computation of the implica-

ture above can be informally described as follows. At start, Sally provisionally assumes

that Robin is entirely credulous, and that he conditions his actions only on the literal

interpretation of the message received. Let us call the set2 of credulous strategies R0.

Sally’s turn. Sally might ponder any strategy that is a potential best response against

R0. Let us call this set of strategies S0.

Robin’s turn. Robin might ponder all strategies that are potential best responses against

S0. The set of these strategies is R1.

Sally’s turn. Sally might ponder any strategy that is a potential best response against

R1. Let us call this set of strategies S1.

Robin’s turn . . .

In general, Sn and Rn+1 are the set of strategies that are potential best responses against

Rn and Sn, respectively. If a certain strategy cannot be excluded by this kind of reasoning,

i.e. if there are infinitely many indices i such that it occurs in Si or Ri, then we call it a

pragmatically rationalizable strategy.

Contexts

In the scalar implicature example, the described reasoning of Sally and Robin went in

circles at some point. Therefore, all strategies they considered possible at this point were

pragmatically rationalizable. These were exactly the strategies in (8) and (9), which

described the scalar implicature.

2There might be more than one credulous strategy because several actions may yield the same maximal

payoff for Robin in certain situations.
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Taking another close look at the payoff structure in (6), we see that the scalar im-

plicature arises because the difference between vS(w∃¬∀,a∃¬∀) and

vS(w∃¬∀,a?) is smaller than the costs of sending f∃¬∀. Suppose the utilities would be

as in (12), rather than as in (6). Then the pragmatically rationalizable outcome would be

that Sally uses f∃¬∀ in w∃¬∀, while f∃ would never be used.

a∀ a∃¬∀ a?

w∀ 10,10 0,0 6,6
w∃¬∀ 0,0 10,10 6,6

(12)

At this point, we introduce another level of uncertainty concerning the payoff structure

(in addition to the uncertainty of the player about the actual strategy of the other player).

Robin might actually not know for sure what Sally’s precise preferences are. If we call

the utility matrix (6) context c1, and the utilities in (12) context c2, Robin might hold

some probabilistic belief about whether Sally is in c1 or in c2. Likewise, Sally need not

know for sure which context Robin is in. Now in each round of the iterative reasoning

process, the players will ponder each strategy that is a potential best response not only

to any probability distribution over strategies of the previous round as before, but also

to any probability distribution over contexts. Sally will compute her first set of best

responses S0 by assuming a credulous Robin as follows: In w∀ I will definitely send f∀,

no matter which context is the actual one. Now for w∃¬∀: If the actual context is c1 it is

better to send f∃ because the costs of sending the more explicit message f∃¬∀ exceed the

potential benefits. But if it is c2 and it is advisable to use f∃¬∀ nevertheless.

Robin, in turn, will reason as follows to compute his best responses R1: If I hear

f∀, we are definitely in w∀, and the best thing I can do is to perform a∀, no matter which

context we are in. If I hear f∃¬∀ we are in c2/w∃¬∀ and I will perform a∃¬∀. If I hear f∃
we are in c1/w∃¬∀ and I will also play a∃¬∀.

So in S1 Sally will infer: f∀ will induce a∀, and both f∃¬∀ and f∃ will induce

a∃¬∀, no matter which context Robin is in. Since f∃ is less costly than f∃¬∀, I will hence

always use f∀ in w∀ and f∃ in w∃¬∀, regardless of the context I am in.

Robin, in R1, will thus conclude that his best response to f∀ is always a∀, and his

best response to f∃ is a∃¬∀. Nothing will change in later iterations. So here, the scalar

implicature from “some” to “some but not all” will arise in all contexts, even though

context c2 by itself would not license it.

The Formal Model

In this section we will present a formal model that captures the intuitive reasoning from

the last section. A semantic game is a game between two players, the sender and the

receiver. It is characterized by a finite set of contexts C, a finite set of worlds W , a finite

set of signals (or forms) F , a finite set of actions A,

• a probability distribution p∗ ∈∆+(W ) specifying the receiver’s a priori probability

for each world,

• an interpretation function J·K : F → Pow(W ),
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• and utility functions

uS : C×W ×F ×A → R for the sender and

uR : C×W ×A → R for the receiver.

As in (7), we will give the sender’s utility function by separating the context/outcome

utilities vS from the signalling costs c : F → R in the following. The structure of the

game is common knowledge between the players.

Definition 1. The space of pure sender strategies S =C×W →F is the set of functions

from context/world pairs to signals. The space of pure receiver strategies R = C×F →
A is the set of functions from context/signals pairs to actions. A sender belief is a

pair of probability distributions (ρ, p) ∈ ∆(R )×∆(C) and a receiver belief is a pair of

probability distributions (σ, p) ∈ ∆(S)×∆(C).

The central step in the iterative process described above is the computation of the set

of strategies that maximize the expected payoff of a player against his belief about the

strategies of the other player and the context. The notion of a best response captures this.

Definition 2. Let (σ, p) be a receiver belief and (ρ, p) a sender belief. The set BRR(σ, p)
of best responses of the recevier to (σ, p) and the set BRS(ρ, p) of best responses of the

sender to (ρ, p) are defined as follows:

BRR(σ, p)
.
=

{

r ∈ R

∣

∣

∣

∣

∀c ∈C :

r ∈ argmax
r∈R

∑
s∈S

σ(s) ∑
c′∈C

p(c′) ∑
w∈W

p∗(w)uR(c,w,r(c,s(c′,w)))

}

BRS(ρ, p)
.
=

{

s ∈ S

∣

∣

∣

∣

∀c ∈C ∀w ∈W :

s ∈ argmax
s∈S

∑
r∈R

ρ(r) ∑
c′∈C

p(c′)uS(c,w,s(c,w),r(c′,s(c,w)))

}

Based on this definition of best responses to a certain belief we may define the set of

potential best responses against some set P of strategies of the opposing player as the set

of strategies that are best responses to some belief state that assigns positive probability

exactly to the elements of P.

Definition 3. Let S ⊆ S and R ⊆ R be a set of sender and receiver strategies, respec-

tively. The set PBR(S) of potential best responses of the receiver to S and the set PBR(R)
of potential best responses (of the sender) to R are defined as follows:

PBR(S)
.
= { r ∈ BRR(σ, p) | (σ, p) a receiver belief with σ ∈ ∆+(S) }

PBR(R)
.
= { s ∈ BRS(ρ, p) | (ρ, p) a sender belief with ρ ∈ ∆+(R) }

Suppose we know that Sally, being the sender, knows which context and world she is in,

she believes for sure that Robin will play a strategy from R, and there is no more specific
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information that she believes to know for sure. We do not know which strategy from R

Sally expects Robin to play with which likelihood, and which context Sally believes to

be in. Under these conditions, all we can predict for sure is that Sally will play some

strategy from PBR(R) if she is rational.

The same seems to hold if we only know that Robin, the receiver, expects Sally to

play some strategy from S. Then we can infer that Robin, if he is rational, will certainly

play a strategy from PBR(S). However, we may restrict his space of reasonable strategies

even further. Suppose none of the strategies in S ever make use of the signal f (formally

put, f ∈ F −
S

s∈S range(s)). We call such a signal unexpected. Then it does not make

a difference how Robin would react to f , but he has to decide about how to react to

f nevertheless because receiver strategies are total functions from context/form pairs to

actions. It seems reasonable to demand (and it leads to reasonable predictions, as we will

see below) that Robin should, in the absence of evidence to the contrary, still assume that

f is true. For instance, if Sally speaks English to Robin, and she suddenly throws in a

sentence in Latin that Robin happens to understand, Robin will probably assume that the

Latin sentence is true, even if he did not expect her to use Latin.

If Robin encounters such an unexpected signal, he will have to revise his beliefs.

Robin will have to figure out an explanation why Sally used f despite his expectations

to the contrary, and this explanation can bias his prior beliefs in any conceivable way.

We have to assume though that the result of this believe revision is a consistent belief

state, and that Robin will act rationally according to his new beliefs. Formally speaking,

he should only consider strategies that react to an unexpected signal f in a way that

maximizes his expected utility, given that f is interpreted literally for some belief about

W .

We can now proceed to define the iterative reasoning procedure that was infor-

mally described in the previous section, taking into account the treatment of unexpected

signals detailed above (recall that p∗ is the receiver’s a priori probability distribution).

Definition 4.

R0
.
=

{

r ∈ R

∣

∣

∣

∣

∀c ∈C∀ f ∈ F : r(c, f ) ∈ argmax
a∈A

∑
w∈J f K

p∗(w)uR(c,w,a)

}

Sn
.
= PBR(Rn)

Rn+1
.
=

{

r ∈ PBR(Sn)

∣

∣

∣

∣

∀ f ∈ F −
[

s∈Sn

range(s)∀c ∈C

∃p ∈ ∆+(W ) : r(c, f ) ∈ argmax
a∈A

∑
w∈J f K

p(w)uR(c,w,a)

}

R0 is the set of credulous strategies of the receiver. It consists of those strategies r that

yield, in each context c and for each signal f , some action a ∈ A that is optimal for the

receiver (i.e. that maximize his expected utility, cf. (2)), given that his a priori belief

p∗ is updated with the information that f is used literally. Sn is the set of potential best

responses of the sender against Rn. Likewise, Rn+1 is the set of potential best responses

of the receiver if he assumes that the sender plays a strategy from Sn in which he always
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tries to make sense of unexpected messages under the assumption that they are literally

true.

The sets of pragmatically rationalizable strategies are the set of sender strategies

and receiver strategies that cannot be excluded for sure by the iterative reasoning process,

no matter how deeply the reasoning goes.

Definition 5. (S,R)∈Pow(S)×Pow(R ), the sets of pragmatically rationalizable strate-

gies, are defined as follows:

S
.
= {s ∈ S | ∀n ∈ N∃m > n : s ∈ Sm}

R
.
= {r ∈ R | ∀n ∈ N∃m > n : s ∈ Rm}

Note that there are only finitely many strategies in S and R (because we are only con-

sidering pure strategies over finite sets). Therefore there are only finitely many subsets

thereof. The step from (Sn,Rn) to (Sn+1,Rn+1) is always deterministic. It follows that

the iterative procedure will enter a cycle at some point. This ensures that (S,R) is always

defined.

3 Applying the IBR Model

In light of this formal definition, let us consider some of the previous examples again.

For the ease of exposition we will specify signals as fx1...xn
with the convention that

J fx1...xn
K = {wx1

, . . . ,wxn
}. Furthermore, if the utilities of the players are identical for

each outcome, we will show only one number in the utility matrix. If the a priori prob-

ability p∗ is not explicitly stated, we assume that it is the uniform distribution on W that

assigns all worlds equal probability.

Completely aligned interests. We assume that all signals f are costless, i.e. c( f ) = 0.

There is only one context and vS and uR are given in table (1). Here is the sequence of

iterated computation of potential best responses, starting with the set R0 of credulous

strategies.

R = R0 =











f1 → amild

f2 → ahot

f12 → amild



 ,





f1 → amild

f2 → ahot

f12 → ahot











S = S0 =

{[

w1 → f1

w2 → f2

]}

In the following we will abbreviate the specifications of the strategy sets by dropping the

set brackets and by conflating the strategies to one representation. The original set can

be recovered by combination of all possible argument/value pairs.

Completely Opposing Interests. Again all messages are costless and there is only one

context. The utilities are as in (5). Here the iterative procedure enters a never-ending
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cycle:

R0 =





f1 → ahot

f2 → amild

f12 → amild/ahot



 S0 =

[

w1 → f2

w2 → f1

]

R1 =





f1 → amild

f2 → ahot

f12 → amild/ahot



 S1 =

[

w1 → f1

w2 → f2

]

R2 = R0 S2 = S0

R =
[

f1/ f2/ f12 → amild/ahot

]

S =
[

w1/w2 → f1/ f2/ f12

]

So if the interests of the players are completely opposed, any strategy is pragmatically

rationalizable and no communication will ensue.

Scalar Implicatures and the Q-Heuristics. Next we will reconsider the example of

the scalar implicature discussed above. There are two contexts c1 and c2 with utilities

as in (6) and (12), respectively. The signals and their costs are also as above: c( f∀) =
c( f∃) = 0 and c( f∃¬∀) = 2.

R0 =





(c1, f∀)/(c2, f∀) → a∀
(c1, f∃¬∀)/(c2, f∃¬∀) → a∃¬∀
(c1, f∃)/(c2, f∃) → a?



 S0 =





(c1,w∀)/(c2,w∀) → f∀
(c1,w∃¬∀) → f∃¬∀
(c2,w∃¬∀) → f∃





R = R1 =

[

(c1, f∀)/(c2, f∀) → a∀
(c1, f∃¬∀)/(c2, f∃¬∀)/(c1, f∃)/(c2, f∃) → a∃¬∀

]

S = S1 =

[

(c1,w∀)/(c2,w∀) → f∀
(c1,w∃¬∀)/(c2,w∃¬∀) → f∃

]

The previous example illustrated how pragmatic rationalizability formalizes the

intuition behind Levinson’s (2000) Q-heuristics “What isn’t said, isn’t.” This heuristics

accounts, inter alia for scalar and clausal implicatures like the following:

(1) a. Some boys came in.  Not all boys came in.

b. Three boys came in.  Exactly three boys came in.

(2) a. If John comes, I will leave.  It is open whether John comes.

b. John tried to reach the summit.  John did not reach the summit.

The essential pattern here is as in the example above: There are two expressions

A and B of comparable complexity such that the literal meaning of A entails the literal

meaning of B. There is no simple expression for the concept “B but not A”. In this

scenario, a usage of “B” will implicate that A is false.
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The I-Heuristics. Levinson assumes two further pragmatic principles that, together

with the Q-heuristics, are supposed to replace Grice’s maxims in the derivation of gen-

eralized conversational implicatures. The second heuristics, called I-heuristics, says:

“What is simply described is stereotypically exemplified.” It accounts for phenomena of

pragmatic strengthening, as illustrated in the following examples:

(3) a. John’s book is good.  The book that John is reading or that he has written

is good.

b. a secretary a female secretary

c. road hard-surfaced road

The notion of “stereotypically exemplification” is somewhat vague and difficult

to translate into the language of game theory. We will assume that stereotypical propo-

sitions are those with a high prior probability and that simplicity of descriptions can be

translated into low signaling costs. So the principle amounts to “Likely propositions are

expressed by cheap forms”.

Let us construct a schematic example of such a scenario. Suppose there are two

possible worlds (which may also stand for objects, like a hard surfaced vs. soft-surfaced

road) w1 and w2, such that w1 is a priori much more likely than w2, say p∗(w1) = 3/4

and p∗(w2) = 1/4. There are three possible actions for Robin: he may choose a1 if he

expects w1 to be correct, a2 if he expects w2, and a3 if he finds it too risky to choose.

There are again three signals, f1, f2 and f12. This time the more general ex-

pression f12 (corresponding for instance to “road”) is cheap, while the two specific ex-

pressions f1 (“hard-surfaced road”) and f2 (“soft-surfaced road”) are more expensive:

c( f1) = c( f2) = 5, and c( f12) = 0.

The interests of Sally and Robin are completely aligned, except for the signaling

costs which only matter for Sally. There are three contexts (13). In c1 and c2, it is safest

for Robin to choose a3 if he decides on the basis of the prior probability. In c3 it makes

sense to choose a1 if he only knows the prior probabilities because the payoff of a3 is

rather low (but still higher than making the wrong choice between a1 and a2). In c1, but

not in c2 it would be rational for Sally to use a costly message if this is the only way to

make Robin perform a1 rather than a3.

c1 :

a1 a2 a3

w1 28 0 22

w2 0 28 22

c2 :

a1 a2 a3

w1 28 0 25

w2 0 28 25

c3 :

a1 a2 a3

w1 28 0 10

w2 0 28 10

(13)
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R0 =





(c1, f1)/(c2, f1)/(c3, f1)/(c3, f12) → a1

(c1, f2)/(c2, f2)/(c3, f2) → a2

(c1, f12)/(c2, f12) → a3





S = S0 =









(c1,w1)/(c3,w1) → f1/ f12

(c1,w2)/(c3,w2) → f2

(c2,w1) → f12

(c2,w2) → f2/ f12









R = R1 =





(c1, f1)/(c2, f1)/(c3, f1)/(c3, f12) → a1

(c1, f2)/(c2, f2)/(c3, f2) → a2

(c1, f12)/(c2, f12) → a1/a3





Here both f1 and f2 retain their literal meaning under pragmatic rationalizability.

The unspecific f12 also retains its literal meaning in c2. In c1 and c3, though, its meaning

is pragmatically strengthened to {w1}. Another way of putting is to say that f12 is

pragmatically ambiguous here. Even though it has an unambiguous semantic meaning,

its pragmatic interpretation varies between contexts. It is noteworthy here that f12 can

never be strengthened to mean {w2}. Applying it to the example, this means that a

simple non-specific expression like “road” can either retain its unspecific meaning, or it

can be pragmatically strengthened to its stereotypical instantiation (like “hard-surfaced

road” here). It can never be strengthened to a non-stereotypical meaning though.

M-Heuristics. Levinson’s third heuristics is the M-heuristics: “What is said in an ab-

normal way isn’t normal.” It is also known, after Horn (1984), as division of pragmatic

labor. A typical example is the following:

(4) a. John stopped the car.

b. John made the car stop.

The two sentences are arguably semantically synonymous. Nevertheless they carry dif-

ferent pragmatic meanings if uttered in a neutral context. (4a) is preferably interpreted

as John stopped the car in a regular way, like using the foot brake. This would be another

example for the I-heuristics. (4b), however, is also pragmatically strengthened. It means

something like John stopped the car in an abnormal way, like driving it against a wall,

making a sharp u-turn, driving up a steep road, etc.

This can be modeled quite straightforwardly. Suppose there are again two worlds,

w1 and w2, such that w1 is likely and w2 is unlikely (like using the foot brake versus

driving against a wall). Let us say that p∗(w1) = 3/4 and p∗(w2) = 1/4 again. There

are two actions, a1 and a2, which are best responses in w1 and w2 respectively. There is

only one context. The utilities are given as follows:

a1 a2

w1 5 0

w2 0 5

(14)
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Unlike in the previous example, we assume that there are only two expressions, f and

f ′, which are both unspecific: J f K = J f ′K = {w1,w2}. f ′ is slightly more expensive than

f , say c( f ) = 0 and c( f ′) = 1.

R0 =
[

f / f ′ → a1

]

S0 =
[

w1/w2 → f
]

R1 =

[

f → a1

f ′ → a1/a2

]

S1 =

[

w1 → f

w2 → f / f ′

]

R = R2 =

[

f → a1

f ′ → a2

]

S = S2 =

[

w1 → f

w2 → f ′

]

(15)

The crucial point here is that in S0, the signal f ′ remains unused. Therefore any ra-

tionalizable interpretation of f ′ which is compatible with its literal meaning is licit in

R1, including the one where f ′ is associated with w2 (which triggers the reaction a2).

Robin’s reasoning at this stage can be paraphrased as: If Sally uses f , this could mean

either w1 or w2. Since w1 is a priori more likely, I will choose a1. There is apparently

no good reason for Sally to use f ′. If she uses it nevertheless, she must have something

in mind which I hadn’t thought of. Perhaps she wants to convey that she is actually in

w2.

Sally in turn reasons: If I say f , Robin will take action a1. If I use f ′, he may

take either action. In w1 I will thus use f . In w2 I can play it safe and use f , but I can

also take my chances and try f ′.

Robin in turn will calculate in R2: If I hear f , we are in w1 with a confidence

between 75% and 100%. In any event, I should use a1. The only world where Sally

would even consider using f ′ is w2. So if I hear f ′ we are surely in w2 and I can safely

choose a2. If Robin reasons this way, it is absolutely safe for Sally to use f ′ in w2.

4 Conclusion

We proposed a game theoretic formalization of Gricean reasoning that both captures the

intuitive reasoning patterns that are traditionally assumed in the computation of impli-

catures. The essential intuition behind the proposal is that the literal meaning of signals

constitutes their default interpretation, and that rational communicators decide about

their communicative strategies by iteratively calculating the best response to this default

strategy.

Concerning related work, Franke (2008) proposes to calculate the pragmatically

licit communication strategies by starting with a strategy based on the literal interpreta-

tion of signals and iteratively computing the best response strategy until a fixed point is

reached. So this approach is very similar in spirit to the present one. The main differ-

ences are that Franke uses a particular honest sender strategy — rather than the set of

all credulous receiver strategies — as the starting point of the iteration process, and that

he uses deterministic best response calculation, rather than potential best responses, as

update rule.
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