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1 Introduction
By means of comparative constructions, we can compare individuals according to different
properties. Such comparisons may be divided into two types: direct and indirect comparisons. The
former are comparisons of direct measurements. As an example of them, we can give interadjective
comparatives like the following:1

1(a) Albert is taller than Charles is wide.

The latter are comparisons of relative positions on different scales as in:

1(b) Albert is taller than Charles is intelligent.

Traditionally, indirect comparisons have been treated separately from direct comparisons.2 Bale
(2008) proposes a unified theory of direct and indirect comparisons. van Rooij (2011) criticises
Bale’s theory in terms of measurement theory. According to van Rooij, Bale’s theory gives rise to
ratio scales, which provide truth conditions for comparatives like the following:

1(c) Albert is five times as tall as Charles is intelligent.

According to van Rooij, 1(c) is as meaningless as the following interpersonal comparison of utility
in social choice theory:

Action x is five times as useful for John as action y is for Mary.

On the other hand, the following is meaningful:

1(d) Albert is three times as tall as Charles is wide.
∗This work was supported by Grant-in-Aid for Scientific Research (C) (23520015). We would like to thank three

anonymous reviewers of Sinn und Bedeutung 16 for their helpful comments.
1In (Suzuki, 2011b) we propose a logic called ICL designed especially for gradable adjectives.
2For example, (Cresswell, 1976).
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There are two main problems with measurement theory3:

1. the representation problem—justifying the assignment of numbers to objects, and
2. the uniqueness problem—specifying the transformation up to which this assignment is

unique.

A solution to the former can be furnished by a representation theorem, which establishes that
the specified conditions on a qualitative relational system are (necessary and) sufficient for the
assignment of numbers to objects that represents (preserves) all the relations in the system. A
solution to the latter can be furnished by a uniqueness theorem, which specifies the transformation
up to which this assignment is unique. In this paper, we provide truth conditions for interadjective
comparatives like the followings:

1(e) Albert is 10 centimetres taller than Catherin is wide.

1(f) Albert is taller than Bernard by more than Charles is wider than Dennis.

1(g) Albert is taller than Bernard by more than Charles is more intelligent than
Dennis.

In terms of constraints on transformations, measurement theorists distinguish among scales:
absolute, ratio, interval, ordinal, nominal, log-interval, and difference scales.4 These scales are
based on the assignment of a measure on a set of individuals (domain). In order to make sense of
interadjective comparisons, van Rooij (2011) thinks of the domain not just as a set of individuals
but rather as a set of individual-adjective pairs. He calls co-ordinal scales ordinal scales based on
the assignment of a measure on a set of individual-adjective pairs, co-interval scales interval scales
based on it, and co-ratio scales ratio scales based on it. He argues that co-ordinal scales can make
comparatives like 1(a) and 1(b) meaningful, and that co-interval scales can account for examples
like 1(e), 1(f), and 1(g). Moreover, he suggests that co-ratio scales can make comparatives like 1(d)
meaningful. Klein (1980) analyses comparatives by existentially quantifying over the meaning of
modifiers of adjectives like very and fairly. This analysis can provide 1(a) with the following truth
condition:

∃ f ∈ {very, f airly,quite, . . .}( f (tall)(Albert)∧¬ f (wide)(Charles)).

Klein’s analysis gives rise only to a co-ordinal scale. van Rooij (2011) tries to extend this analysis
to co-interval scales and co-ratio scales. If f is total and so applicable to any adjective, this analysis
then makes all interadjective comparatives meaningful. So van Rooij acknowledges that it is
partial. But his approach has such a defect that he does not show how to construct this partial
function f . Our strategy in this paper is as follows. We prove, by means of the representation
theorem for interadjective-comparison ordering and the uniqueness theorem for it, that log-interval
scales can make comparatives like 1(b) and 1(g) meaningful, and, by means of the representation

3Roberts (1979) gives a comprehensive survey of measurement theory. The mathematical foundation of
measurement had not been studied before Hölder (1901) developed his axiomatisation for the measurement of mass.
(Krantz et al., 1971), (Suppes et al., 1989) and (Luce et al., 1990) are seen as milestones in the history of measurement
theory.

4We describe these scales later.
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theorem for magnitude estimation and the uniqueness theorem for it, that ratio scales can account
for examples like 1(a), 1(d), 1(e), and 1(f). Moreover, we propose conditions under which a model
of interadjective comparison and magnitude estimation which gives rise to ratio scales can give
numerical assignments. The semantic structure of 1(c) cannot satisfy some of these conditions.
Therefore, we cannot provide 1(c) with its truth condition.

The aim of this paper is to propose a new version of logic for interadjective comparisons–
Interadjective-Comparison Logic (ICL). In terms of measurement theory, the model of the language
of ICL can provide reasonable conditions for log-interval scales and ratio scales, and give the truth
conditions of interadjective comparatives like 1(a), 1(b), 1(c), 1(d), 1(e), 1(f) and 1(g). Moreover,
this model can render interadjective comparatives like 1(c) meaningless.

The structure of this paper is as follows. We define the language L ICL of ICL, give descriptions
of meaningfulness, scale types, magnitude estimation, and the relation between cross-modality
matching and interadjective comparison, define a model M of L ICL, formulate the representation
theorem for interadjective-comparison ordering and the uniqueness theorem for it, formulate the
representation theorem for magnitude estimation and the uniqueness theorem for it, provide ICL
with a satisfaction definition, a truth definition, and a validity definition, touch upon the non first-
order axiomatisability of models of L ICL, give the truth conditions of the examples 1(a), 1(b),
1(d), 1(e), and 1(f), and give an answer to the question as to why 1(c) is meaningless.

2 Interadjective-Comparison Logic ICL

2.1 Language
We define the language L ICL of ICL as follows:

Definition 1 (Language) Let V denote a set of individual variables, C a set of individual
constants, P a set of n one-place predicate symbols. The language L ICL of ICL is given by
the following rule:

t ::= x | a,
ϕ ::= Pi(t) | t i = t j | DERPi,Pj(t i, t j) | IERPi,Pj(t i, t j) |
TERPi,Pj

k(t i, t j) | UERPi,Pj
k(t i, t j) | FDERPi,Pj(t i, t j, t l, tm) |

FIERPi,Pj(t i, t j, t l, tm) |> | ¬ϕ | ϕ ∧ϕ | ∀xϕ,

where x ∈ V , a ∈ C , and Pi,Pj ∈P.

• DERPi,Pj(t i, t j) means that t i is directly Pi-er than t j is Pj.
• IERPi,Pj(t i, t j) means that t i is indirectly Pi-er than t j is Pj.
• TERPi,Pj

k(t i, t j) means that t i is directly k-times as Pi as t j is Pj.
• UERPi,Pj

k(t i, t j) means that t i is directly Pi-er than t j is Pj by n-units of measurement (e.g.
(centi)metre, (kilo)gram, . . . ).

• FDERPi,Pj(t i, t j, t l, tm) means that t i is directly Pi-er than t j by more than t l is Pj-er than tm.
• FIERPi,Pj(t i, t j, t l, tm) means that t i is indirectly Pi-er than t j by more than t l is Pj-er than tm.

The set of all well-formed formulae of L ICL is denoted by ΦL ICL .
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2.2 Semantics
2.2.1 Meaningfulness and scale types
Roberts (1979:p.52, pp.57–59) argues the meaningfulness of sentences involving scales. He begins
with the the following sentences and considers which seem to be meaningful.

2(a) The number of cans of corn in the local super market at closing time yesterday
was at least 10.
2(b) One can of corn weighs at least 10.
2(c) One can of corn weighs twice as much as a second.
2(d) The temperature of one can of corn at closing time yesterday was twice as much
as that of a second time.

2(a) seems to be meaningful, but 2(b) does not, for the number of cans is specified without
reference to a particular scale of measurement, whereas the weight of a can is not. Similarly,
2(c) seems to be meaningful, but 2(d) does not, for the ratio of weights is the same regardless of
measurement used, whereas that of temperature is not necessarily the same. Meaningfulness can
be studied by analysing the following admissible transformations of scale defined by the concept
of a homomorphism:

Definition 2 (Homomorphism) Suppose a relational system
U := (A,R1,R2, . . . ,Rp,◦1,◦2, . . . ,◦q) and anotherV := (B,R1

′,R2
′, . . . ,Rp

′,◦1
′,◦2

′, . . . ,◦q
′), where

A and B are sets, R1,R2, . . . ,Rp are relations on A, R1
′,R2

′, . . . ,Rp
′ are relations on B, ◦1,◦2, . . . ,◦q

are operations on A, and ◦1
′,◦2

′, . . . ,◦q
′ are operations on B. f is called a homomorphism from U

into V if, for any a1,a2, . . . ,ari ∈ A,

Ri(a1,a2, . . . ,ari) iff Ri
′( f (a1), f (a2), . . . , f (ari)), i = 1,2, . . . , p,

and for any a,b ∈ A,
f (a◦ ib) = f (a)◦ i

′ f (b), i = 1,2, . . . ,q.

Definition 3 (Admissible Transformation of Scale) Suppose that a scale f
is one homomorphism from a relational system U into another V, and suppose that A is the set
underlying U and B is the set underlying V. Suppose that Φ is a function that maps the range of f ,
that is, the set f (A) := { f (a) : a ∈ A} into B. Then the composition Φ◦ f is a function from A into
B. If Φ◦ f is a homomorphism from U into V, we call Φ an admissible transformation of f

The following provides an example:

Example 1 Suppose U := (N,>), V := (R,>), and f : N→ R is given by f (x) := 2x. Then f is a
homomorphism from U into V. If Φ(x) := x+5, then Φ◦ f is a homomorphism from U into V, for
we have (Φ◦ f )(x) = 2x+5, and

x > y iff 2x+5 > 2y+5.

Thus, Φ : f (A)→ B is an admissible transformation of f . However, if Φ(x) :=−x for any x∈ f (A),
then Φ is not an admissible transformation, for Φ◦ f is not a homomorphism from U into V.
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We define meaningfulness in terms of admissible transformations as follows:

Definition 4 (Meaningfulness) A sentence involving scales is meaningful iff the truth or falsity is
unchanged under admissible transformations of all the scales in question.

Roberts (1979:pp.64–67) defines scale types in terms of the class of admissible transformations as
follows:

1. The simplest example of a scale is where only admissible transformation is Φ(x) = x. Such
a scale is called an absolute scale. Counting is an example of an absolute scale.

2. When the admissible transformations are all the functions Φ : f (A) → B of the form
Φ(x) = αx, α > 0, Φ is called a similarity transformation, and a scale with the similarity
transformations as its class of admissible transformations is called a ratio scale. Mass and
temperature on the Kelvin scale are examples of ratio scales. According Stevens (Stevens,
1957), various sensations such as loudness and brightness can also be measured in ratio
scales.

3. When the admissible transformations are all the functions Φ : f (A)→ B of the form Φ(x) =
αx+ β , α > 0, Φ is called a positive linear transformation, and a corresponding scale is
called an interval scale. Temperature on the Fahrenheit scale and temperature on the Celsius
scale are examples of interval scales.

4. When a scale is unique up to order, the admissible transformations are monotone increasing
functions Φ(x) satisfying the condition that x ≥ y iff Φ(x) ≥ Φ(y). Such scales are called
ordinal scales. The Mohs scale of hardness is an example of an ordinal scale.

5. In some scales, all one-to-one functions Φ define admissible transformations. Such scales
are called nominal scales. Examples of nominal scales are numbers on the uniforms of
baseball players.

6. A scale is called a log-interval scale if the admissible transformations are functions of the
form Φ(x) = αxβ , α,β > 0. Log-interval scales are important in psychophysics, where they
are considered as scale types for the psychophysical laws relating a physical quantity (for
example, intensity of a sound) to psychological quantity (for example, loudness of a sound).

7. When the admissible transformations are functions of the form Φ(x) = x + β , a
corresponding scale is a difference scale. The so-called Thurstone Case V scale, which
is a measure of response strength, is an example of a difference scale.

2.2.2 Magnitude estimation, cross-modality matching, and interadjective
comparison

Judgments of subjective loudness can be made in laboratory in various ways. Stevens (1957)
classifies four methods. The method of magnitude estimation is one of the most common. The
following provides an example:

Example 2 (Magnitude Estimation) A subject hears a reference sound and is told to assign it a
fixed number. Then he is presented other sounds and asked to assign them numbers proportional
to the reference sound.
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Stevens argues that magnitude estimation gives rise to a ratio scale. Moreover, he uses the idea
of cross-modality matching to test the power law. It must be noted that the scale corresponding
to the power law is a log-interval scale. Krantz (1972) puts Stevens’s argument that magnitude
estimation gives rise to a ratio scale and his idea of cross-modality matching to test the power
law on a rigorous measurement-theoretic foundation. In this paper, we try to propose a logic
for interadjective comparison the model of which is based on Krantz’s measurement theory for
magnitude estimation and cross-modality matching.

2.2.3 Model
First, we define a modelM of L ICL as follows:

Definition 5 (Model) M is a sequence
(I F1, . . . ,I Fn,a1

M,b1
M, . . . ,♠F1, . . . ,♠Fn,♥F1, . . . ,♥Fn,F1

M, . . . ,Fn
M,�), where

• I Fi is a nonempty set of individuals for evaluation of F i, celled a comparison class relative
to F i.

• ai
M,bi

M, . . . ∈I Fi .

• ♠Fi is an average individual in I Fi .

• ♥Fi is a zero-point individual in I Fi .

• F i
M ⊆I Fi .

• � is a binary relation on
⋃

i=1
nI Fi ×I Fi , called the interadjective-comparison ordering

relation, that satisfies the following conditions:

1. � is a weak order (transitive and connected).

2. For any ai
M,bi

M ∈ I Fi and any aj
′M,bj

′M ∈ I Fj , if (ai
M,bi

M) � (aj
′M,bj

′M), then
(bj
′M,aj

′M)� (bi
M,ai

M).

3. For any ai
M,bi

M,ci
M ∈I Fi and any aj

′M,bj
′M,cj

′M ∈I Fj , if (ai
M,bi

M)� (aj
′M,bj

′M)

and (bi
M,ci

M)� (bj
′M,cj

′M), then (ai
M,ci

M)� (aj
′M,cj

′M).

4. For any ai
M,bi

M ∈ I Fi , there exist a1
′M,b1

′M ∈ I F1 such that (ai
M,bi

M) ∼
(a1

′M,b1
′M), where (ai

M,bi
M) ∼ (aj

′M,bj
′M) := (ai

M,bi
M) � (aj

′M,bj
′M) and

(aj
′M,bj

′M)� (ai
M,bi

M).

5. For any a1
M,b1

M,c1
M,d1

M ∈ I F1 , if (d1
M,c1

M) � (a1
M,b1

M) � (d1
M,d1

M), then
there exist a1

′M,b1
′M ∈I F1 such that (d1

M,b1
′M)∼ (a1

M,b1
M)∼ (a1

′M,c1
M).

6. Suppose that a1
(1)M,a1

(2)M, . . . ,a1
(i)M, . . . is a sequence of equally spaced elements

of I F1 , that is, (a1
(i+1)M,a1

(i)M) ∼ (a1
(2)M,a1

(1)M) � (a1
(1)M,a1

(1)M) for any
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a1
(i+1)M,a1

(i)M in the sequence. If the sequence is strictly bounded (that is, if there exist
b1
M,c1

M ∈I F1 such that (b1
M,c1

M)� (a1
(i)M,a1

(1)M) for any a1
(i)M in the sequence),

then it is finite.

Condition 2 postulates that reversing pairs should be reversing the ordering. The following
provides an example:

Example 3 (Reversal of Pairs) In 1(b), if ai is much taller than bi, and aj
′ is slightly more

intelligent than bj
′, so that (ai

M,bi
M) � (aj

′M,bj
′M), then bi is much shorter than ai, but bj

′ is
only slightly duller than aj

′, so that (bj
′M,aj

′M)� (bi
M,ai

M).

Condition 3 says that pairs (ai
M,bi

M) behave qualitatively like ratios or differences with respect to
�. The following provides an example:

Example 4 (Ratios and Differences) Pairs (ai
M,bi

M) behave with respect to� in much the same

as
ai

bi
≥

aj
′

bj
′ and

bi

ci
≥

bj
′

ci
′ implies that

ai

ci
≥

aj
′

cj
′ (for positive real numbers) and ai− bi ≥ aj

′− bj
′

and bi− ci ≥ bj
′− cj

′ implies ai− ci ≥ aj
′− cj

′.

Condition 4 postulates that any pair (ai
M,bi

M) should be equivalent to some I F1 ×I F1 pair.
Condition 5 postulates that intermediate-level individuals can be chosen densely within I F1 .
Condition 6 postulates that � should have an Archimedean Property. The following provides
an example:

Example 5 (Archimedean Property) However small the pair (a1
M,b1

M) in tallness, if one can
find a sequence of tallness a1

(1)M,a1
(2)M, . . . such that any pair (a1

(i+1)M,a1
(i)M) in tallness is

equivalent to (a1
M,b1

M) in tallness, then the overall interval (a1
(n)M,a1

(1)M) in tallness becomes
indefinitely large.

We can prove the following representation theorem for interadjective-comparison ordering by
modifying the method of (Krantz et al., 1971):

Theorem 1 (Representation for Interadjective-Comparison Ordering) If � is an
interadjective-comparison ordering relation of Definition 5, then there exist functions f i : I i →
R+ (1≤ i≤ n) such that for any ai

M,bi
M ∈I Fi (1≤ i≤ n) and any aj

′M,bj
′M ∈I Fj (1≤ j ≤ n),

2(e) (ai
M,bi

M)� (aj
′M,bj

′M) iff
f i(ai

M)

f i(bi
M)
≥

f j(aj
′M)

f j(bj
′M)

.

We can also prove the following uniqueness theorem for interadjective-comparison ordering by
modifying the method of (Krantz et al., 1971):

Theorem 2 (Uniqueness for Interadjective-Comparison Ordering) If f ′i (1 ≤ i ≤ n) are any
other such functions as f i of Theorem 1, then there exist α i,β ∈ R+ (1≤ i≤ n) such that

f ′i = α i f i
β .

Remark 1 f i defines a log-interval scale.
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2.2.4 Magnitude estimation and ratio scale

We specify some conditions under which magnitude estimation leads to a ratio scale5. These
conditions follow from the following three consistency conditions:

1. the magnitude-pair consistency condition,
2. the pair consistency condition, and
3. the magnitude-interadjective-comparison consistency condition.

We state these three consistency conditions. Suppose that an experimenter is performing a
magnitude estimation of a subject on I Fi . The experimenter fixes ai

M ∈I Fi and assigns to ai
M the

psychological magnitude p. We assume that all magnitudes are positive. Next, the experimenter
asks the subject to assign to each bi

M ∈I Fi a magnitude q depending on ai
M and p. This is written

in symbols as follows:
ME i(bi

M|ai
M, p) = q,

where ME i is the magnitude estimate for bi
M when ai

M is assigned a magnitude p. In particular,

ME i(ai
M|ai

M, p) = p.

In the variant of magnitude estimation called pair estimation, a pair of ai
M and bi

M from I Fi are
presented, and then the experimenter asks the subject to give a numerical estimate of, as it were,
the qualitative ratio of ai

M to bi
M. We denote this estimate by PE i(ai

M,bi
M). It is reasonable to

assume that PE i corresponds to � as follows:

2( f ) (ai
M,bi

M)� (cj
M,dj

M) iff PE i(ai
M,bi

M)≥ PE j(cj
M,dj

M).

Magnitude estimates and pair estimates are often assumed to satisfy the following magnitude-pair
consistency condition: for any ci

M ∈I i and any p ∈ R+,

2(g) PE i(ai
M,bi

M) =
ME i(ai

M|ci
M, p)

ME i(bi
M|ci

M, p)
.

Moreover, it is often assumed that pair estimates behave like rations, that is, they satisfy the
following pair consistency condition: for any ai

M,bi
M,ci

M ∈I i,

2(h) PE i(ai
M,bi

M) ·PE i(bi
M,ci

M) = PE i(ai
M,ci

M).

If i = 1, 2(h) yields

2(i) PE1(a1
M,b1

M) ·PE1(b1
M,c1

M) = PE1(a1
M,c1

M).

In interadjective-comparison matching, we usually fix ai
M ∈I Fi and aj

M ∈I Fj and say that they
match. The experimenter then asks the subject to find bi

M ∈I Fi that matches a given individual
bj
M ∈I Fj . This is written in symbols as follows:

IMji(bj
M|aj

M,ai
M) = bi

M.

5We owe this subsection to (Roberts, 1979:pp.186–192)



Measurement-theoretic Foundations of Interadjective-Comparison Logic 579

In particular,
IMji(aj

M|aj
M,ai

M) = ai
M.

It is reasonable to assume that if aj
M is matched by ai

M and bj
M by bi

M, then the corresponding
qualitative ratios are judged equal:

2( j) If IMji(bj
M|aj

M,ai
M) = bi

M, then (bj
M,aj

M)∼ (bi
M,ai

M).

It is often assumed that magnitude estimation and interadjective-comparison matching are related
by the following magnitude-interadjective-comparison consistency condition:

2(k)
ME i(IMji(bj

M|aj
M,ai

M)|ci
M,q)

ME i(ai
M|ci

M, p)
=

ME j(bj
M|cj

M,q)
ME j(aj

M|cj
M,q)

.

That is, if bj
M is matched with bi

M in the interadjective-comparison matching, where aj
M is given

as matched with ai
M, then the ratio of the magnitude estimate of bi

M to the magnitude estimate of
ai
M on the ith adjective equals the ratio of the magnitude of bj

M to the magnitude estimate of aj
M

on the jth adjective for any reference estimate p for ci
M and q for cj

M. If IMji(bj
M|aj

M,ai
M) = bi

M

and ai
M = ci

M, 2 (g) and 2 (k) yield

2(l)
ME i(bi

M|ai
M, p)

p
= PE j(bj

M,aj
M)

because ME i(ai
M|ai

M, p) = p. It is reasonable to assume that if (bi
M,ai

M)∼ (b1
M,a1

M), then 2(l)
holds for j = 1:

2(m) If (bi
M,ai

M)∼ (b1
M,a1

M), then
ME i(bi

M|ai
M, p)

p
= PE1(b1

M,a1
M).

We can prove the following representation theorem for magnitude estimation by modifying the
method of (Krantz, 1972):

Theorem 3 (Representation for Magnitude Estimation) Suppose that � is an interadjective-
comparison ordering relation of Definition 5. Moreover, suppose that �,ME i,PE i and IMi satisfy
2(f), 2(i), 2(j) and 2(m). Then there exists a power function f : R+→ R+ such that if f is satisfy 2
(e), then

2(n) ME i(bi
M|ai

M, p) = q iff
f i(bi

M)

f i(ai
M)

=
f (q)
f (p)

,

2(o) PE i(ai
M,bi

M) = r iff
f i(ai

M)

f i(bi
M)

= f (r), and

2(p) If IMji(bj
M|aj

M,ai
M) = bi

M, then
f i(bi

M)

f j(bj
M)

=
f i(ai

M)

f j(aj
M)

.

We can also prove the following uniqueness theorem for magnitude estimation by modifying the
method of (Krantz, 1972):
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Theorem 4 (Uniqueness for Magnitude Estimation) If f ′i and f ′ also satisfy 2 (e) and 2 (n)
through 2(p), then there exist there exist α i,β ∈ R+ (1≤ i≤ n) such that

f ′i = α i f i
β and f ′ = f β .

Remark 2 Both f i and f define log-interval scales.

We now obtain the following corollary of Theorem 3 and Theorem 4:

Corollary 1 (Ratio Scale) ME i defines a ratio scale.

2.2.5 Satisfaction, truth and validity
We define an assignment function and its extension as follows:

Definition 6 (Assignment Function and Its Extension) Let V denote a set of individual
variables, C a set of individual constants and I a set of individuals.

• We call s : V →I an assignment function.
• We define the extension of s as a function s̃ : V ∪C →I such that

1. For any x ∈ V , s̃(x) = s(x), and
2. For any a ∈ C , s̃(a) = aM.

We provide ICL with the following satisfaction definition relative to M, define the truth in M by
means of satisfaction, and then define validity as follows:

Definition 7 (Satisfaction, Truth and Validity) What it means forM to satisfy ϕ ∈ΦL ICL with s,
in symbolsM |= L ICLϕ[s] is inductively defined as follows:

• M |= L ICLP(t)[s] iff s̃(t) ∈ PM.

• M |= L ICLt1 = t2[s] iff s̃(t1) = s̃(t2).

• 2(q) M |= L ICLDERPi,Pj(t i, t j)[s] iff if �,ME i,PE i and IMi satisfy 2(f), 2(i), 2(j) and
2(m), then s̃(t i) ∈I Pi and s̃(t j) ∈I Pj and ME i(s̃(t i)|♥Pi,0)> ME j(s̃(t j)|♥Pj,0).

• 2(r) M |= L ICLIERPi,Pj(t i, t j)[s] iff s̃(t i) ∈ I Pi and s̃(t j) ∈ I Pj and (s̃(t i),♠i) �
(s̃(t j),♠j), where (s̃(t i), s̃(t j))� (s̃(tk), s̃(t l)) := (s̃(tk), s̃(t l)) � (s̃(t i), s̃(t j)).

• 2(s) M |= L ICLTERPi,Pj
k(t i, t j)[s] iff if �,ME i,PE i and IMi satisfy 2(f), 2(i), 2(j) and

2(m), then s̃(t i) ∈I Pi and s̃(t j) ∈I Pj and ME i(s̃(t i)|♥Pi,0) = k ·ME j(s̃(t j)|♥Pj,0).

• 2(t) M |= L ICLUERPi,Pj
k(t i, t j)[s] iff if �,ME i,PE i and IMi satisfy 2(f), 2(i), 2(j) and

2(m), then s̃(t i) ∈I Pi and s̃(t j) ∈I Pj and ME i(s̃(t i)|♥Pi,0) = ME j(s̃(t j)|♥Pj,0)+ k.
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• 2(u) M |= L ICLFDERPi,Pj(t i, t j, t l, tm)[s] iff if �,ME i,PE i and IMi satisfy 2(f), 2(i),

2(j) and 2(m), then s̃(t i), s̃(t j) ∈ I Pi and s̃(t l), s̃(tm) ∈ I Pj and
ME i(s̃(t i)|s̃(t j), p)

p
>

ME j(s̃(t l)|s̃(tm),q)
q

.

• 2(v) M |= L ICLFIERPi,Pj(t i, t j, t l, tm)[s] iff s̃(t i), s̃(t j) ∈ I Pi and s̃(t l), s̃(tm) ∈ I Pj and
(t i
M, s̃(t j))� (s̃(t l), s̃(tm)).

• M |= L ICL>.

• M |= L ICL¬ϕ[s] iff M 6|= L ICLϕ[s].

• M |= L ICLϕ ∧ψ[s] iff M |= L ICLϕ[s] andM |= L ICLψ[s].

• M |= L ICL∀xϕ[s] iff for any d ∈I ,M |= L ICLϕ[s(x|d)],
where s(x|d) is the function that is exactly like s except for one thing: for the individual
variable x, it assigns the individual d. This can be expressed as follows:

s(x|d)(y) :=

{
s(y) if y , x
d if y = x.

If M |= L ICLϕ[s] for all s, we write M |= L ICLϕ and say that ϕ is true in M. If ϕ is true in all
models of L ICL, we write |= L ICLϕ and say that ϕ is valid.

2.3 Non First-Order axiomatisability of models of L ICL

The semantic structure of ICL is so rich that ICL has the following meta-logical property.

Theorem 5 (Non First-Order Axiomatisability) The class of models of L ICL is not first-order
axiomatisable.

Remark 3 We can express the Archimedean Property by means of infinite quantifier sequences. In
order to express them, we need infinitary logic.

2.4 Truth conditions of examples
When a modelM of L ICL is given, the truth conditions of the examples 1(a), 1(b), 1(d), 1(e), 1(f),
and 1(g) are as follows:

• 1(a) Albert is taller than Charles is wide.
M |= L ICLDERtall,wide(Albert,Charles) iff if �,ME1,ME2,PE1,PE2, IM1 and IM2
satisfy 2(f), 2(g), 2(i), 2(j) and 2(m), then Albert ∈ I tall and Charles ∈ I wide and
ME1(Albert|♥tall,0)> ME2(Charles|♥wide,0) (∵ 2(q)).
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• 1(b) Albert is taller than Charles is intelligent.
M |= L ICLIERtall,intelligent(Albert,Charles) iff Albert ∈ I tall and Charles ∈ I intelligent
and (Albert,♠tall)� (Charles,♠intelligent) (∵ 2(r)).

• 1(d) Albert is three times as tall as Charles is wide.
M |= L ICLTERtall,wide

3(Albert,Charles)[s] iff if �,ME1,ME2,PE1,PE2, IM1 and IM2
satisfy 2(f), 2(g), 2(i), 2(j) and 2(m), then Albert ∈ I tall and Charles ∈ I wide and
ME1(Albert|♥tall,0) = 3 ·ME2(Charles|♥wide,0) (∵ 2(s)).

• 1(e) Albert is 10 centimetres taller than Charles is wide.
M |= L ICLTERtall,wide

10(Albert,Charles) iff if �,ME1,ME2,PE1,PE2, IM1 and IM2
satisfy 2(f), 2(i), 2(j) and 2(m), then Albert ∈ I tall and Charles ∈ I wide and
ME1(Albert|♥tall,0) = ME2(Charles|♥wide,0)+10 (∵ 2(t)).

• 1(f) Albert is taller than Bernard by more than Charles is wider than Dennis.
M |=
L ICLFDERtall,wide(Albert,Bernard,Charles,Dennis) iff if �,ME1,ME2,PE1,PE2, IM1
and IM2 satisfy 2(f), 2(i), 2(j) and 2(m), then Albert,Bernard ∈I tall and Charles,Dennis ∈

I wide and
ME1(Albert|Bernard, p)

p
>

ME2(Charles|Dennis,q)
q

(∵ 2(u)).

• 1(g) Albert is taller than Bernard by more than Charles is more intelligent than Dennis.
M |= L ICLFIERtall,wide(Albert,Bernard,Charles,Dennis) iff Albert,Bernard ∈ I tall
and Charles,Dennis ∈I wide and (Albert,Bernard)� (Charles,Dennis) (∵ 2(v)).

2.5 Why is 1(c) meaningless?
Let us now return to the question as to why 1(c) is meaningless:

1(c) Albert is five times as tall as Charles is intelligent.

In order to provide 1(c) with its truth condition in terms of 2(s), PE1 and ME2 must satisfy the
instance of 2(m):

2(w) If (b2
M,a2

M)∼ (b1
M,a1

M), then
ME2(b2

M|a2
M, p)

p
= PE1(b1

M,a1
M),

for any a1
M,b1

M ∈I tall and any a2
M,b2

M ∈I intelligent.

However, in the semantic structure of 1(c), we cannot construct PE1 and ME2 that satisfy 2(w).
Therefore, we cannot provide 1(c) with its truth condition in terms of 2(s).

3 Concluding remarks
In this paper, we have proposed a new version of logic for interadjective comparisons–
Interadjective-Comparison Logic (ICL). In terms of measurement theory, the model of the language
of ICL can provide reasonable conditions for log-interval scales and ratio scales, give the truth
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conditions of interadjective comparatives like 1(a), 1(b), 1(d), 1(e), 1(f) and 1(g), and render
interadjective comparatives like 1(c) meaningless.

This paper is only a part of a larger measurement-theoretic study. We are now trying to
construct such logics as

1. dynamic epistemic preference logic (Suzuki, 2009b),
2. dyadic deontic logic (Suzuki, 2009a),
3. vague predicate logic (Suzuki, 2011c,d),
4. threshold utility maximiser’s preference logic (Suzuki, 2011a), and
5. a logic of questions and answers

by means of measurement theory.
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