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Abstract. In (Montague, 1970), Montague defines a formal theory of linguistic meaning which

interprets a small fragment of English through the use of two basic types of objects: individuals and

propositions. In this paper, I develop a comparable semantics which only uses one basic type of ob-

ject (hence, single-type semantics). Such a semantics has been suggested by Partee (2009) as a ‘mi-

nimality test’ for theMontagovian type system, which challenges the need for a bi-partitioned onto-

logy. The proposed semantics captures the propositional interpretation of proper names, unifies

Montague’s semantic ontology, and yields insight into the apparatus of types in formal semantics.
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1. Introduction

Natural languages presuppose a rich semantic ontology. To provide an interpretation for, e.g., Eng-

lish, we require the existence of individuals (e.g. Bill), propositions (Bill walks), properties of in-

dividuals (walk), relations between individuals (find), and many other kinds of objects. Theories of

formal semantics (paradigmatically, Montague (1970, 1973)) tame this ontological ‘zoo’ by cas-

ting its members into a type structure, and generating objects of a more complex type from objects

of a simpler type via a variant of Church’s (1940) type-forming rule:

(CT) If α1, . . . , αn and β are types, then (α1 . . . αn; β) is the type for functions from ordered n-
tuples of objects of the types α1 . . . αn to objects of the type β.

In this way, Montague (1970) reduces the referents of a small subset of English (hereafter, the

PTQ⋆-fragment1) to constructions out of two basic types of objects: individuals (or entities, type e)
and propositions (or functions from indices to truth-values, type (s; t)). Proper names (e.g. Bill) and

sentences (Bill walks) are then interpreted as individuals, respectively propositions, intransitive ver-

bs (walk) as functions from individuals to propositions (type (e; (s; t))), transitive verbs (find) as

functions from pairs of individuals to propositions (type (e e; (s; t))), etc.

Montague’s distinction between individuals and propositions (or between individuals, indices, and

truth-values, cf. (Gallin, 1975)) has today become standard in formal semantics. This is due to the

resulting semantics’ modeling power, and the attendant possibility of explaining a wide range of

syntactic and semantic phenomena. However, the question remains whether it is also possible to

construct the ontological zoo from a single semantic basis, which unifies the types e and (s; t).

1This name is justified by the similarity of this fragment to the fragment from Montague (1973) (‘PTQ-fragment’)

without intensional nouns (e.g. temperature, price), intransitive verbs (rise, change), and prepositions (about). I show in

(forthcoming) that, by coding individual concepts as type-((s; t); e) objects, we can model the full PTQ-fragment.
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The assumption behind the above question, i.e. that the PTQ⋆-fragment has an even simpler se-

mantic basis than the one adopted in Montague (1970), has first been proposed by Barbara Partee.

In particular, Partee (2009) makes the following suggestion about the linguistic type system:

Proposition 1 (Single-Type Hypothesis). The distinction between individuals and propositions is

inessential for the construction of a rich linguistic ontology. The PTQ⋆-fragment can be modeled

through the use of one basic type of object.

Below, we will sometimes refer to Proposition 1 as Partee’s conjecture. This conjecture suggests

the possibility of obtaining all classes of PTQ⋆-referents from a single basic type (dubbed ‘o’),
whose objects encode the semantic content of individuals and propositions. From them, objects of

more complex types are constructed via a variant, ST (for single-type rule), of the rule CT:

(ST) If α1, . . . , αn and β are single-type types, then (α1 . . . αn; β) is a single-type type.

In virtue of the neutrality of the type o between Montague’s types e and (s; t), any semantics which

satisfies Proposition 1 (hereafter, single-type semantics2) will identify basic-type objects with the

values of proper names (traditionally, type e) and of sentences and complement phrases (type (s; t)).
As a result, it will also assign the same type, (o; o), to common nouns (type (e; (s; t))) and to com-

plementizers and sentence adverbs (type ((s; t); (s; t))). The types of all other syntactic categories

are obtained by replacing the labels ‘e’ and ‘(s; t)’ by ‘o’ in these categories’ Montague types.

Partee supports her conjecture by identifying a preliminary single-type object (i.e. extensional pro-

perties of Kratzer-style situations, type (s; t); cf. (Kratzer, 1989)), and giving an (s; t)-based model

for a miniature fragment of English. This model interprets the expressions you, a snake, and see

into the single-type objects ?you?, ?a snake?, and ?see?, cf. (Partee, 2009, p. 40):

?you? the property of (being) a minimal situation containing you;

?a snake? the property of (being) a snake-containing situation;

?see? a function from two situation properties p1 and p2 to a property p3 which holds of a si-

tuation s3 if s3 contains two situations, s1 and s2, with the properties p1, resp. p2, whe-

re (something in) s1 sees (something in) s2.

The above interpretations enable the compositional interpretation of the sentence You see a snake:

?You see a snake? the property of (being) a situation in which you see a snake (which is contai-

ned in the situation).

Partee’s model supports the possibility of providing a type-neutral interpretation of proper names

and sentences. At the same time, it suggests a strategy for the model’s extension to larger PTQ-like

fragments. However, the nature of her paper (a short Festschrift contribution) prevents a demons-

tration of the latter. A proof of workability is left to the semantic community.

2Since such semantics still assume a type-hierarchy over the basic type o (by the use of the rule ST), they should

more correctly be referred to as ‘single-base-type semantics’. I owe this observation to Jim Pryor.
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This paper takes up Partee’s challenge. In particular, it develops a single-type semantics for the

PTQ⋆-fragment which systematically extends Partee’s formal evidence for Proposition 1. The pa-

per is organized as follows: To show the possibility (or desirability) of a single-type semantics, Sec-

tion 2 presents different kinds of support for this semantics. Section 3 discusses the difficulty of

providing a single-type semantics with a primitive basic type, and identifies Partee’s basic-type

choice, (s; t), as the simplest Montague type which answers this difficulty. Sections 4 and 5 demo-

nstrate the ability of an (s; t)-based logic to model the PTQ⋆-fragment. Section 6 identifies a num-

ber of constraints on the resulting single-type semantics, and draws a number of interesting con-

clusions for the role of the Montagovian type system. The paper closes with an evaluation of the

success of single-type semantics and pointers to future work.

2. Support for Single-Type Semantics

Partee’s conjecture about the possibility of a single-type semantics suggests a ‘minimality test’ for

the Montagovian type system: If we can formulate a single-type semantics without reference to

Montagovian individuals or propositions, we will therewith refute the (commonly assumed) need

for two distinct basic types. If our formulation of a single-type semantics relies on the availability

of individuals or propositions, the semantics will support Montague’s basic-type distinction.

But our interest in single-type semantics is also motivated by other considerations: These include

empirical considerations (which regard the greater modeling power of single-type semantics w.r.t.

traditional Montague semantics; cf. (Partee, 2009)), formal considerations (which regard the pos-

sibility of constructing single-type models; cf. Sect. 1), and other methodological considerations

(besides minimality testing). To illustrate possible applications of a single-type semantics – and to

prime the reader’s intuitions about such a semantics –, we here focus on empirical considerations:

Empirical support for Partee’s conjecture lies in a demonstration of the fact that single-type seman-

tics improves upon the modeling power of traditional Montague semantics. This improvement is a

consequence of the neutralization of the distinction between the types for proper names and sen-

tences, and the resulting existence of fewer ‘horizontal’ constraints on semantic merging.3 To illus-

trate the higher modeling power of single-type semantics, we identify a number of linguistic phe-

nomena which can be accommodated in a single-type semantics, but which defy accommodation

in traditional Montague semantics. Such phenomena occur in lexical syntax, the syntax of coor-

dination, the semantics of specification, and nonsentential speech. They consist in the neutrality of

certain classes of expressions between an NP- or a CP-complement, in the possibility of coordina-

ting proper names with complement phrases (both, Bayer 1996), in the existence of specificational

sentences with a postcopular CP (Potts, 2002), and in the use of names to assert a contextually

salient proposition about their type-e referent (Merchant, 2008).

In particular, Montague semantics is unable to interpret (at least) one of the sentences from (1), and

cannot interpret the sentences from (2) and (3):

3As a result, transitive verbs (traditionally, type (e e; (s; t))) can apply either to a proper name or to a CP.
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(1) a. Mary remembered [NPBill].

b. Mary remembered [CPthat Bill was waiting for her].

(2) Mary remembered [NPBill] and [CPthat he was waiting for her].

(3) [NPThe problem] is [CPthat Mary hates Bill].

The inability to interpret the above sentences in Montague semantics is due to its assumption of a

functional relation between syntactic categories and semantic types, and its assignment of different

types (i.e. the types e, resp. (s; t)) to proper names and complement phrases. In virtue of the for-

mer, Montague semantics cannot associate the different occurrences of the verb remember from (1)

with the distinct types (e e; (s; t)) and ((s; t) e; (s; t)). However, in virtue of the latter, only this as-

signment enables the interpretation of both members of the sentence-pair from (1).4 The impos-

sibility of accommodating sentences (2) and (3) in traditional Montague semantics is further due

to Montague’s restriction of coordination and equation to same-type expressions. Since names (or

NPs) and sentences are associated with distinct types, this restriction is not satisfied by (2) and (3).

Single-type semantics solves the above problems by cancelling the different-type assignents of

names and CPs. In particular, since this semantics interprets all occurrences of names and CPs in

the single basic type o, the pairs of arguments from (2) and (3) will satisfy Montague’s coordinabi-

lity and equatability requirements, such that we can interpret these two sentences in this semantics.

Since the single-type type of sentence-complement verbs, (o o; o), allows its expressions to take a

CP or a name as its complement, it enables the interpretation of the two sentences from (1).

Beyond the above, the desirability of a single-type semantics is supported by the possibility of ac-

commodating recent findings in nonsentential speech: These findings show that isolated occurren-

ces of names in a context can be interpreted as the result of applying a contextually salient property

to the name’s type-e referent. Thus, the name Barbara Partee – when uttered as a woman is en-

tering the room – is interpreted as the sentence from (4b) (or (4c)) (Merchant, 2008, pp. 9, 25–26):

(4) CONTEXT: A woman is entering the room. A linguist turns to her friend, gestures towards

the door, and says (a).

a. [NPBarbara Partee]

b. [NPBarbara Partee] is (the woman) entering the room.

c. [NPBarbara Partee] is arriving.

Since Montague semantics does not interpret proper names in the semantic type for sentences, it

is unable to model phenomena like (4). Single-type semantics, which assigns the type o to both

names and sentences, enables the accommodation of these phenomena.

4Admittedly, one could obtain the required modeling power by introducing a different lexical entry for each of the

occurrences of the verb remember from (1), by assigning the different entries the types (e e; (s; t)), resp. ((s; t) e; (s; t)),
and by connecting them by suitable meaning-relating postulates. However, since this differentiation of entries is not

reflected in lexicographic research (cf., e.g., the OED entry for remember), we hesitate to adopt this strategy.
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But the empirical scope of single-type semantics is not restricted to the sentence-type interpretation

of proper names. The semantics further accommodates the propositional behavior of names, which

cannot be modeled in Montague semantics: Our sketch of single-type semantics from the introduc-

tion of this section has suggested that proper names display the semantic behavior of sentences:

If names receive an interpretation in the same domain as sentences, we expect that names – like

sentences – can be evaluated as true or false with respect to a given set of contextual parameters,

and that they may be related5 by semantic equivalence. This is indeed the case: In particular, in the

situation from (4), the announcement (4a) – when the new arrival is, in fact, Angelika Kratzer – is

a false statement, rather than a mere misidentification, cf. (Stainton, 2006, pp. 8–10, 16).

In virtue of their truth- and falsity-conditions, names of the above form will, in a given situation,

be equivalent to all true sentences in this situation which carry information about the names’ type-e
referent. For example, if the new arrival in the above situation is indeed Barbara Partee, the utter-

ance of the name from (4a) will be equivalent to the sentence from (4b) (or (4c)) in that situation.

The obtaining of equivalence relations between sententially interpreted names and sentences (or

CPs) in a given context is supported by the assertion of an equivalence between the noun and com-

plement phrases in the sentence from (3). This relation ensures that the replacement of an NP (or

CP) by its CP- (or NP-)equivalent in the complement of an NP/CP-neutral verb does not change

the truth-value of the original sentence. For the arguments from (3), this is demonstrated in (5):

(5) a. Chris noticed [NPthe problem].

b. Chris noticed [CPthat Mary hates Bil].

Our expectations on the semantic behavior of proper names in a single-type semantics are summa-

rized in Proposition 2:

Proposition 2 (Assertoric interpretation of names). In a single-type semantics, proper names have

truth-conditions (Prop. 2.i), and are equivalent to some contextually salient sentences (Prop. 2.ii).

The above-cited phenomena illustrate the advantages of interpreting natural language in a single-

type semantics. However, the reader is admonished to note that these phenomena can also be acco-

mmodated by dropping the assumption of a functional category/type relation (Alternative 1), or by

explaining the assertoric behavior of proper names with reference to pragmatics (Alternative 2).

The first alternative (adopted in semantic accounts of nonsentential speech, cf. (Merchant, 2008))

assumes that certain occurrences of proper names have a non-standard semantic content, which re-

sults from ‘shifting’ the names’ standard interpretation (type e) to the standard interpretation of

sentences (type (s; t)). The second alternative (adopted in pragmatic accounts of nonsentential spe-

ech, cf. (Stainton, 2006)) assumes that certain utterances of names have a non-standard asserted

content, which results from attributing names the illocutionary act of making an assertion. Alter-

native 1 follows the approach of flexible Montague grammar, cf. (Partee, 1987).

5to other names, or to sentences.
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The possibility of accommodating the above phenomena in a small extension of an existing generali-

zation of Montague semantics (i.e. flexible Montague grammar) suggests the relative weakness of

the presented empirical support for single-type semantics. Stronger support for single-type seman-

tics comes from methodological considerations. These include the complete unification of Mon-

tague’s semantic ontology and the identification of new representability relations between different

types of objects. A detailed presentation of these considerations is given in (Liefke, forthcoming).

3. Motivating Partee’s Single-Type Choice

Our empirical arguments for Proposition 1 support Partee’s identification of the single basic type

with the type for properties of situations (or propositions, type (s; t)): The interpretation of names

and sentences (or CPs) in this type explains the neutrality of certain verbs between an NP- or a CP-

complement (cf. (1), (5)), allows for the coordination or equation of noun and complement phrases

under the satisfaction of Montague’s coordinability resp. equatability requirements (cf. (2), (3)),

and admits the propositional interpretation of isolated names in a given context (cf. (4)). The pres-

ent section gives the rationale behind our single-type choice. To this aim, we first identify the prob-

lems of a single-type semantics with a primitive (i.e. unstructured) basic type (in Sect. 3.1). We then

identify the type (s; t) as the simplest Montague type which solves these problems (in Sect. 3.2).

3.1. Against a ‘Primitive’ Single-Type Semantics

The introduction to this paper has suggested a straightforward strategy for the provision of a single-

type semantics. This strategy lies in the adoption of a single basic type, o, and the replacement of

(terms or objects of) the types e and (s; t) in Montague semantics by (terms and objects of) the type

o. The characterization of type-o objects as semantic primitives (which cannot be obtained by the

application of ST to objects of another type) obviates the further specification of o-based models.

But the apparent simplicity of the above approach is deceptive: Specifically, the identification of

the type o with a non-Montagovian type (s.t., in particular, o ?= t) prevents the use of the famili-

ar truth-functional connectives like falsum (⊥, type t) or the symbol for logical implication (⇒,

type (αα; t)), and disables an easy truth-evaluation of basic-type terms. These problems can be

remedied by introducing (non-logical) single-type stand-ins for these connectives, and by restric-

ting the behavior of these stand-ins through the use of meta-level axioms. However, since the for-

mulation of these axioms still requires the assumption of a designated truth-value type t, it must

proceed at the level of a multi-typed metatheory. For the purposes of this paper, we identify the

latter with the extension of an o-based logic via the truth-value type t.

The availability of the described metatheory facilitates the truth-evaluation of type-o terms. The lat-

ter proceeds via a consideration of the membership (or inclusion) of the referents of type-o terms

in type-(o; t) (resp. type-o) correspondents of indices. These evaluation strategies are derived from
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the evaluation of proposition-denoting formulas in Pollard’s (2008) constructed worlds theory and

in Fine’s (1982) theory of worlds as facts. However, since these strategies still require the introduc-

tion of a new meta- and object theory, since the representation of indices in the types (o; t), resp. o
requires some complex coding machinery, and since ‘primitive’ single-type semantics prevent the

easy identification of a name’s sentential equivalents (cf. (4)), we refrain from their adoption.

The above observations motivate our attempt to identify the single basic type o with a particular

Montague type. But the adoption of such a ‘familiar’ single-type type has many other advantages:

For example, the adoption of an ‘o-defining’ Montague type will induce an algebraic structure on

the basic-type domain (which will, in turn, facilitate the interpretation of linguistic connectives),

and will enable a metalevel definition of the designated single-type constants. Beyond formal rea-

sons, the interpretation of the type o as a concrete Montague type will lend our single-type seman-

tics intuitive content, and will enable the identification of new representational relations between

different types of Montagovian objects. We will identify some of these relations in Section 6. How-

ever, we first show the suitability of Partee’s type (s; t) as a single basic type (in Sect. 3.2).

3.2. Why the Type (s; t)?

The adequacy of the type (s; t) as a single basic type for the modeling of the PTQ⋆-fragment lies

in its satisfaction of the semantic requirements from Properties (i) to (iv):

(i) Familiarity The basic type figures in the semantic analysis of some linguistic phenomenon.

(ii) Conjoinability The single-type domain has an algebraic structure.

(iii) Representability All Montagovian objects can be represented via single-type objects.

(iv) Simplicity Given its satisfaction of Properties (i) to (iii), the single basic type is obtained
from the types e and (s; t) through the least number of CT-applications.

Property (i) ensures the proximity of single-type semantics to mainstream formal semantics. Prop-

erty (ii) allows the interpretation of linguistic connectives as algebraic operations. Property (iii) en-

ables the bootstrapping of representations of all Montagovian objects from objects of the single ba-

sic type. Property (iv) guarantees the low semantic complexity of single-type objects.

Since the type (s; t) is a common choice for the interpretation of sentences, it satisfies the Famili-

arity requirement from Property (i). Since there is an algebraic structure on the truth-value type t
(s.t. it is possible to lift all algebraic operations to domains of some type (α1 . . . αn; t)), the type

(s; t) further satisfies the Conjoinability requirement from Property (ii).

That the type (s; t) satisfies the Representability requirement from Property (iii) is ensured by its

identity with Montague’s type for propositions, and by the existence of an injective function from

individuals to propositions (s.t. single-type representations of type-e objects preserve the distinc-

tions between these objects). Every proposition ϕ can then be represented by itself (cf. (3.1)). Eve-
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ry individual a can be represented by (the characteristic function of) the set of all indices in which

it exists (cf. (3.2)):

{ws | w ∈ ϕ} (3.1)

{ws | a exists in w} (3.2)

In (3.2), an individual’s existence in an index is understood as the individual’s ‘being in an index’

(i.e. as its inhabitance of that index). This understanding of existence corresponds to our pre-theo-

retical intuitions about existence, and to the understanding of concreteness in fixed-domain quan-

tified modal logic, cf. (Linsky and Zalta, 1994). To ensure the injectivity of the individual-repre-

sentations from (3.2), we assume that no two individuals exist exactly in the same indices. This as-

sumption is common in Situation Semantics, cf. (Muskens, 1995, pp. 70–71), and in the semantics

of quantified modal logic.

The representation of individuals in the semantic type for propositions enables the truth-evaluation

of individual-designators (w.r.t. an index) and the identification of entailment and equivalence re-

lations between pairs of individuals, and between an individual and a proposition. Thus, the desig-

nator of some individual awill be true (or false) at the current index@ in an (s; t)-based single-type

semantics that employs the representation strategy from (3.2) if a exists (resp. does not exist) in @.

The type-(s; t) representation of the individual a will entail (resp. be entailed by) some proposi-

tion ϕ if the designator of ϕ (or a) is true at all indices at which a (ϕ) is true and if the designator

of a (resp. ϕ) is false at all indices at which ϕ (or a) is false. The relations of single-type truth and

(mutual) entailment will be formalized in Section 4.

Since the type for individuals, e, does not satisfy the Representability requirement from Proper-

ty (iii),6 and since the types e and (s; t) are the only basic types in the semantic ontology from

(Montague, 1970), the type (s; t) is also the simplest suitable single-type type (cf. Property (iv)).

Its satisfaction of Properties (i) to (iv) identifies the type (s; t) as the ‘best’ (or most suitable) sin-

gle-type candidate. However, the adequate interpretation of natural language in an (s; t)-based se-

mantics further requires a partial interpretation of the type (s; t) (i.e. as partial sets of situations).
This is due to our reference to an individual’s existence in the representation from (3.2), and to our

wish to preserve the standard behavior of negation in single-type semantics: Conservative seman-

tics evaluate both the result, Fa, and the negation, ¬Fa, of the result of attributing a contextually

salient property F to an individual a at an index w where a does not exist as ‘F’. For example,

since Vulcan does not exist in the actual world, such semantics evaluate both the sentence Vulcan

is a planet and the sentence Vulcan is not a planet as false. However, this violates the familiar ax-

ioms for negation.7 Since the truth-combination N (‘neither-true-nor-false’) is uncomplemented

(s.t.−N = N), the evaluation of both Fa and ¬Fa at w as ‘N’ preserves the familiar behavior of

negation.

6This is due to the fact that there are commonly more propositions than individuals, s.t. there is not injective func-

tion from the former to the latter.
7According to the axiom of Top and Bottom, if Fa(w) = F, then ¬Fa(w) = T.
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This completes our motivation of the type (s; t) as an adequate single-type candidate. The next

three sections incorporate the representational strategies from (3.1) and (3.2) into a formal single-

type semantics. Our provision of this semantics uses Montague’s (1973) method of indirect inter-

pretation, which proceeds via the compositional translation of some subset of natural language (he-

re, the PTQ⋆-fragment) into some logical language: Correspondingly, we will first define a general

class of languages and models of the single-type logic STY3
1 (in Sect. 4). We will then specify the

translation rules which send logical forms of the PTQ⋆-fragment to STY3
1 terms (in Sect. 5, 6).

4. The Single-Type Logic STY3
1

Our previous considerations have suggested the identification of single-type semantics with a mo-

del of an (s; t)-based subsystem of an n-ary partial variant, TY3
2, of Gallin’s (1975) logic TY2. This

semantics constructs all of its objects from properties of situations (or propositions, type (s; t)).

The name of our single-type logic, ‘STY3
1’, follows Gallin’s naming convention for type logics. In

particular, the subscript ‘1’ is warranted by the construction of the lowest (or ‘basic’8) STY3
1 ty-

pe (s; t) from 1+ t basic Gallin types. The letter ‘S’ (for single-type) distinguishes our theory from

Church’s (1940) Simple Theory of Types, TY1. The superscript ‘3’ indicates the partiality of the

logic’s models.

From the type (s; t), all other types of the logic STY3
1 are defined via the rule ST as follows:

Definition 1 (STY3
1 types). The set 1Type of STY3

1 types is the smallest set of strings such that,

for 0 ≤ n ∈ N, if α1, . . . , αn ∈ 1Type, then (α1 . . . αn; (s; t)) ∈ 1Type.

A language L for the logic STY3
1 is a countable set ∪α∈1TypeLα of uniquely typed non-logical con-

stants. These include a constant for the absurd (or impossible) proposition, ?⊥ (type (s; t)). For ev-
ery STY3

1 type α, we further assume a countable set Vα of uniquely typed variables, with ‘∪α∈1TypeVα’

abbreviated as ‘V’. From these expressions, we form complex terms inductively with the help of

functional application, abstraction, and the non-logical constant ⇒
.
= .

Definition 2 (STY3
1 terms). Let α1, . . . , αn, β ∈ 1Type. The set Tα of STY3

1 terms of the type α
is defined as follows:

(i) Lα,Vα ⊆ Tα, ?⊥ ∈ T(s;t);

(ii) If A ∈ T(βα1...αn;(s;t)) and B ∈ Tβ , then (A(B)) ∈ T(α1...αn;(s;t));

(iii) If A ∈ T(α1...αn;(s;t)) and x ∈ Vβ , then (λx.A) ∈ T(βα1...αn;(s;t));

(iv) If A,B ∈ Tα, then (A ⇒
.
= B) ∈ T(s;t).

The constants ?⊥ and ⇒
.
= are single-type stand-ins for falsum (⊥, type t) and for logical implication

(⇒, type (αα; t)), respectively. Their introduction is required by the unavailability of theTY3
2 con-

8The description of the type (s; t) as the ‘basic’ type of the logic STY3

1
is, at best, unfortunate. Yet, since the two

uses of the adjective basic are distinguished by their respective contexts, its ambiguity is harmless.
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stants ⊥ and ⇒ in the logic STY3
1 (by the absence of the type t; cf. Sect. 3.1), and by their need in

a single-type theory. To ensure that ?⊥ and ⇒
.
= display the semantic behavior of ⊥ and ⇒, we will

later define the former in terms of the latter (in Sect. 6).

From ?⊥ and ⇒
.
= , single-type stand-ins of the remaining TY3

2 connectives are obtained via (single-

type variants of) the definitions from (Henkin, 1950). In particular, the STY3
1 proxies ?⊤ ; ?· and

?· ;
?

and
?

; and
.
=,

.
=?=, →· , and ↔· of TY3

2 verum (⊤), the modal box and diamond operators (?,

?), the universal and existential quantifiers (∀, ∃), and the symbols for equality (=), inequality ( ?=),

material implication (→), and biimplication (↔) are non-logical constants of the types (s, t), ((s; t);
(s; t)), (α (s; t); (s; t)), resp. (αα; (s; t)), where α ∈ 1Type. Our use of the same symbol for TY3

2

and STY3
1 conjunction (∧), disjunction (∨), and negation (¬) is motivated by the availability of

these connectives in the logic STY3
1, s.t. they have their familiar type (i.e. (αα;α), resp. (α;α)).

STY3
1 terms will sometimes be subscripted by their type. We adopt the usual conventions for bin-

ding, freedom, and closure. Substitution is standardly defined.

This completes our specification of STY3
1 types and terms. We next turn to the definition of general

STY3
1 frames and models.

General STY3
1 models are 1Type-restricted variants of general models for the logic TY3

2, which

consist of a frame F , an interpretation function IF , and an assignment gF . In particular, general

STY3
1 frames are defined as follows, where S is the TY3

2 set of situations, and where 3 is the TY3
2

set of the truth-combinations T,F, and N:

Definition 3 (General STY3
1 frames). A general frame for STY3

1 is a set F = {Dα |α ∈ 1Type}
of pairwise disjoint non-empty sets s.t. D(α1...αn;(s;t)) ⊆ {f | f : (Dα1 × · · · × Dαn

) → (S → 3)}
for all STY3

1 types α1, . . . , αn.

In virtue of our identification of the TY3
2 domain D(s;t) with a subset of the space (S → 3), the

ground domain of the logic STY3
1 will contain partial objects, which are ordered with respect to

their degrees of truth and definedness. As a result, STY3
1 objects will have the desired semantic

properties from Section 3.2. To enable the recursive axiomatizability of STY3
1 entailment, we as-

sociate STY3
1 domains with subsets of their associated function spaces.

Interpretation functions IF : L → F assign to each non-logical STY3
1 constant cα a type-identical

denotation in the frame F , s.t. IF (cα) ∈ Dα. Assignments gF : V → F are analogously defined.

Given an object d ∈ Dα and variables x, y ∈ Vα, we define gF [d/x] by letting gF [d/x](x) = d and

gF [d/x](y) = gF (y) if x ?= y, where = and ?= are symbols of the metalanguage (here, TY3
2). The

set of all assignments gF with respect to a STY3
1 frame F is denoted by ‘GF ’.

On the basis of the above, general STY3
1 models are defined as follows:

Definition 4 (General STY3
1 models). A general model for STY3

1 is a triple MF = ?F, IF , VF ?,
where each Dα ∈ F is the carrier of a complete De Morgan algebra, ?Dα,∩,∪,−, 0, 1?. The func-
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tion VF : (GF × ∪αTα) → F is such that

(i) VF (gF , c) := IF (c) if c ∈ L, VF (gF , x) := gF (x) if x ∈ V ;

(ii) VF (gF ,A(B)) := VF (gF ,A)
?

VF (gF ,B)
?

;

(iii) VF (gF , λxβ.A) := the fct. f(α1...αn;(s;t)) s.t., ∀dβ , f(d) = VF (gF [d/x],A).

Clause (ii) comprises a definition of the interpretation of ?⊥ - and ⇒
.
= -involving terms from Defi-

nition 2. The algebraic structure on STY3
1 domains is a consequence of the De Morgan algebra on

the set 3, and of our definition of STY3
1 types.

As desired, the logic STY3
1 enables the truth-definition of its basic-type terms. This is due to the

identification of the basic STY3
1 type with the type for propositions (s; t), and the definition of TY3

2

truth and falsity for terms of this type. However, since the logic STY3
1 does not command desig-

nated types for situations (s) or truth-combinations (t), the evaluation of the truth or falsity of basic

STY3
1 terms proceeds in models of the logic TY3

2.

The truth (or falsity) of basic-type STY3
1 terms is defined below. In the definition, an ‘embedded’

STY3
1 model MF and assignment function gF of a general TY3

2 model MF � (abbr. ‘M2’) and as-

signment gF � (abbr. ‘g2’) are understood as the result of restricting (the relevant constituents of)M2

and g2 to STY3
1 terms and frames (s.t. MF = M 2↾1Type and gF = g2↾1Type).

Definition 5 (STY3
1 truth). An STY3

1 term A(s;t) is true (or false) at a situation w in an embed-

ding TY3
2 model, M 2, of a general STY3

1 model MF under an embedded assignment, g2, of the
assignment gF iff w |=M � A (resp. w =|M � A).

In the logic STY3
1, entailment between basic-type terms is defined through the partial order, ⊆, on

the TY3
2 set of truth-combinations as follows:

Definition 6 (STY3
1 entailment). A set of STY3

1 terms Γ := {γ | γ ∈ T(s;t)} entails a set of STY3
1

terms ∆ := {δ | δ ∈ T(s;t)}, i.e. Γ |=g ∆, iff, for all general STY3
1 models MF and assignments gF ,

?

γ∈Γ VF (gF , γ) ⊆
?

δ∈∆ VF (gF , δ).

The subscript ‘g’ of the entailment relation refers to the generality of STY3
1 models. We call a

term γ g-valid if |=g γ for every general STY3
1 model MF and gF . Definition 6 allows the defi-

nition of semantic STY3
1 equivalence in terms of mutual STY3

1 entailment.

To enable a proof-theoretic characterization of STY3
1 entailment, we use the TY3

2 symbol for logi-

cal implication, ⇒. Its behavior is characterized by single-type variants of the sequent rules from

(Muskens, 1995). The logic STY3
1 has the expected metamathematical properties (e.g. Soundness,

Completeness, Compactness).

This completes our presentation of the single-type logic STY3
1. We next show that a designated

model of this logic interprets the PTQ⋆-fragment (cf. Prop. 1), accommodates the mentioned phe-

nomena from lexical syntax, syntactic coordination, and specification (cf. Sect. 2), and accommo-

dates the truth-evaluability of proper names (cf. Prop. 2).
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5. STY3
1-Based Single-Type Semantics

To identify the STY3
1 interpretations of logical PTQ⋆-forms, we first specify the particular STY3

1

language L and frame F . The members of L are specified in Table 1. Our conventions for the use

of STY3
1 variables are introduced in Table 2. Since some of the designated STY3

1 constants from

Definition 2 will figure in our translation of logical PTQ⋆-forms, we assume their membership inL.

To enable the translation of the example sentences from (1) to (4), we extend the PTQ⋆-fragment

via the lexical constituents of these sentences.9 For better visibility, we sometimes replace round

by square brackets in the notation for types.

CONSTANT STY3
1 TYPE

¬ [[α1 . . . αn; (s; t)]α1 . . . αn; (s; t)]
∧,∨ [[α1 . . . αn; (s; t)] [α1 . . . αn; (s; t)]α1 . . . αn; (s; t)]
?

,
?

[α (s; t); (s; t)]

⇒
.
= ,

.
=, ?

.
=, →· , ↔· [αα; (s; t)]

?⊤ ,?⊥ , john,mary, bill, partee,w (s; t)
?· ,?· ,man,woman, park, fish, pen, unicorn, problem [(s; t); (s; t)]
run,walk, talk,wait, arrive,E [(s; t); (s; t)]
find, lose, eat, love, date, remember, hate, believe, assert [(s; t) (s; t); (s; t)]
rapidly, slowly, voluntary, allegedly, try,wish [[(s; t); (s; t)] (s; t); (s; t)]
in, for [(s; t) [(s; t); (s; t)] (s; t); (s; t)]
seek, conceive [[[(s; t); (s; t)]; (s; t)] (s; t); (s; t)]

Table 1: L constants.

VARIABLE STY3
1 TYPE VARIABLE STY3

1 TYPE

x, x1, . . . , xn, y, z (s; t) Q,Q1, . . . ,Qn [[(s; t); (s; t)]; (s; t)]
p, p1, . . . , pn, q, r (s; t) L,L1, . . . ,Ln [[[(s; t); (s; t)]; (s; t)] (s; t); (s; t)]
P,P1, . . . ,Pn [(s; t); (s; t)] R,R1, . . . ,Rn [α1 . . . αn; (s; t)]

Table 2: STY3
1 variables.

To give a general translation of expressions from the PTQ⋆-fragment, we let the frame F be very

large, such that it contains possible values for all elements in L. The function IF : L → F res-

pects the way in which different content words are conventionally related.10 The specific role of

the interpretation function IF will be discussed in Section 6.

9For convenience, we hereafter use the term ‘PTQ⋆-fragment’ for the union of the constituents from (1) to (4) and

the difference between the PTQ-fragment and the set of intensional nouns, intransitive verbs, and prepositions.
10Thus, IF is such that IF (λx.bill

.
= x) ⊆ IF (man), where λx.bill

.
= x and man are the TY0 translations of the

phrase be Bill and the common noun man, respectively.

K. Liefke A Single-Type Semantics for the PTQ*-Fragment

Proceedings of Sinn und Bedeutung 18

Edited by Urtzi Etxeberria, Anamaria Fălăuş, Aritz Irurtzun & Bryan Leferman 264



We identify Logical Form (LF) with the component of syntactic representation that is interpreted in

STY3
1 models. Logical forms are translated into STY3

1 terms via the process of type-driven trans-

lation, cf. (Klein and Sag, 1985). The latter proceeds in two steps, by first defining the translations

of lexical elements (or words), and then defining the translations of non-lexical elements composi-

tionally from the translation of their constituents.

Definition 7 (Basic STY3
1 translations). The base rule of type-driven translation translates the lex-

ical PTQ⋆-elements into the following STY3
1 terms, where ?X = X1, . . . ,Xn is a sequence of STY3

1

variables of the types α1, . . . , αn. For reasons of space, we only translate some representative

constants. Members of the same (sub-)category will receive an analogous translation:

Bill ? bill ; Mary ? mary ;

Barbara Partee ? partee ; John ? john ;

unicorn ? unicorn ; woman ? man ;

problem ? problem ; waits ? wait ;

arrives ? arrive ; hates ? λQλx.Q(λy.hate (y, x));
exists ? E ; remembers ? λQλx.Q(λy.remember (y, x));
seeks ? seek ; is ? λQλx.Q(λy.x

.
= y);

that ? λp.p ; believes ? λpλQ.λQ(λx. believe (p, x));
tn/itn ? xn, for each n ; for ? λQλPλx.Q(λy.for (y,P, x));

(s)hen ? xn, for each n ; possibly ? λp.?· p ;
rapidly ? λPλx.rapidly (P, x) ∧ P (x); a ? λP1λP

?

x.P1(x) ∧ P (x);

and ? λR1λR λ?X.R (?X ) ∧ R1(?X ); every ? λP1λP
?

x.P1(x)→
· P (x);

not ? λR λ?X.¬R (?X ); or ? λR1λR λ?X.R (?X ) ∨ R1(?X );

the ? λP1λP
?

x
?

y.(P1(y)↔
· x .

= y) ∧ P (x)

Above, tn represents the trace of a moved constituent in an LF that is translated as a free variable xn.

Definition 7 enables the single-type interpretation of all Logical Form-constituents of the PTQ⋆-

fragment. Some example translations are given below. The reader will observe that the latter share

the form of the sentences’ translations from Montague (1973), cf. (Gallin, 1975).

[S[NPBarbara Partee][VP[IVarrives]]] ? arrive (partee) (5.1)

[S[NP[DETa][Nwoman]][VP[IVarrives]]] ?
?

x.woman (x) ∧ arrive (x) (5.2)

[S[NP[DETevery][Nwoman]][VP[IVarrives]]] ?
?

x.woman (x)→· arrive (x) (5.3)

[S[NP[DETthe][Nwoman]][VP[IVarrives]]] ?
?

x
?

y.(woman (y)↔· x .
= y) ∧ arrive (x) (5.4)

[S[John][VP[TVseeks][NP[a][Nunicorn]]]] ? seek ([λP
?

x.unicorn (x) ∧ P (x)], john) (5.5)

[S[NP[a][Nunicorn]]0 [S[John][VP[seeks] t0]]] ?
?

x.unicorn (x) ∧ seek ([λP.P (x)], john) (5.6)

Notably, in virtue of its same-type assignment to proper names and complement phrases, our

STY3
1-based single-type semantics enables the translation of both guises of NP/CP-complement-
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neutral verbs (cf. (1a), (1b); in (5.7), (5.8)), and of NP/CP-coordinations (cf. (2); in (5.9)):11

[S[NPMary][VP[TVremembers][NPBill]]] ? remember (bill,mary) (5.7)

[S[NPMary]1 [S t1 [VP[TVremembers][CP[Cthat][S[NPBill][VP[waits][PP[Pfor][NPshe1]]]]]]]] (5.8)

? remember ( for (mary,wait, bill),mary)

[S[NPMary]1 [S t1 [VP[TVremembers][NPBill]]]] (5.9)

[[[S[NXXXXXXXXXXXJ]1[[r][[CONJand][CP[Cthat][S[NPBill][VP[IVwaits][PP[Pfor][NPshe1]]]]]]]]]]

? remember
??

bill ∧ for (mary,wait, bill)
?

,mary
?

The identification of the CP-type with the type for objects in the quantificational domain of definite

determiner phrases further enables the interpretation of CP-equatives (cf. (3); in (5.10)):

[S[NP[DETthe][Nproblem]][VP[TV is][CP[Cthat][S[NPMary][VP[TVhates][NPBill]]]]]] (5.10)

?
?

x
?

y.( problem (y)↔· x .
= y) ∧ x

.
= hate (bill,mary)

The above examples suggest that our STY3
1-based semantics is a conservative extension of tradi-

tional Montague semantics: Like Montague semantics, it enables the interpretation of the PTQ⋆-

(or the PTQ-) fragment. Our semantics improves upon Montague semantics by allowing the inter-

pretation of sentences of the form of (1) to (3). However, until now, the semantics has been unab-

le to predict equivalence relations between proper names and sentences (cf. (4)). This is due to our

restriction to an LF’s semantic type (rather than to a particular object of that type). As a result, we

can only predict equivalence (or entailment) relations between pairs of logical forms of same-cate-

gory expressions whose members receive an interpretation as ‘algebraically related’ objects (e.g.

between the forms Partee arrives and It is not the case that Partee does not arrive, and Partee

and Partee and (Partee or Mary)). But our accommodation of Proposition 2.ii requires exactly the

equivalence of ‘algebraically unrelated’ logical forms from different categories (for (4), the equi-

valence of the forms Partee and Partee arrives).

6. Constraints on STY3
1-Based Single-Type Semantics

To identify equivalence relations between pairs of logical forms of different categories, we impose

a number of constraints on the interpretation of primitive STY3
1 constants (in Def. 8). These con-

straints specify, for every member of L, which element in the ‘embedding’ TY3
2 model it desig-

nates. From these constraints, constraints on the interpretation of the remaining STY3
1 terms from

Definition 7 are then obtained via a compositional definition.

For representative STY3
1 terms from Table 1, these constraints are given in Definition 8. In this

definition, we use the designated TY3
2 constants from Table 3. Our typing conventions for TY3

2 va-

riables are given in Table 4. In Table 3, the predicate E applies to an individual- and a situation-

denoting term to assert the existence of the individual at the situation. We assume that L ⊆ L2 and

V ⊆ V2. The designated TY3
2 frame F2 and function IF� are s.t. F = F2↾1Type and IF = I↾1Type

F�
.

11Since it is not currently relevant, we neglect the tense and aspect of the original examples.
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CONSTANT TY3
2 TYPE CONSTANT TY3

2 TYPE

john,mary, bill, partee e find, remember, hate (e e; (s; t))
believe, assert, . . . [(s; t) e; (s; t)] seek, conceive [[(e; (s; t)); (s; t)] e; (s; t)]
rapidly, allegedly, . . . [(e; (s; t)) e; (s; t)] in, for [e (e; (s; t)) e; (s; t)]
man,woman, unicorn, problem,wait, arrive, E, . . . (e; (s; t))

Table 3: Non-logical L2-constants.

VARIABLE TY3
2 TYPE VARIABLE TY3

2 TYPE

i, j, k, k1, . . . , kn s x, x1, . . . , xn, y, z e
p, p1, . . . , pn, q, r (s; t) P, P1, . . . , Pn (e; (s; t)
Q,Q1, . . . , Qn [[e; (s; t)]; (s; t)] L, L1, . . . , Ln [[[(e; (s; t)); (s; t)]; (s; t)]; (s; t)]

Table 4: TY3
2 variables.

Definition 8 (Definition of L-constants). The interpretations of the STY3
1 constants from Table 1

obey the following semantic constraints: In (C8)–(C10), we letX abbreviate ιP.(λk1∀z.P (z)(k1) =
P ([ιz.z = (λk2.E(z)(k2))])(k1)):

(C1) ?⊥ = λi.⊥; (C2) (B ⇒
.
= C) = λi.B(i) ⇒ C(i);

(C3) partee = λi.E(partee)(i); (C4) woman = λx λi.woman
?

[ιx.x = (λj.E(x)(j))]
?

(i);

(C5) arrive = λx λi.arrive
?

[ιx.x = (λj.E(x)(j))]
?

(i);

(C6) believe = λp λx λi.believe
?

p, [ιx.x = (λj.E(x)(j))]
?

(i);

(C7) remember = λy λx λi.remember
?

[ιy.y = (λj.E(y)(j))], [ιx.x = (λk.E(x)(k))]
?

(i);

(C8) rapidly = λP λx λi.rapidly
?

X, [ιx.x = (λj.E(x)(j))]
?

(i);

(C9) for = λy λP λx λi.for
?

[ιy.y = (λj.E(y)(j))], X, [ιx.x = (λk.E(x)(k))]
?

(i);

(C10) seek = λQ λx λi.seek
?

[ιQ.(∀P.(λk.Q(P, k)) = (λk3.Q(X, k3)))]

λQ λx λi.seek
?

[ιx.x = (λj.E(x)(j))]
?

(i)

The constraints (C1) and (C2) define the designated STY3
1 constants ?⊥ and ⇒

.
= as the results of lif-

ting the TY3
2 connectives ⊥ and ⇒ to constructions out of the basic STY3

1 type (s; t).

In line with the type-(s; t) representation of individuals from Section 3.2 (cf. (3.2)), the constraint

(C3) defines the STY3
1 constant partee as the designator of a function which sends situations to the

truth-value of the proposition ‘Barbara Partee exists’ at those situations (i.e. as the designator of

the characteristic function of the set of situations in which Barbara Partee exists).

The remaining constraints enable the definition of the STY3
1 translations of sentential PTQ

⋆-forms

as (equivalents of) these forms’ Montagovian translations. Thus, the constraints (C4) to (C10) con-

tribute to the STY3
1 representation of propositions along the lines of (3.1). In particular, the defini-

tion of the type-((s; t); (s; t)) term arrive as the designator of a function from propositions x to the

set of situations at which the type-e correlate, ιx.x = (λj.E(x)(j)), of x arrives (cf. (C5)) enables

the definition12 of the STY3
1 translation of the sentence Barbara Partee arrives (cf. (5.1)):
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[S[NPBarbara Partee][VP[IVarrives]]] ? arrive (partee)

= λx λi.arrive
?

[ιx.x = (λj.E(x)(j))]
?

(i) [λk. E(partee)(k)]

= λi.arrive
?

[ιx.[λk. E(partee)(k)] = (λj.E(x)(j))]
?

(i)

= λi.arrive
?

[ιx.partee = x]
?

(i) = (λi. arrive (partee)(i))

Since the definitions of the STY3
1 translations of the PTQ⋆-forms from (5.2) to (5.6) are analo-

gously obtained, we abstain from their statement. The definitions of the STY3
1 terms from (5.7) to

(5.10) are given below:

remember (bill,mary) = λi.remember (bill,mary)(i) (6.1)

remember ( for (mary,wait, bill),mary) (6.2)

= λi.remember
??

ιy.[λk.for (mary,wait, bill)(k)] = (λj.E(y)(j))
?

,mary
?

(i)

remember
??

bill ∧ for (mary,wait, bill)
?

,mary
?

(6.3)

= remember
?

bill,mary) ∧ remember ( for (mary,wait, bill),mary)

= λi.remember (bill,mary, i)∧

λi.remember
?

[ιy.[λk.for (pat,wait, bill, k)] = (λj.E(y, j))],mary, i
?

?

x
?

y.(problem (y)↔· x .
= y) ∧ x

.
= hate (bill,mary) (6.4)

= λi∃x∀y.(problem (y)(i) ↔ x = y) ∧ x =
?

ιz.(λk.hate(bill,mary)(k)) = (λj.E(z)(j))
?

The possibility of defining the STY3
1 translations of [[TV][CP]]-structures in our single-type seman-

tics is conditional on the existence of non-Montagovian individuals, which serve as type-e corre-

lates of propositions: The TY3
2 correlate, i.e. remember, of the STY3

1 term remember restricts its

first argument to TY3
2 terms of the type e. To satisfy the typing constraints of the relevant TY3

2

terms, we need to identify the individual which encodes the semantic information of the proposi-

tional argument. In the definitions of the STY3
1 translations from (5.8) and (5.9), this is achieved

by identifying the unique individual which exists exactly in the situations at which the formula

λk.for (mary,wait, bill)(k) is true (cf. the underlined TY3
2 term in (6.2), (6.3)). A similar observa-

tion holds for the definition (in (6.4)) of the STY3
1 translation from (5.10).

Our presentation of the logic STY3
1 has already established the possibility of evaluating the truth

or falsity of basic-type terms in models of the metatheory TY3
2 (cf. Def. 5). Since we know that

the STY3
1 translation of every logical PTQ⋆-form is defined through a term of the logic TY3

2, we

can evaluate the truth of logical PTQ⋆-forms via the truth of their translations’ TY3
2 definitions.

The identification of a STY3
1 terms’ referent in the designated model of the logic TY3

2 enables the

identification of equivalence relations between proper names and sentences. The semantic equiva-

12In the definition, the step from the third to the last line of step 3. is justified by our assumption of the unique re-

ference of type-e constants and by the assumption that no two individuals exist in exactly the same situations (cf.

Sect. 3.2). As a result, the interpretation of the term ιx.[λk.E(partee)(k)] = (λj.E(x)(j)) will be defined in every

model of the logic TY3

2
which provides an interpretation for the constant partee.
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lence of logical PTQ⋆-forms in our single-type semantics is defined below. In the definition, we let

A(s;t) and B(s;t) be the STY3
1 translations of the logical forms X , resp. Y , s.t. X ? A and Y ? B.

We let M 2 and MF be the designated models of the logics TY3
2, respectively STY3

1, and let g2 and
g = g2↾1Type be their associated assignments.

Definition 9 (STY3
1-based PTQ⋆-equivalence). A logical form X is semantically equivalent to Y

in M under g, i.e. MEANSMF
(Y,X), if |=g A = B in M 2 under g2.

Definition 9 supports the equivalence of proper names with their simple containing simple existen-

tial sentences. For the name Barbara Partee, this is shown below:

MEANSMF

?

[NPBarbara Partee], [S[NPBarbara Partee][VP[IVexists]]]
?

(6.5)

iff |=g partee = E (partee) iff |=g (λi.E (partee)(i)) = (λi.E (partee)(i)) iff |=g ⊤

Significantly, because of our particular single-type choice, our STY3
1-based single-type semantics

fails to predict the attested equivalence relations between names and other contextually salient sen-

tences besides existentials (e.g. the sentence Barbara Partee arrives) from Section 2. This is due

to the fact that, for every individual and contextually salient (i.e. contingent) property, there will be

situations in which the individual exists but does not have the property or at which it is undefined

whether or not the individual has the property.

The satifaction of Proposition 2.ii requires the adoption of semantically ‘richer’ single-type objects,

which provide different representations of Montagovian objects at different parameters. Functions

from situations to propositions (type-(s; (s; t))) allow for this strategy: For example, these objects

can represent individuals via functions from situations σ to the set of situations at which all true

propositions at σ which carry information about the individual are true. We leave the development

of this ‘strong’ single-type semantics for another occasion.

7. Conclusion

This paper has developed an (s; t)-based single-type semantics for the set of English logical forms

from Montague (1970). The latter is a designated model for the logic STY3
1, which interprets lo-

gical forms into constructions out of propositions. Objects of this type interpret proper names as

(characteristic functions of) the set of situations in which the names’ type-e referent exists, and

interpret sentences and CPs as (characteristic functions of) the set of situations at which the sen-

tence/CP is true. The semantics supports Partee’s hypothesis from Proposition 1 (Partee, 2009),

and accommodates the truth-evaluability of proper names from Proposition 2.i. However, the need

to define STY3
1 interpretations through the use of the ‘lower’ types e, s, and t suggests the need for

a multi-typed metatheory, and the prominent role of Montague’s (or Gallin’s) original type system.

Future work will investigate ‘stronger’ single-type semantics (which further accommodate Prop. 2.ii),

and the relationship of these semantics to Partee’s original semantics. We hope that this research

will give us further insight into the type system of natural language, and into the properties of

minimal models in formal semantics. Liefke (ming)
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