A unified semantics for exceptive-additive besides ${ }^{1}$

Clemens MAYR — Göttingen University
Ekaterina VOSTRIKOVA - Göttingen University

Abstract

Exceptive expressions like except and but are known to contribute an inference of exception when they occur with universal quantifiers and not to be compatible with non-universal quantifiers. Similarly to exceptives, exceptive-additive expressions like besides contribute an exceptive inference in universal statements. They, however, differ from exceptives in being able to co-occur with non-universal quantifiers. In such contexts they contribute an inference of addition. We propose a unified semantic treatment of exceptive-additives that derives their interaction with universal and non-universal quantifiers from independently motivated mechanisms. We extend the treatment of exceptives in terms of Exh (Gajewski 2013; Hirsch 2016; Crnič 2021) to exceptive-additives and propose that the difference between the two types of constructions lies in the way the alternatives are constructed. By reducing the set of alternatives, we can capture the additive inference of besides with exactly n-numerals. We extend this account to all other instances of modified numerals and existentials by adopting a decompositional approach to their semantics.

Keywords: besides, exceptives, exceptive-additive constructions, modified numerals, Exh, alternatives, quantification.

1. The puzzle

1.1. Parallels and differences between exceptive and exceptive-additive expressions

Combined with universal quantifiers such as in (1) and (2) the exceptive expressions but, except, and besides yield parallel inferences. For (1) this gives the following inferences: (i) a containment inference that Ann is a member of the restrictor set denoted by girl, (ii) a quantificational inference that the restrictor set minus Ann is a subset of the scope set denoted by came, and (iii) an exception inference that Ann is not a member of the scope set (Keenan and Stavi 1986; Hoeksema 1987; von Fintel 1993). Completely parallel inferences modulo the contribution of negation obtain for (2).
(1) Every girl butlexcept/besides Ann came.
\rightsquigarrow Ann is a girl containment
\rightsquigarrow Every girl who is not Ann came quantification
\rightsquigarrow Ann didn't come exception
(2) No girl butlexcept/besides Ann came.
\rightsquigarrow Ann is a girl containment
\rightsquigarrow No girl who is not Ann came quantification
\rightsquigarrow Ann came
Combined with non-universal quantifiers, as in examples (3) to (5), but and except result in

[^0]ungrammaticality (Horn 1989; von Fintel 1993), whereas besides is grammatical. Interestingly, in all of these examples besides yields an additive interpretation. While the containment and quantification inferences remain as in the examples above, the exception inference changes to an additive inference to the effect that the predicate in the scope of the quantifier is true of Ann (von Fintel 1989; Sevi 2008; Vostrikova 2019a, b). ${ }^{2}$
(3) Some girl *but/*except/besides Ann came.
\rightsquigarrow Ann is a girl containment
\rightsquigarrow Some girl who is not Ann came quantification
\rightsquigarrow Ann came
addition
(4) At least/more than two girls *but/*except/besides Ann came.
\rightsquigarrow Ann is a girl
\rightsquigarrow At least/more than two girls who are not Ann came
\rightsquigarrow Ann came
containment
quantification
addition
(5) At most/fewer than two girls *but/*except/besides Ann came.
\rightsquigarrow Ann is a girl
containment
\rightsquigarrow At most/fewer than two girls who are not Ann came
\rightsquigarrow Ann came
quantification
addition

1.2. The standard approach to but-exceptives

The standard approach to the semantics of exceptives like but is due to von Fintel (1993, 1994). According to this approach, but does two things in (1) semantically: (i) it subtracts \{Ann\} from the restrictor set denoted by girl, and (ii) states that this is the minimal subtraction that is required to make the quantificational claim true. For (1) and (2) this can result in both truth and falsity, whereas for (3) to (5) it yields a contradiction.

More recent literature has tended to have (i) be contributed by but directly but lets (ii) be the contribution of an exhaustivity operator Exh strengthening the interpretation of its prejacent, i.e., the sentence without Exh (see Gajewski 2013; Hirsch 2016, also cf. Gajewski 2008). The LF for (1), for instance, would look as in (6).
(6) $\quad\left[{ }_{\mathrm{IP}_{2}} \operatorname{Exh}_{\mathrm{ALT}}\left[\mathrm{IP}_{1}\right.\right.$ [every [girl [but Ann $\left.\left.\left.{ }_{\mathrm{F}}\right]\right]\right]$ came]]

The meaning for but is given in (7), following Hirsch (2016). But is looking to compose with a plural or atomic individual (denoted by the DP following but), then with a predicate of individuals (denoted by the restrictor of the quantifier). It introduces a presupposition that the predicate is true of this plural or atomic individual (thus, the containment inference is hardwired into the lexical semantics of but). It outputs a new set of plural or atomic individuals such that the predicate is true of it and it does not overlap with the first plurality.
a. $\quad \llbracket b u t \rrbracket^{g, w}=\lambda \mathrm{x}_{e} . \lambda \mathrm{f}_{<e t>}: \mathrm{f}(\mathrm{x}) . \lambda \mathrm{y}_{e} . \mathrm{f}(\mathrm{y}) \& \neg \operatorname{OVERLAP}(\mathrm{x})(\mathrm{y})$
b. OVERLAP $(\mathrm{x})(\mathrm{y})$ iff $\exists \mathrm{z}[\mathrm{z} \leq \mathrm{x} \& \mathrm{z} \leq \mathrm{y}]$

Given this, the denotation of the restrictor of the quantifier in (6) is as shown in (8): this predicate of individuals picks girls who are not Ann; Ann is subtracted from the domain of the

[^1]quantifier.
\llbracket girl but Ann $\rrbracket^{g, w}=\lambda \mathrm{y}_{e} . \mathrm{y}$ is a $\operatorname{girl}_{w} \& \neg \operatorname{OVERLAP}(\mathrm{Ann})(\mathrm{y})$
\llbracket girl but Ann $\rrbracket^{g, w}$ is defined only if Ann is a girl_{w}
Assuming there are four salient girls in the context (Ann, Bella, Carol, and Denise), the quantificational claim (the prejacent of Exh) is as follows.
\[

$$
\begin{equation*}
\llbracket I P_{1} \rrbracket^{g, w}=\mathrm{T} \text { iff } \forall \mathrm{x}\left[\mathrm{x} \in\{\text { Bella, Carol, Denise }\} \rightarrow \mathrm{x} \text { came }_{w}\right] \tag{9}
\end{equation*}
$$

\]

We adopt the standard denotation for Exh, given in (10). Exh asserts its prejacent and negates all innocently excludable alternatives (IE) (the alternatives that are in every maximal set of alternatives that can be negated together with the assertion of the prejacent without introducing a contradiction (Fox 2007)). ${ }^{3}$

```
a. \(\quad \llbracket E x h_{A L T} \phi \rrbracket^{\mathrm{g}, \mathrm{w}}=\llbracket \phi \rrbracket^{g, w} \& \forall \mathrm{q}\left[\mathrm{q} \in \mathrm{IE}\left(\lambda \mathrm{w}^{\prime} \cdot \llbracket \phi \rrbracket^{g, w^{\prime}}, \mathrm{ALT}\right) \rightarrow \neg \mathrm{q}(\mathrm{w})\right]\)
b. \(\quad \operatorname{IE}(\mathrm{p}, \mathrm{ALT})=\cap\left\{\right.\) ALT \(^{\prime} \subseteq\) ALT: ALT' \({ }^{\prime}\) is a maximal subset of ALT s.t. ALT \(\left.{ }^{\prime}\right\urcorner \cup\)
    \(\{\mathrm{p}\}\) is consistent \(\}\)
c. \(\quad\) ALT \(\left.^{\prime}\right\urcorner=\left\{\neg p^{\prime}: p^{\prime} \in\right.\) ALT \(\left.^{\prime}\right\}\)
```

This approach assumes the structural theory of focus alternatives (Katzir 2007; Fox and Katzir 2011). The alternatives used by Exh are determined by substituting the focused marked DP with other possible DPs of at most the same complexity. ${ }^{4}$ The DP following but is marked with focus. The resuling set of alternatives is given in (11): in each of the alternative propositions a different individual is subtracted from the domain of every.

The first alternative is the prejacent. All other alternatives are innocently excludable, meaning their negation is consistent with the assertion of the prejacent. Exh negates all of them. The overall predicted truth conditions for the entire sentence are given in (12). The negation of the alternatives results in the inference that in every set differing from the original only in the individual that gets subtracted, not every girl came. Given the truth of the prejacent, the latter can only be the case if it is Ann who did not come. This derives the exception inference.

$$
\begin{align*}
&\llbracket(6)]^{g, w}=\mathrm{T} \text { iff } \forall \mathrm{x}\left[\mathrm{x} \in\{\text { Bella, Carol, Denise }\} \rightarrow \mathrm{x} \text { came }_{w}\right] \& \tag{12}\\
& \neg \forall \mathrm{x}[\mathrm{x} \in\{\text { Ann, Carol, Denise }\} \rightarrow \mathrm{x} \text { came } w] \& \\
& \neg \forall \mathrm{x}\left[\mathrm { x } \in \left\{{\text { Ann, Bella, Denise } \left.\} \rightarrow \mathrm{x} \text { came }_{w}\right] \&} \rightarrow \forall \mathrm{x}[\mathrm{x} \in\{\text { Ann, Bella, Carol }\} \rightarrow \mathrm{x} \text { came }\right.\right. \\
& w
\end{align*}
$$

[^2][^3]
Mayr—Vostrikova

1.3. Deriving co-occurrence restrictions for but-exceptives

The standard approach derives the unacceptability of (3) to (5) with both but and except.
The LF predicted for the existential claim in (3) is as shown in (13).

$$
\begin{equation*}
\left[\mathrm{IP}_{2} \operatorname{Exh}_{\mathrm{ALT}}\left[\mathrm{IP}_{1}\left[\text { some }\left[\text { girl }\left[\text { but } \mathrm{Ann}_{\mathrm{F}}\right]\right]\right] \text { came }\right]\right] \tag{13}
\end{equation*}
$$

The meaning of the prejacent of $E x h$ is as shown in (14) and the alternatives other than the prejacent are given in (15).

$$
\begin{align*}
& \llbracket I P_{1} \rrbracket^{g, w}=\mathrm{T} \text { iff } \exists \mathrm{x}\left[\mathrm{x} \in\{\text { Bella, Carol, Denise }\} \& \mathrm{x} \text { came }_{w}\right] \tag{14}\\
& \text { a. } \quad \lambda w . \exists x\left[x \in\{\text { Ann, Carol, Denise }\} \& x \text { came }_{w}\right] \tag{15}\\
& \text { b. } \lambda \text { w. } \exists \mathrm{x}\left[\mathrm{x} \in\{\text { Ann, Bella, Denise }\} \& \mathrm{x} \text { came }_{w}\right] \\
& \text { c. } \lambda w . \exists \mathrm{x}\left[\mathrm{x} \in\{\text { Ann, Bella, Carol }\} \& \mathrm{x} \text { came }_{w}\right]
\end{align*}
$$

None of the alternatives in (15) is innocently excludable. Only one of them can be negated together with the assertion of the prejacent. For example, the negation of (15a) is compatible with the prejacent: this would mean that only Bella came. But the other two alternatives cannot be negated in this case, their negation would create a contradiction, as it is not compatible with Bella coming. The same goes for the second and the third alternative. Since none of the alternatives is innocently excludable, Exh has nothing to negate in this case. ${ }^{5}$

This LF is ruled out by the non-vacuity constraint (Spector 2013; Gajewski 2013; Fox and Spector 2018). Assuming that but obligatorily co-occurs with Exh, this is the the only possible LF for (3) with but. Considering that a sentence which is predicted to necessarily violate pragmatic constraints is perceived as ungrammatical, the ungrammaticality of (3) is explained.
(16) NON-VACUITY: $\operatorname{Exh}[A]$ is infelicitous if $\operatorname{Exh}[A]$ is equivalent to A.

Similar results obtain for the remaining examples in (4) and (5). ${ }^{6}$ Let's consider at most two in (17) which is downward monotonic on its first argument.
*At most two girls but Ann came.
The set of alternatives is given in (18). None of them is innocently excludable. Let's consider a situation where the negation of the second alternative is true, the situation where three girls came: Carol, Denise and Ann. This is compatible with the prejacent because there are two girls who came in the set $\{$ Bella, Carol, Denise $\}$ and not more. However, negating other alternatives cannot be done consistently with this, because in the sets \{Ann, Bella, Denise\} and \{Ann, Bella, Carol\} there will be exactly two girls who came. The same reasoning applies to other alternatives: the negation of at most one of them is compatible with the assertion of the prejacent.

[^4]\[

\left\{$$
\begin{array}{l}
\lambda \mathrm{w} \cdot\left[\left[_{I P_{1}}[\text { at most two [girls [but Ann]]] came }]\right] \rrbracket^{g, w}\right. \tag{18}\\
\left.\lambda \mathrm{w} .\left[I_{I P_{1}} \text { [at most two [girls [but Bella]]] came }\right]\right] \rrbracket^{g, w} \\
\left.\left.\left.\lambda \mathrm{w} . \llbracket I_{I I_{1}} \text { [at most two [girls [but Carol]]] came }\right]\right]\right]^{g, w} \\
\left.\left.\left.\lambda \mathrm{w} \cdot\left[I_{I P_{1}}[\text { at most two [girls [but Denise }]\right]\right] \text { came }\right]\right] \rrbracket^{g, w}
\end{array}
$$\right\}
\]

Since there are no innocently excludable alternatives in this case, the application of Exh is predicted to be vacuous. Thus, this sentence is predicted to be ungrammatical in the same way as the example with the existential considered above.

This approach could be straightforwardly carried over to except, as done by Crnič (2021) for at least some such constructions. That being said, Moltmann (1995) and Vostrikova (2021) draw attention to contrasts like (19a) and (19b). While except allows for multiple remnants and prepositional phrases following it, but does not do so.
a. Every boy danced with every girl except Bill with Ann.
b. *Every boy danced with every girl but Bill with Ann.

Accordingly, Vostrikova (2019b, 2021), as well as Potsdam and Polinsky (2019), draw the conclusion that the except in (19a) syntactically coordinates two clauses. Vostrikova suggests a meaning for except that can be seen as a modification of von Fintel's 1993 one for but so as to be applicable at the clausal level. Thereby similar predictions regarding co-occurrence data are derived by the lexical meaning of except. Crnič (2021) explores the possibility that even in the clausal case, there is a place for strengthening through Exh.

1.4. The puzzle of besides

On the one hand, the standard recipe for but together with strengthening by Exh could be employed for besides as well. This would derive the facts in (1) and (2). Notice in this respect that, indeed, as far as syntax is concerned, besides appears to be phrasal just as much as but:
*Every boy danced with every girl besides Bill with Ann.
On the other hand, extending this standard recipe to besides, all else being equal, would have undesirable consequences for (3) to (5). This is so because parallel to but, besides would be predicted to incur unacceptability through strengthening via Exh in these cases.

Notice that one cannot assume that but and besides are parallel in terms of subtraction but that only the former involves strengthening. While this would make besides acceptable with both universal and non-universal quantifiers, it would have the consequence that neither exceptive inferences would be drawn for the former nor additive inferences for the latter. Indeed, the exceptive or the additive inference seem to be non-removable and uncancellable parts of the meaning of sentences with besides. This is tested in (21a) and (21b) for (1) and (3) respectively. If the exceptive or additive inference were absent, it should be fine to precede the sentence with a sentence negating the supposed inference, but this is not the case. The sequences are degraded (Vostrikova 2019c).
a. \#Ann came. Every girl besides Ann came too.
b. \#Ann didn't come. But some girl besides Ann came.

At this point, we can characterize the main semantic puzzle raised by exceptive-additive besides as follows:

Mayr—Vostrikova

Exceptive-additive puzzle (EAP): Besides yields exceptive inferences precisely in those environments in which exceptive but is grammatical and yields additive inferences in precisely those environments in which exceptive but is not grammatical.

We need to ask why this should be the case. The EAP suggests that the behavior of besides is driven by factors of logicality. In this paper, we therefore adopt the following hypothesis to deal with the EAP:
(23) Exceptive-additive hypothesis (EAH): Besides yields additive inferences in those environments in which exceptive but is not grammatical in order to avoid ungrammaticality.

1.5. The previous treatments of besides and the plot

Previous approaches to the semantics of exceptive-additive besides provided an account for a subset of cases in (1)-(5).

Von Fintel (1989) proposed a unified treatment of besides with universal and negative quantifiers, as well as the non-monotonic quantifier exactly n. According to this analysis, besides, like any exceptive, contributes domain subtraction. Additionally, besides introduces the minimality condition, meaning that the subtracted set is the one with the minimal cardinality necessary for the quantificational claim to be true. The lexical entry proposed in (von Fintel 1989) is shown in (24): besides composes with a set denoted by the DP it introduces, ${ }^{7}$ a set denoted by the restrictor, the determiner and the set denoted by the scopal argument. It subtracts the first set from the restrictor of the quantifier and adds the minimality condition (underlined in (24)).

$$
\begin{array}{r}
\llbracket \text { besides } \rrbracket^{g}=\lambda \mathrm{C}_{<e t\rangle} . \lambda \mathrm{A}_{<e t>} . \lambda \mathrm{D}_{\ll e t><e t, t \ggg} . \lambda \mathrm{P}_{<e t\rangle} . \tag{24}\\
\mathrm{D}(\mathrm{~A}-\mathrm{C})(\mathrm{P}) \& \forall \mathrm{Y}[|\mathrm{C}|>|\mathrm{Y}| \rightarrow \neg \mathrm{D}(\mathrm{~A}-\mathrm{Y})(\mathrm{P})]
\end{array}
$$

The work of the minimality condition can be appreciated when we look at the specific example in (25a). Its predicted interpretation is in (25b). The first conjunct states that if we remove Ann from the domain it holds that exactly two girls came. The second conjunct says that if a set with the cardinality less than the cardinality of \{Ann\} is subtracted, the exactly-claim will not be true. There is only one set with a smaller cardinality than the singleton set \{Ann\} and that is the empty set. Subtracting an empty set equals to no subtraction at all. Accordingly, the minimality condition states that it is false that exactly two girls came overall. If it is true that exactly two girls came who are not Ann, but not exactly two girls came overall, Ann must be the girl who came, as adding Ann to the domain cannot reduce the number of girls who came. Thus, the additive inference is captured.
a. Exactly two girls besides Ann came.
b. $\quad \llbracket(25 a) \rrbracket^{g}=\mathrm{T}$ iff $\mid(\{\mathrm{z}: \mathrm{z}$ is a $\operatorname{girl}\}-\{\mathrm{Ann}\}) \cap\{\mathrm{x}: \mathrm{x}$ came $\} \mid=2 \&$ $\forall \mathrm{Y}[|\{\mathrm{Ann}\}|>|\mathrm{Y}| \rightarrow \mid(\{\mathrm{z}: \mathrm{z}$ is a girl $\}-\mathrm{Y}) \cap\{\mathrm{x}: \mathrm{x}$ came $\} \mid \neq 2]$

This treatment extends to cases with universal and negative quantifiers and accounts for the fact that in the first case the inference is negative, and in the second, it is positive. If every girl who is not Ann came, but not every girl came, Ann must be the girl who did not come. If no girl who is not Ann came, but some girl came, Ann must be the girl who came.

[^5]The problem with this approach observed by von Fintel (1989) is that it is not straightforwardly extendable to upward monotonic numerals like at least two in (4). It cannot be the case that at least two girls who are not Ann came, but not at least two girls came overall. For the same reason, it also does not extend to existentials in (3).

Vostrikova (2019a) proposes a unified compositional analysis of the additive uses of besides with existentials, wh-questions (like in (26a)), and in focus constructions (illustrated in (26b)). However, the proposed treatment considers besides as a pure additive element, and it does not account for the exceptive reading with universal quantifiers.
a. Who besides Ann came?
b. Besides Ann, Bill danced with Maryf

Vostrikova (2019c) proposes a unified treatment for the exceptive uses of besides with universal and negative quantifiers and the additive uses of besides with existentials, wh-questions and focus associates. Exceptive-additive flip is treated as a case of a structural ambiguity. This analysis, however, is not straightforwardly extendable to modified numerals and such cases are not discussed. In this paper we will not say anything about cases like (26) and will focus on quantificational cases and modified numerals.

The rest of the paper spells out a unified approach to the uses of besides in (1)-(5) relying on the standard mechanism introduced above. The work is distributed between besides contributing domain subtraction and Exh being responsible for the exceptive or the additive inference. We argue that the only difference from the exceptive but lies in the kind of alternatives used by Exh. This minimal change straightforwardly derives results von Fintel (1989) obtained for exactly n numerals. It is shown that this can be extended to other cases of non-universal quantifiers if they are allowed to be decomposed along the lines of what has been suggested in the literature for modified numerals (Hackl 2000; Heim 2000; Mayr and Meyer 2014; Buccola and Spector 2016), so that one part can scope below Exh and one above it.

2. The proposal

2.1. Besides and every

We'll assume besides is like but: it does domain subtraction and introduces the containment presupposition, as shown in (27). Like but, besides composes with a plural or atomic individual (denoted by the DP following besides), then takes a predicate of individuals (the restrictor of a quantifier) and outputs a new predicate of individuals. It introduces a presupposition that the restrictor predicate is true of the individual introduced by besides. The new predicate it outputs is true of atomic or plural individuals if they satisfy the restrictor predicate and do not overlap with the individual introduced by besides.
a. $\quad \llbracket$ besides $\rrbracket^{g, w}=\lambda \mathrm{x}_{e} . \lambda \mathrm{f}_{<e t\rangle}: \mathrm{f}(\mathrm{x}) . \lambda \mathrm{y}_{e} . \mathrm{f}(\mathrm{y}) \& \neg \operatorname{OVERLAP}(\mathrm{x})(\mathrm{y})$
b. OVERLAP $(\mathrm{x})(\mathrm{y})$ iff $\exists \mathrm{z}[\mathrm{z} \leq \mathrm{x} \& \mathrm{z} \leq \mathrm{y}]$
c. \llbracket girl besides $A n n \rrbracket^{g, w}=\lambda \mathrm{y}_{e} . \mathrm{y}$ is a $\operatorname{girl}_{w} \& \neg \operatorname{OVERLAP}(\mathrm{Ann})(\mathrm{y})$ is defined only if Ann is a girl_{w}

We build on Gajewski (2008, 2013); Hirsch (2016); Crnič (2021), and propose that the exceptiveadditive inference is contributed by Exh. Thus, the structure of a sentence with besides with a universal quantifier in (28a) is as shown in (28b).
a. Every girl besides Ann came.
b. $\left.\quad\left[\mathrm{IP}_{2} \operatorname{Exh}_{\mathrm{ALT}}\left[\mathrm{IP}_{1} \text { [every [girl [besides Ann] }\right]_{\mathrm{F}}\right]\right]$ came]]

However, we suggest that the alternatives are not computed by substituting the element following besides with its alternatives, as proposed for but and discussed above. Instead, besides makes use of the structurally simpler alternatives. Thus, the focus is not on the element following besides, but on the entire besides $D P$ phrase. In this case the set of alternatives is like shown in (29).

$$
\mathrm{ALT}=\left\{\begin{array}{l}
\lambda \mathrm{w} . \llbracket \text { every girl besides Ann came } \rrbracket^{g, w} \tag{29}\\
\lambda \mathrm{w} . \llbracket \text { every girl came } \rrbracket^{g, w}
\end{array}\right\}
$$

Exh asserts the prejacent and negates the only alternative distinct from the prejacent. The result of this is shown in (30a), or equivalently (30b). The presupposition of containment contributed by besides is in (30c).

> a. $\quad \llbracket(28 b) \rrbracket^{g, w}=\mathrm{T}$ iff $\forall \mathrm{x}\left[\left(\mathrm{x}\right.\right.$ is a $\left.\operatorname{girl}_{w} \& \neg \operatorname{OVERLAP}(\mathrm{Ann})(\mathrm{x})\right) \rightarrow \mathrm{x}_{\mathrm{c}}$ came $\left._{w}\right]$ \& $\neg \forall \mathrm{y}\left[\mathrm{y}\right.$ is a $\operatorname{girl}_{w} \rightarrow \mathrm{y}$ came $\left._{w}\right]$
> b. $\quad \llbracket(28 b) \rrbracket^{g, w}=\mathrm{T}$ iff $\forall \mathrm{x}\left[\left(\mathrm{x}\right.\right.$ is a girl $\& \neg \operatorname{OVERLAP}(\mathrm{Ann})(\mathrm{x}) \rightarrow \mathrm{x}$ came $\left._{w}\right] \&$ $\exists \mathrm{y}\left[\mathrm{y}\right.$ is a $\operatorname{girl}_{w} \& \neg \mathrm{y} \mathrm{came}_{w}$]
> c. $\llbracket(28 b) \rrbracket^{g, w}$ is defined only if Ann is a girl_{w}

The resulting interpretation correctly captures the negative inference (28a) comes with. If every girl who is not Ann came, but some girl did not come, then Ann is the girl who did not come.

So far we have considered the case where the DP following besides denotes an atomic individual. When besides introduces a plural DP, the negative inference has to apply to every individual in this plurality. This is captured by including the alternatives where the plurality is substituted by individuals denoting the plurality subparts as shown in (31).
a. Every girl [besides Ann and Bella $]_{F}$ came.
b. $\quad\left\{\begin{array}{l}\lambda \mathrm{w} \cdot \llbracket \text { every girl besides Ann and Bella came } \rrbracket^{g, w} \\ \lambda \mathrm{w} \cdot \llbracket \text { every girl besides Ann came } \rrbracket^{g, w} \\ \lambda \mathrm{w} \cdot \llbracket \text { every girl besides Bella came } \rrbracket^{g, w} \\ \lambda \mathrm{w} \cdot \llbracket \text { every girl came } \rrbracket^{g, w}\end{array}\right\}$

Exh asserts the prejacent and negates all the other alternatives as they are all innocently excludable. The overall interpretation predicted for (31a) is in (32). Given the truth-conditional content in (32a), the fact that the negative inference applies to both Ann and Bella is captured: all girls who are not Ann and Bella came, but there is a girl who is not Ann who did not come (this must be Bella) and there is a girl who is not Bella who did not come (this must be Ann). The presupposition introduced by besides captures the containment inference for both Ann and Bella.
a. $\quad \llbracket(31 a) \rrbracket^{g, w}=\mathrm{T}$ iff
$\forall \mathrm{x}\left[\left(\mathrm{x}\right.\right.$ is a $\operatorname{girl}_{w} \& \neg$ OVERLAP(Ann+Bella)(x)) $\rightarrow \mathrm{x}$ came $\left._{w}\right]$ \&
$\exists \mathrm{y}\left[\left(\mathrm{y}\right.\right.$ is a $\left.\left.\operatorname{girl}_{w} \& \neg \operatorname{OVERLAP}(\mathrm{Ann})(\mathrm{y})\right) \& \neg \mathrm{y} \mathrm{came}_{w}\right]$ \&
$\exists \mathrm{z}\left[\left(\mathrm{z}\right.\right.$ is a $\operatorname{girl}_{w} \& \neg \operatorname{OVERLAP}($ Bella $\left.\left.)(\mathrm{z})\right) \& \neg \mathrm{z} \mathrm{came} w\right]$ \&
$\exists \mathrm{x}\left[\mathrm{x}\right.$ is a $\operatorname{girl}_{w} \& \neg \mathrm{x}$ came $\left._{w}\right]$
b. $\llbracket(31 a) \rrbracket^{g, w}$ is defined only if Ann and Bella are girls ${ }_{w}$

There is another way of constructing alternatives that would result in the same overall denotation for the sentence. Specifically, one could say that besides itself is focus-marked (as shown in (33a)) and the alternatives are formed by substitution of besides with its alternative including. Then, assuming that the subdomain alternatives for the plural are available, the list of alternatives is like it is shown in (33b).
a. Every girl besides $_{F}$ Ann and Bella came.
b. $\quad\left\{\begin{array}{l}\lambda \mathrm{w} . \llbracket \text { every girl besides Ann and Bella came } \rrbracket^{g, w} \\ \lambda \mathrm{w} . \llbracket \text { every girl besides Ann came } \rrbracket^{g, w} \\ \lambda \mathrm{w} . \llbracket \text { every girl besides Bella came } \rrbracket^{g, w} \\ \\ \lambda \mathrm{w} . \llbracket \text { every girl including Ann and Bella came } \rrbracket^{g, w}\end{array}\right\}$

As far as we can see, both options are open possibilities, and since they lead to the same resulting interpretation we remain agnostic about which one is the right way to go.

For simplicity of exposition, we will only consider cases where the individual introduced by besides is atomic from now on, but the treatment can always be extended to plural cases along the lines shown above.

2.2. Besides and no

Just like the standard approach to the semantics of exceptives, this approach applies to a universal and a negative quantifier in a unified way. The set of the alternatives for the prejacent of Exh in (34b) is as shown in (34c).
a. No girl besides Ann came.
b. [$\mathrm{IP}_{2} \operatorname{Exh}_{\mathrm{ALT}}\left[\mathrm{IP}_{1}\left[\right.\right.$ no [girl [besides Ann] $\left.\left.{ }_{\mathrm{F}}\right]\right]$ came]]
c. $\quad\left\{\begin{array}{l}\lambda \mathrm{w} \cdot \llbracket \text { no girl besides Ann came } \rrbracket^{g, w} \\ \lambda \mathrm{w} \cdot \llbracket \text { no girl came } \rrbracket^{g, w}\end{array}\right\}$

The predicted interpretation for the sentence is given in (35). The two conjuncts taken together entail that Ann is the girl who came. If no girl who is not Ann came, but some girl came (overall), this girl can only be Ann. This correctly captures the fact that (34a) comes with the positive inference that Ann came.

> a. $\quad \llbracket(34 b) \rrbracket^{g, w}=\mathrm{T}$ iff $\neg \exists \mathrm{y}\left[\left(\mathrm{y}\right.\right.$ is a $\left.\operatorname{girl}_{w} \& \neg \operatorname{OVERLAP}^{2}(\mathrm{Ann})(\mathrm{y})\right) \& \mathrm{y}$ came $\left._{w}\right]$ $\& \exists \mathrm{x}\left[\mathrm{x}\right.$ is a $\operatorname{girl}_{w} \&{\left.\mathrm{x} \operatorname{came}_{w}\right]}^{\text {b. }} \quad \llbracket(34 b) \rrbracket^{g, w}$ is defined only if Ann is a girl_{w}

2.3. Besides and exactly

This approach is straightforwardly extendable to the non-monotonic quantifier exactly n. Like with the negative quantifier, we predict that besides gets the additive reading in such cases, which correctly captures the fact that (36a) comes with the positive inference that Ann came. (36b) provides the assumed LF for (36a). The alternatives used by Exh are given in (36c).
a. Exactly one girl besides Ann came.
b. [$\mathrm{IP}_{2} \operatorname{Exh}_{\mathrm{ALT}}\left[\mathrm{IP}_{1}\right.$ [exactly one [girl [besides Ann] $\left.{ }_{\mathrm{F}}\right]$] came]]
c. $\left\{\begin{array}{l}\lambda \mathrm{w} . \llbracket \text { exactly one girl besides Ann came } \rrbracket^{g, w} \\ \lambda \mathrm{w} . \llbracket \text { exactly one girl came } \rrbracket^{g, w}\end{array}\right\}$

Mayr—Vostrikova

For concreteness, we adopt the lexical entry for exactly given in (37). Exactly composes with a degree and two predicates of individuals and returns truth if and only if the degree is equal to the maximum cardinality for which a plurality satisfying both predicates exists. The definition for the metalanguage function max, which is employed in the denotation of exactly, is provided in (37b): this is a function that applies to a predicate of degrees and returns the unique largest degree for which the predicate holds, if such a degree exists; otherwise, it returns $0 .{ }^{8}$

$$
\begin{equation*}
\text { a. } \quad \llbracket \text { exactly } \rrbracket^{g, w}=\lambda \mathrm{n}_{d} \cdot \lambda \mathrm{f}_{<e t\rangle} \cdot \lambda \mathrm{g}_{<e t>} \cdot \max \left(\lambda \mathrm{d}_{d} \cdot \exists \mathrm{x}[|\mathrm{x}|=\mathrm{d} \& \mathrm{f}(\mathrm{x}) \& \mathrm{~g}(\mathrm{x})]\right)=\mathrm{n} \tag{37}
\end{equation*}
$$

b. $\quad \max \left(\mathrm{P}_{<d t\rangle}\right)=\imath \mathrm{n}[\mathrm{P}(\mathrm{n}) \& \forall \mathrm{~m}[\mathrm{P}(\mathrm{m}) \rightarrow \mathrm{m} \leq \mathrm{n}]]$ if $\exists \mathrm{d}[\mathrm{P}(\mathrm{d})], 0$ otherwise

The prejacent of Exh gets the denotation in (38): it is true if and only if exactly one girl who is not Ann came.

$$
\begin{equation*}
\left.\llbracket I P_{1}\right]^{g, w}=\mathrm{T} \text { iff } \max \left(\lambda \mathrm{d} . \exists \mathrm{x}\left[|\mathrm{x}|=\mathrm{d} \& \mathrm{x} \text { is a } \operatorname{girl}_{w} \& \neg \operatorname{OVERLAP}(\operatorname{Ann})(\mathrm{x}) \& \mathrm{x} \operatorname{came}_{w}\right]\right)=1 \tag{38}
\end{equation*}
$$

Exh asserts the prejacent and negates the only alternative in (36c) distinct from the prejacent. The result of this is in (39): the sentence is predicted to be true if and only if exactly one girl who is not Ann came, but not exactly one girl came overall. Since addition Ann to the domain could not have possibly made the number of girls who came smaller than it was without taking Ann into consideration, (39) can hold only if Ann came. The containment inference is captured by the presupposition introduced by besides.

$$
\begin{align*}
& \llbracket(36 b) \rrbracket^{g, w}=\mathrm{T} \text { iff } \tag{39}\\
& \max \left(\lambda \mathrm{d} \cdot \exists \mathrm{x}\left[|\mathrm{x}|=\mathrm{d} \& \mathrm{x} \text { is a } \operatorname{gir}_{w} \& \neg \operatorname{OVERLAP}^{2}(\mathrm{Ann})(\mathrm{x}) \& \mathrm{x} \operatorname{came}_{w}\right]\right)=1 \& \\
& \max \left(\lambda \mathrm{~m} . \exists \mathrm{y}\left[|\mathrm{y}|=\mathrm{m} \& \mathrm{y} \text { is a } \operatorname{girl}_{w} \& \mathrm{y} \operatorname{came}_{w}\right]\right) \neq 1 \\
& \llbracket(36 b) \rrbracket^{g, w} \text { is defined only if Ann is a } \operatorname{girl}_{w}
\end{align*}
$$

The theory we have developed here essentially implements von Fintel's (1989) proposal for besides in terms of domain subtraction and Exh. This theory is also considered by Gajewski (2013) for exceptives like but but is rejected because it incorrectly predicts their compatibility with exactly.

In the treatment we propose the positive inference of besides observed with negative quantifiers and numerals has the same nature. Thus, in the approach we develop here there are no separate paths for the exceptive reading with no and the additive reading with exactly. In these cases, along with every, the inference is the result of conjoining a quantificational claim with domain subtraction and the negation of the claim without subtraction. Whether the inference is positive or negative depends on the properties of a quantifier. We propose that there is no exceptiveadditive ambiguity, just like there is no ambiguity of exceptives with negative and universal quantifiers.

In what follows, we will extend this treatment to all modified numerals, including the upward entailing ones, which were previously considered a major challenge for this approach.

2.4. Besides and upward entailing quantifiers

An attempt to give a parallel LF to the at least n case in (40a) does not lead to a well-formed meaning. This is because the quantifier is upward monotonic and both alternatives in (40b) are entailed by the prejacent. This means that Exh cannot negate anything in this case and

[^6]its application is predicted to be vacuous. Thus, this LF is predicted to be ruled out by the same non-vacuity constraint that rules out the use of exceptive but with upward monotonic quantifiers.
a. $\left.\quad\left[\mathrm{IP}_{2} \operatorname{Exh}_{\mathrm{ALT}}\left[\mathrm{IP}_{1} \text { [at least one [girl [besides Ann] }\right]_{\mathrm{F}}\right]\right]$ came]]

b. $\quad\left\{\begin{array}{l}\lambda \mathrm{w} \cdot \llbracket \text { at least one girl besides Ann came } \rrbracket^{g, w} \\ \lambda \mathrm{w} \cdot \llbracket \text { at least one girl came } \rrbracket^{g, w}\end{array}\right\}$

Our proposal is built on the idea that modified numerals are quantifiers over degrees and as such they must undergo quantifier raising to be interpreted (see Hackl 2000; Mayr and Meyer 2014; Buccola and Spector 2016 on extending the idea of quantificational treatment of degree constructions along the lines proposed in (Heim 2000) to modified numerals).

At least one has the meaning given in (41b), which is obtained by putting together the meanings of at least in (41a) and one. Like any degree quantifier, it is looking to compose with a predicate of degrees. It returns truth if and only if there exists a degree greater than or equal to 1 of which the predicate of degrees is true.
a. $\quad \llbracket$ at least $\rrbracket^{g, w}=\lambda \mathrm{n}_{d} \cdot \lambda \mathrm{f}_{<d t>} . \exists \mathrm{d}[\mathrm{d} \geq \mathrm{n} \& \mathrm{f}(\mathrm{d})]$
b. \quad at least one $\rrbracket^{g, w}=\lambda \mathrm{f}_{<d t>} . \exists \mathrm{d}[\mathrm{d} \geq 1 \& \mathrm{f}(\mathrm{d})]$

Given this semantics, at least one cannot be interpreted in its base position in (42a) because of the type mismatch. It undergoes quantifier raising and leaves a trace of type d. We propose that this trace is interpreted with a silent exactly below at least one left behind by QR, as shown in (42b). The numerical abstractor 1 is merged below the landing site of at least one.
a. At least one girl came.
b. [IP_{2} at least one [${ }_{\mathrm{IP}}^{1} 11$ [exactly d_{1} girl came $\left.\left.]\right]\right]$

Exactly has its standard denotation introduced in the previous section and repeated in (43) for convenience. It composes with the trace, then with the predicate denoted by girl and with the predicate denoted by came.

$$
\begin{equation*}
\llbracket \text { exactly }]^{g, w}=\lambda \mathrm{n}_{d} \cdot \lambda \mathrm{f}_{<e t>} \cdot \lambda \mathrm{g}_{<e t\rangle} \cdot \max \left(\lambda \mathrm{d}_{d} \cdot \exists \mathrm{x}[|\mathrm{x}|=\mathrm{d} \& \mathrm{f}(\mathrm{x}) \& \mathrm{~g}(\mathrm{x})]\right)=\mathrm{n} \tag{43}
\end{equation*}
$$

With these assumptions, the sister of at least one denotes the predicate of degrees shown in (44): this predicate is true of a degree if and only if exactly this many girls came.

$$
\begin{equation*}
\llbracket I P_{1} \rrbracket^{g, w}=\lambda \mathrm{n} \cdot \max \left(\lambda \mathrm{~d}_{d} . \exists \mathrm{x}\left[|\mathrm{x}|=\mathrm{d} \& \mathrm{x} \text { is a } \operatorname{girl}_{w} \& \mathrm{x} \operatorname{came}_{w}\right)=\mathrm{n}\right. \tag{44}
\end{equation*}
$$

Given this, the overall predicted meaning for (42b) is as shown in (45). The sentence is predicted to be true if and only if there is a degree equal to 1 or larger such that exactly this many girls came. This captures the meaning of the sentence: one or more girls came.

$$
\begin{equation*}
\llbracket(42 b) \rrbracket^{g, w}=\mathrm{T} \text { iff } \exists \mathrm{d}\left[\mathrm{~d} \geq 1 \& \max \left(\lambda \mathrm{n} . \exists \mathrm{x}\left[|\mathrm{x}|=\mathrm{n} \& \mathrm{x} \text { is a } \operatorname{girl}_{w} \& \mathrm{x} \mathrm{came}_{w}\right)=\mathrm{d}\right]\right. \tag{45}
\end{equation*}
$$

Now, given that there is a constituent in the LF with the meaning of exactly and that we have an account of the interaction of exactly and besides, we can compute the additive inference of besides at the level of this constituent. The LF that we propose for (46a) is shown in (46b). As before, besides forms a constituent with the predicate denoted by the restrictor. Exh is merged below the abstraction over degrees and below the upward entailing quantifier at least one.
a. At least one girl besides Ann came.
b. $\quad\left[\mathrm{IP}_{3}\right.$ at least one $\left[{ }_{\left[\mathrm{IP}_{2}\right.} 1\left[{ }_{\left[\mathrm{IP}_{1}\right.} \operatorname{Exh}_{\mathrm{ALT}}\left[\text { exactly } \mathrm{d}_{1} \text { girl [besides Ann }\right]_{\mathrm{F}}\right.\right.$ came $\left.\left.\left.]\right]\right]\right]$

The predicted meaning of IP_{1} is given in (47). It is true if and only if the degree denoted by $\mathrm{g}(1)$ is such that exactly this many girls came if Ann is not taken into account and not exactly this many girls came if Ann is included.

$$
\begin{align*}
& \left.\llbracket I P_{1}\right]^{g, w}=\mathrm{T} \text { iff } \tag{47}\\
& \max \left(\lambda \mathrm{d}_{d} \cdot \exists \mathrm{x}\left[|\mathrm{x}|=\mathrm{d} \& \mathrm{x} \text { is a } \operatorname{girl}_{w} \& \neg \operatorname{OVERLAP}^{2}(\mathrm{Ann})(\mathrm{x}) \& \mathrm{x} \operatorname{came}_{w}\right]\right)=\mathrm{g}(1) \& \\
& \max \left(\lambda \mathrm{n}_{d} \cdot \exists \mathrm{y}\left[|\mathrm{y}|=\mathrm{n} \& \mathrm{y} \text { is a } \operatorname{girl}_{w} \& \mathrm{y} \operatorname{came}_{w}\right]\right) \neq \mathrm{g}(1)
\end{align*}
$$

Accordingly, the sister of at least one is the predicate of degrees formed by abstraction over that degree, shown in (48).

$$
\begin{gather*}
\left.\llbracket I P_{2} \rrbracket^{g, w}=\lambda \mathrm{n} \cdot \max \left(\lambda \mathrm{~d}_{d} \cdot \exists \mathrm{x}\left[|\mathrm{x}|=\mathrm{d} \& \mathrm{x} \text { is } \operatorname{airl}_{w} \& \neg \operatorname{OVERLAP}_{(\operatorname{Ann})}\right)(\mathrm{x}) \& \mathrm{x} \operatorname{came}_{w}\right]\right)=\mathrm{n} \tag{48}\\
\& \max \left(\lambda \mathrm{~m}_{d} \cdot \exists \mathrm{y}\left[|\mathrm{y}|=\mathrm{m} \text { \& } \mathrm{y} \text { is a } \operatorname{girl}_{w} \& \mathrm{y} \operatorname{came}_{w}\right]\right) \neq \mathrm{n}
\end{gather*}
$$

At least one composes with this predicate of degrees and states that a degree satisfying this predicate exists and it is equal to 1 or larger. The overall meaning predicted for (46b) is shown in (49). The sentence is predicted to be true iff there is a number such that if we do not count Ann exactly this many girls came and if we count Ann not exactly this many girls came and this number is equal to 1 or larger. This correctly captures the overall meaning of this sentence including its additive inference. Adding Ann to the domain while keeping everything else the same cannot result in a smaller number of girls in the domain who came. Thus, the only way (49) can hold is if Ann came.

$$
\begin{align*}
& \llbracket(46 b) \rrbracket^{g, w}=\mathrm{T} \text { iff } \tag{49}\\
& \exists \mathrm{n}\left[\mathrm{n} \geq 1 \& \max \left(\lambda \mathrm{~d}_{d} \cdot \exists \mathrm{x}\left[|\mathrm{x}|=\mathrm{d} \& \mathrm{x} \text { is a } \operatorname{girl}_{w} \& \neg \operatorname{OVERLAP}^{2}(\mathrm{Ann})(\mathrm{x}) \& \mathrm{x} \text { came }_{w}\right]\right)=\mathrm{n}\right. \\
& \left.\quad \& \max \left(\lambda \mathrm{~m}_{d} \cdot \exists \mathrm{y}\left[|\mathrm{y}|=\mathrm{m} \& \mathrm{y} \text { is a } \operatorname{girl}_{w} \& \mathrm{y} \operatorname{came}_{w}\right]\right) \neq \mathrm{n}\right] \\
& \llbracket(46 b) \rrbracket^{g, w} \text { is defined only if Ann is a } \operatorname{girl}_{w}
\end{align*}
$$

The treatment we propose here crucially relies on the assumption that there is a constituent with the meaning exactly left behind by at least one. Now we will address the question of whether this assumption is well-grounded.

It is standardly assumed that degree quantifiers leave behind many and not exactly as shown in (50a) (Heim 2000; Hackl 2000). Many is an existential quantifier with the semantics given in (50b). As many is an upward monotonic quantifier, our approach predicts that besides is not able to operate on it.
a. [IP_{2} at least one [$\mathrm{IP}_{1} 1$ [many d_{1} girl came]]]
b. $\quad \llbracket m a n y \rrbracket^{g, w}=\lambda \mathrm{n}_{d} \cdot \lambda \mathrm{f}_{<e t\rangle} \cdot \lambda \mathrm{g}_{<e t\rangle} . \exists \mathrm{x}[|\mathrm{x}|=\mathrm{n} \& \mathrm{f}(\mathrm{x}) \& \mathrm{~g}(\mathrm{x})]$

However, the approach we propose here is compatible with the idea that a degree quantifier leaves behind many. Many can be turned into exactly by an operator that contributes maximality. This is evident from the denotation of exactly in (43) we employ here, which includes both the existential quantifier and maximality as its meaning ingredients.

The idea that the existential many can be turned into exactly by inserting an operator that contributes maximality was independently proposed by Buccola and Spector (2016) for modified numerals. In a nutshell, they propose that a modified numeral can undergo QR twice, as shown in (51a). First, it moves above the existential many, creating a degree predicate within its scope.

Then, it undergoes a second movement, generating another predicate of degrees. The trace left behind by the second movement undergoes type-shifting through the shifter MAX shown in (51b), which uses the same max function we employed in the denotation of exactly.
a. [IP_{2} at least one [2 [$\mathrm{d}_{2 \mathrm{MAX}}\left[\mathrm{IP}_{1} 1\right.$ [many d_{1} girl came $\left.\left.\left.\left.]\right]\right]\right]\right]$
b. $\quad \llbracket M A X \rrbracket^{g, w}=\lambda \mathrm{d}_{d} . \lambda \mathrm{P}_{<d t>} . \max (\mathrm{P})=\mathrm{d}$

Alternatively, the same result can be achieved by inserting Exh as shown in (52) and forming the alternatives by substituting the trace by its focus alternatives, similar to how the meaning of exactly is derived for bare numerals like one girl.

```
[IP2 at least one [IPP1 1 Exh [ many d diF girl came ]]]
```

We propose that whenever besides appears to operate on an upward monotonic quantifier, it is actually operating on the silent exactly within the scope of this quantifier.

Besides with another type of upward monotonic numerals - more than n - can also be treated in a straightforward manner along the lines suggested for at least one. The proposed LF for (53a) is given in (53b).
a. More than one girl besides Ann came.
b. $\quad\left[\mathrm{IP}_{3}\right.$ more than one $\left[{ }_{\left[P_{2}\right.} 1\left[\text { IP }_{1} \text { Exh }_{\mathrm{ALT}} \text { [exactly } \mathrm{d}_{1} \text { girl [besides Ann }\right]_{\mathrm{F}}\right.$ came $\left.\left.\left.]\right]\right]\right]$

The resulting interpretation is given in (54). The sentence is predicted to be true if and only if there is a number such that if we do not include Ann then exactly this many girls came and if we include her not exactly this many girls came and this number is larger than 1.

$$
\begin{align*}
& \llbracket(53 b) \rrbracket^{g, w}=\mathrm{T} \text { iff } \tag{54}\\
& \exists \mathrm{n}\left[\mathrm{n}>1 \& \max \left(\lambda \mathrm{~d}_{d} \cdot \exists \mathrm{x}\left[|\mathrm{x}|=\mathrm{d} \& \mathrm{x} \text { is } \operatorname{girl}_{w} \& \neg \operatorname{OVERLAP}(\operatorname{Ann})(\mathrm{x}) \& \mathrm{x} \operatorname{came}_{w}\right]\right)=\mathrm{n}\right. \\
& \left.\quad \& \max \left(\lambda \mathrm{~m}_{d} \cdot \exists \mathrm{y}\left[|\mathrm{y}|=\mathrm{m} \& \mathrm{y} \text { is a } \operatorname{girl}_{w} \& \mathrm{y} \operatorname{came}_{w}\right]\right) \neq \mathrm{n}\right] \\
& \llbracket(53 b) \rrbracket^{g, w} \text { is defined only if Ann is a } \operatorname{girl}_{w}
\end{align*}
$$

We extend this approach to cases when besides seems to operate on an indefinite like in (55a). Thus, they get the LFs shown in (55b). We propose that some can be interpreted as at least one, as shown in (55c), when the NP predicate is singular, or as more than one, as shown in (55d), when the NP predicate is plural. Thus, we suggest that indefinites are degree quantifiers, they do not quantify over individuals like it is standardly assumed (or at least they can be degree quantifiers). We apply this treatment to several in (55e) as well: it gets the same interpretation as more than one. In all these cases, the semantic contribution of besides is computed on the constituent with the meaning exactly, thus correctly predicting the additive inference.
a. Some girl(s) besides Ann came.
b. $\quad\left[\mathrm{IP}_{3}\right.$ Some $\left[\mathrm{IP}_{2} 1\left[{ }_{\left[\mathrm{IP}_{1}\right.} \operatorname{Exh}_{\mathrm{ALT}}\left[\text { exactly } \mathrm{d}_{1} \text { girl(s) } \text { [besides Ann }\right]_{\mathrm{F}}\right.\right.$ came $\left.\left.\left.]\right]\right]\right]$
c. $\quad \llbracket s o m e \rrbracket^{g, w}=\lambda \mathrm{f}_{<d t>} . \exists \mathrm{d}[\mathrm{d} \geq 1 \& \mathrm{f}(\mathrm{d})]$
d. \llbracket some $\rrbracket^{g, w}=\lambda \mathrm{f}_{<d t>} . \exists \mathrm{d}[\mathrm{d}>1 \& \mathrm{f}(\mathrm{d})]$
e. Several girls besides Ann came.
2.5. Besides and downward monotonic numerals

The account presented here extends straightforwardly to downward entailing modified numerals like fewer than n and at most n.

Mayr—Vostrikova

We follow (Buccola and Spector 2016) in treating them as existential quantifiers over degrees as shown in (56) and (57), similarly to at least n and more than n.
a. $\quad \llbracket$ fewer than $\rrbracket^{g, w}=\lambda \mathrm{n}_{d} \cdot \lambda \mathrm{f}_{<d t>} . \exists \mathrm{m}[\mathrm{m}<\mathrm{n} \& \mathrm{f}(\mathrm{m})]$
b. \llbracket fewer than $t w o \rrbracket^{g, w}=\lambda \mathrm{f}_{<d t>}>\cdot \exists \mathrm{m}[\mathrm{m}<2 \& \mathrm{f}(\mathrm{m})]$
a. \quad at most $\rrbracket^{g, w}=\lambda \mathrm{n}_{d} \cdot \lambda \mathrm{f}_{<d t\rangle} . \exists \mathrm{m}[\mathrm{m} \leq \mathrm{n} \& \mathrm{f}(\mathrm{m})]$
b. \quad at most two $\rrbracket^{g, w}=\lambda \mathrm{f}_{<d t\rangle} . \exists \mathrm{m}[\mathrm{m} \leq 2 \& \mathrm{f}(\mathrm{m})]$

Buccola and Spector (2016) show that if the sister of a degree quantifier has the maximality operator in it, the overall predicted interpretation of a sentence containing fewer than n or at most n with the semantics in (57) and (56) is equivalent to the interpretation resulting from applying the lexical entries in (58) (where they are treated as negative quantifiers) to a constituent without the maximality operator.
a. \quad fewer than two $\rrbracket^{g, w}=\lambda \mathrm{f}_{<d t\rangle} . \neg \exists \mathrm{m}[\mathrm{m} \geq 2 \& \mathrm{f}(\mathrm{m})]$
b. \quad at most two $\rrbracket^{g, w}=\lambda \mathrm{f}_{<d t\rangle} . \neg \exists \mathrm{m}[\mathrm{m}>2 \& \mathrm{f}(\mathrm{m})]$

The truth conditions of (59a) can be expressed as (59b) or, equivalently, as (59c). Both entries make the correct prediction that the sentence is true if 0 or 1 girl came and it it false if 2 or more girls came. (59b) states that there is no degree equal to 2 or larger than 2 such that there is a plurality of girls who came with this cardinality. (59c) says that the cardinality of the maximal plurality of girls who came is 0 or 1 . This amounts to the same thing.
a. Fewer than two girls came.
b. $\quad \neg \exists \mathrm{d}\left[\mathrm{d} \geq 2 \& \exists \mathrm{x}\left[|\mathrm{x}|=\mathrm{d} \& \mathrm{x}\right.\right.$ is a $\left.\left.\operatorname{girl}_{w} \& \mathrm{x} \mathrm{came}_{w}\right]\right]$
c. $\quad \exists \mathrm{d}\left[\mathrm{d}<2 \& \max \left(\lambda \mathrm{n} . \exists \mathrm{x}\left[|\mathrm{x}|=\mathrm{n} \& \mathrm{x}\right.\right.\right.$ is a $\left.\left.\left.\operatorname{girl}_{w} \& \mathrm{x} \mathrm{came}_{w}\right]\right)=\mathrm{d}\right]$

Given the discussion in the previous subsection, we propose that (60a) has the LF shown in (60b) (we are glossing over the internal composition exactly here).
(60) a. Fewer than two girls besides Ann came.
b. [IP_{3} fewer than two [$\mathrm{IP}_{2} 1$ [IP1 $\operatorname{Exh}_{\text {ALt }}\left[\text { exactly } d_{1} \text { girl [besides Ann] }\right]_{\mathrm{F}}$ came]]]]

The sister of fewer than two has the denotation shown in (61). This is a predicate of degrees that is true of degrees for which it holds that exactly this many girls came without counting Ann and not this many girls came overall.

$$
\begin{gather*}
\left.\llbracket I P_{2}\right]^{g, w}=\lambda \mathrm{n} \cdot \max \left(\lambda \mathrm{~d} \cdot \exists \mathrm{x}\left[|\mathrm{x}|=\mathrm{d} \& \mathrm{x} \text { is a } \operatorname{girl}_{w} \& \neg \text { OVERLAP }^{2}(\mathrm{Ann})(\mathrm{x}) \& \mathrm{x} \operatorname{came}_{w}\right]\right)=\mathrm{n} \tag{61}\\
\& \max \left(\lambda \mathrm{~m} \cdot \exists \mathrm{y}\left[|\mathrm{y}|=\mathrm{m} \text { \& } \text { is a } \operatorname{girl}_{w} \& \mathrm{y} \operatorname{came}_{w}\right]\right) \neq \mathrm{n}
\end{gather*}
$$

Fewer than two with the denotation in (56b) composes with this predicate and states that such degree exists and it is 0 or 1 . The predicted truth conditions for (60b) are given in (62). The sentence is predicted to be true if and only if either exactly zero girls who are not Ann came and not exactly zero came if we take Ann into account or exactly one girl who is not Ann came and not exactly one if we count Ann. Adding Ann to the domain while keeping everything else the same cannot make the overall number of the girls who came smaller, it can only make this number larger. Thus, we correctly capture the fact that the sentence in (60a) comes with the positive inference that Ann came.

$$
\begin{equation*}
\llbracket(60 b) \rrbracket^{g, w}=\mathrm{T} \text { iff } \tag{62}
\end{equation*}
$$

$$
\begin{aligned}
& \exists \mathrm{n}\left[\mathrm{n}<2 \& \max \left(\lambda \mathrm{~d} . \exists \mathrm{x}\left[|\mathrm{x}|=\mathrm{d} \& \mathrm{x} \text { is a } \operatorname{girl}_{w} \& \neg \operatorname{OVERLAP}_{(A n n}\right)(\mathrm{x}) \& \mathrm{x} \text { came }_{w}\right]\right)=\mathrm{n} \\
& \left.\quad \& \max \left(\lambda \mathrm{~m} \cdot \exists \mathrm{y}\left[|\mathrm{y}|=\mathrm{m} \& \mathrm{y} \text { is a } \operatorname{girl}_{w} \& \mathrm{y} \operatorname{came}_{w}\right]\right) \neq \mathrm{n}\right]
\end{aligned}
$$

The same goes for the at most two case in (63a). It has a parallel LF shown in (63b). At most two composes with the same predicate of degrees shown in (61). At most two states that such a degree exists and it is equal to 0,1 or 2 . The predicted truth conditions are in (64). They capture the additive inference in exactly the same way.
a. At most two girls besides Ann came.
b. [IP_{3} at most two [$\mathrm{IP}_{2} 1$ [IP1 $\operatorname{Exh}_{\text {ALT }}$ [exactly d_{1} girl [besides Ann] $]_{\mathrm{F}}$ came]]]]

$$
\begin{align*}
& \llbracket(63 b) \rrbracket^{g, w}=\mathrm{T} \text { iff } \tag{64}\\
& \exists \mathrm{n}\left[\mathrm{n} \leq 2 \& \max \left(\lambda \mathrm{~d} . \exists \mathrm{x}\left[|\mathrm{x}|=\mathrm{d} \& \mathrm{x} \text { is a } \operatorname{girl}_{w} \& \neg \operatorname{OVERLAP}^{2}(\operatorname{Ann})(\mathrm{x}) \& \mathrm{x} \operatorname{came}_{w}\right]\right)=\mathrm{n}\right. \\
& \left.\quad \& \max \left(\lambda \mathrm{~m} . \exists \mathrm{y}\left[|\mathrm{y}|=\mathrm{m} \& \mathrm{y} \text { is a } \operatorname{girl}_{w} \& \mathrm{y} \operatorname{came}_{w}\right]\right) \neq \mathrm{n}\right]
\end{align*}
$$

Given our assumptions about the contribution of besides and Exh, the decomposition account of modified numerals is the only way to produce a well-formed meaning for an upward entailing quantifier. However, the situation is different with downward entailing modified numerals. The application of Exh is not predicted to be vacuous if the sentence with fewer than two in (60a) gets the LF shown in (65), where Exh scopes over the entire modified numeral.
(65) $\quad\left[\mathrm{IP}_{3} \operatorname{Exh}_{\mathrm{ALT}}\left[\mathrm{IP}_{2} \text { fewer than two [} \mathrm{IP}_{1} 1 \text { [exactly } \mathrm{d}_{1} \text { girl [besides Ann] }\right]_{\mathrm{F}}\right.$ came $\left.\left.\left.]\right]\right]\right]$

The meaning resulting from interpreting of this LF is shown in (66). The sentence is predicted to be true if 0 or 1 is the maximal number of girls who are not Ann who came, but neither 0 nor 1 is the maximal number of girls who came overall. This is possible if Ann came and exactly one other girl came. This reading is strictly stronger than the reading resulting from the LF in (60b) and it is hard to empirically establish if this is also a possible LF for this sentence. It is definitely not the only available reading: the sentence does not require that exactly one girl who is not Ann came, it is compatible with Ann being the only girl who came.

$$
\begin{align*}
& \llbracket(65)]^{g, w}=\mathrm{T} \text { iff } \tag{66}\\
& \exists \mathrm{n}\left[\mathrm{n}<2 \& \max \left(\lambda \mathrm{~d} \cdot \exists \mathrm{x}\left[|\mathrm{x}|=\mathrm{d} \& \mathrm{x} \text { is a } \operatorname{girl}_{w} \& \neg \operatorname{OVERLAP}^{2}(\operatorname{Ann})(\mathrm{x}) \& \mathrm{x} \text { came }_{w}\right]\right)=\mathrm{n}\right] \\
& \& \neg \exists \mathrm{~m}\left[\mathrm{~m}<2 \& \max \left(\lambda \mathrm{~d}^{\prime} \cdot \exists \mathrm{y}\left[|\mathrm{y}|=\mathrm{d}^{\prime} \& \mathrm{y} \text { is a } \operatorname{girl}_{w} \& \mathrm{y} \text { came } \mathrm{c}_{w}\right]\right)=\mathrm{m}\right]
\end{align*}
$$

Similarly, the application of Exh is not predicted to be vacuous if sentence with at most in (63a) gets the LF where Exh scopes over the entire modified numeral, as shown in (67).
(67) $\quad\left[\mathrm{IP}_{3} \operatorname{Exh}_{\mathrm{ALT}\left[\mathrm{IP}_{2}\right.}\right.$ at most two girl $\left[\mathrm{IP}_{1} 1 \text { [exactly } \mathrm{d}_{1} \text { girl [besides Ann }\right]_{\mathrm{F}}$ came $\left.\left.\left.]\right]\right]\right]$

The sentence is predicted to be true if and only if at most two girls came if we don't count Ann and not at most two girls came overall. This is possible if Ann came along with exactly two other girls. However, at most n numerals mandatorily come with the uncertainty inference (Geurts and Nouwen 2007; Nouwen 2010; Mayr and Meyer 2014) and the sentence in (68a) definitely cannot mean that exactly two girls who are not Ann came. This LF is ruled out due to its incompatibility with the uncertainty inference.

$$
\begin{align*}
& \llbracket(67) \rrbracket^{g, w}=\mathrm{T} \text { iff } \tag{68}\\
& \exists \mathrm{n}\left[\mathrm{n} \leq 2 \& \max \left(\lambda \mathrm{~d} \cdot \exists \mathrm{x}\left[|\mathrm{x}|=\mathrm{d} \& \mathrm{x} \text { is a } \operatorname{girl}_{w} \& \neg \operatorname{OVERLAP}^{2}(\operatorname{Ann})(\mathrm{x}) \& \mathrm{x} \text { came }{ }_{w}\right]\right)=\mathrm{n}\right] \\
& \& \neg \exists \mathrm{~m}\left[\mathrm{~m} \leq 2 \& \max \left(\lambda \mathrm{~d}^{\prime} \cdot \exists \mathrm{y}\left[|\mathrm{y}|=\mathrm{d}^{\prime} \& \mathrm{y} \text { is a } \operatorname{girl}_{w} \& \mathrm{y} \text { came } \mathrm{c}_{w}\right]\right)=\mathrm{m}\right]
\end{align*}
$$

Mayr—Vostrikova

2.6. The difference between exceptive and exceptive-additive constructions

The crucial difference between exceptives and exceptive-additives lies in the construction of alternatives. As discussed in Section 1, we adopt Hirsch's (2016) proposal for exceptives, where the alternatives are formed by substituting the DP following the exceptive by other DPs of at most equal complexity. Hirsch's approach correctly captures the fact that exceptives are incompatible with exactly, as illustrated in (69). The predicted LF for (69a) is shown in (69b).
a. *Exactly two girls but/except Ann came.
b. $\quad\left[\mathrm{IP}_{2} \operatorname{Exh}_{\mathrm{ALT}}\left[\mathrm{IP}_{1}\right.\right.$ [exactly two girls but $\mathrm{Ann}_{\mathrm{F}}$ came $\left.\left.]\right]\right]$

Assuming again that there are four salient girls (Ann, Bella, Carol, Denise), the alternatives for Exh in (69b) have the meanings shown in (70). The alternative in (70a) is the prejacent. None of the remaining alternatives is innocently excludable. We can negate maximally two of the alternatives together with the assertion of the prejacent. For example, the negations of (70b) and (70c) are compatible with the assertion of (70a) if only Bella and Carol came because in \{Ann, Carol, Denise $\}$ and \{Ann, Bella, Denise $\}$ there is only one girl who came and not two. But the alternative in (70d) cannot be negated as both girls who came (Bella and Carol) are in \{Ann, Bella, Carol\}. The same reasoning applies to other alternatives: none of them is in every maximal set of alternative propositions that can be negated together with the assertion of the prejacent. Consequently, the application of Exh is predicted to be vacuous, and this LF is ruled out by the non-vacuity constraint.
a. $\quad \lambda \mathrm{w} \cdot \max \left(\lambda \mathrm{d} . \exists \mathrm{x}\left[|\mathrm{x}|=\mathrm{d} \& \mathrm{x} \in\{\right.\right.$ Bella, Carol, Denise $\left.\} \& \mathrm{x} \mathrm{came}_{w}\right)=2$
b. $\quad \lambda_{\mathrm{w} \cdot \max }\left(\lambda \mathrm{d} . \exists \mathrm{x}\left[|\mathrm{x}|=\mathrm{d} \& \mathrm{x} \in\{\right.\right.$ Ann, Carol, Denise $\} \& \mathrm{x}$ came $\left._{w}\right)=2$
c. $\quad \lambda \mathrm{w} \cdot \max \left(\lambda \mathrm{d} . \exists \mathrm{x}\left[|\mathrm{x}|=\mathrm{d} \& \mathrm{x} \in\{\right.\right.$ Ann, Bella, Denise $\left.\} \& \mathrm{x} \mathrm{came}_{w}\right)=2$
d. $\quad \lambda \mathrm{w} \cdot \max \left(\lambda \mathrm{d} . \exists \mathrm{x}\left[|\mathrm{x}|=\mathrm{d} \& \mathrm{x} \in\{\right.\right.$ Ann, Bella, Carol $\} \& \mathrm{x}_{\mathrm{came}}^{w}$ $)=2$

3. For future research

In this paper we focused on besides-phrases occurring in the connected position (the position adjacent to the restrictor of a quantifier). This is not the only position besides-phrases can occupy in a sentence. There is an interesting pattern with besides-phrases occurring in the fronted position, as in (71). Sentence (71a) comes with the inferences discussed in this paper: Ann is a girl, Ann did not come and every other girl came. Something else is going on in (71b). Mark is not a girl but the sentence is acceptable and it comes with the additive inference: Mark came. The additive reading is not available for (71a) (assuming Ann is a girl) and the exceptive reading is not available in (71b) (Vostrikova 2019c). Vostrikova (2019c) proposes that in (71b) the besides-phrase does not operate on the domain of the quantifier every girl, but serves the same function as besides in (71c), where no quantificational determiner is present at all. We leave the question of the interaction of the fronted besides-phrase and every for future research, as well as the question of how the meaning of (71c) is derived. Our focus here is on besides-phrases in connected positions; the containment inference is mandatory in such cases (as shown in (71d)), as well as the negative inference and this is what our analysis captures.
(71) a. Besides Ann, every girl came.
b. Besides Mark, every girl came.
c. Besides Mark, John came.
d. \#Every girl besides Mark came.

A unified semantics for exceptive-additive besides

There is also an interesting pattern that fronted besides-phrases show with existentials: they come with an anti-containment inference as the contrast between (72a) and (72b) shows; the additive inference that Mark came is present in (72a). At this point we do not have a proposal about how the meaning of (72a) is derived and we do not have an explanation for the anticontainment inference in (72b). We leave the interaction of the fronted besides phrases with existentials for future research. We will only point out that the containment inference is mandatory with connected besides-phrases, as (72c) shows, which our analysis correctly captures.
a. Besides Mark, some girls came.
b. \#Besides Ann, some girls came.
c. \#Some girls besides Mark came.

4. Conclusion

In this paper we proposed a unified compositional treatment to the exceptive and additive uses of besides. To our knowledge, this is the first approach to the semantics of besides that correctly captures the interaction of besides with the negative and universal quantifier and all cases of modified numerals. We proposed that the exceptive or the additive inference results from comparing the quantificational statement with domain subtraction done by besides and the statement without this subtraction. Our starting point is the unified treatment of besides with the universal and negative quantifier and the non-monotonic exactly n. The resulting positive or negative inference depends on the properties of the quantifier: with the universal quantifier the inference is predicted to be negative, with the negative and non-monotonic quantifier it is predicted to be positive. We extended this approach to all cases of modified numerals by adopting a decompositional account of them assuming that there is a constituent in the scope of the numeral with the meaning equivalent to exactly and by showing that the additive inference can be computed on that constituent. The advantage of the approach proposed here is that it captures the exceptive and the additive uses of besides using the theoretical mechanisms familiar from the discussion of other empirical phenomena in the literature: focus marking, structural alternatives, and an exhaustivity operator (Exh).

References

Buccola, B. and B. Spector (2016). Modified numerals and maximality. Linguistics and Philosophy 39(3), 151-199.
Chierchia, G. (2013). Logic in Grammar: Polarity, Free Choice, and Intervention. Oxford: Oxford University Press.
Crnič, L. (2021). Exceptives and exhaustification. In Proceedings of WCCFL 39.
Fox, D. (2007). Free choice and the theory of scalar implicatures. In U. Sauerland and P. Stateva (Eds.), Presupposition and Implicature in Compositional Semantics, pp. 71-120. Basingstoke, New York: Palgrave.
Fox, D. and R. Katzir (2011). On the characterization of alternatives. Natural Language Semantics 19, 87-107.
Fox, D. and B. Spector (2018). Economy and embedded exhaustification. Natural Language Semantics 26(1), 1-50.
Gajewski, J. (2008). NPI any and connected exceptive phrases. Natural Language Semantics 16, 69-110.

Mayr—Vostrikova

Gajewski, J. (2013). An analogy between a connected exceptive phrase and polarity items. In E. Csipak, R. Eckardt, M. Liu, and M. Sailer (Eds.), Beyond 'Any' and 'Ever': New Explorations in Negative Polarity Sensitivity, Boston, pp. 183-212. de Gruyter.
Geurts, B. and R. Nouwen (2007). At Least et al.: The semantics of scalar modifiers. Language 83(3), 533-559.
Hackl, M. (2000). Comparative Quantifiers. Ph. D. thesis, Massachusetts Institute of Technology.
Heim, I. (2000). Degree operators and scope. In B. Jackson and T. Matthews (Eds.), Proceedings of SALT X, Cornell University, Ithaca, NY, pp. 40-64. CLC Publications.
Hirsch, A. (2016). An unexceptional semantics for expressions of exception. In University of Pennsylvania Working Papers in Linguistics, Volume 22.
Hoeksema, J. (1987). The logic of exception. In Proceedings of the Fourth Eastern States Conference on Linguistics, Columbus, OH, pp. 100-113. The Ohio State University.
Horn, L. R. (1989). A Natural History of Negation. Chicago: University of Chicago Press.
Katzir, R. (2007). Structurally-defined alternatives. Linguistics and Philosophy 30, 669-690.
Keenan, E. and J. Stavi (1986). A semantic characterization of natural language determiners. Linguistics and Philosophy 3(9), 253-326.
Mayr, C. and M.-C. Meyer (2014). More than at least. talk at Two Days at least workshop.
Moltmann, F. (1995). Exception sentences and polyadic quantification. Linguistics and Philosophy 18(3), 223-280.
Nouwen, R. (2010). Two kinds of modified numerals. Semantics and Pragmatics 3, 1-41.
Potsdam, E. and M. Polinsky (2019). Clausal and phrasal exceptives. In Generative Linguistics in the Old World (GLOW), Volume 42.
Sevi, A. (2008). A two-layered analysis of the Hebrew exceptive xuc mi. In Current Issues in Generative Hebrew Linguistics, pp. 337-352. John Benjamins Publishing Company.
Spector, B. (2013). Global positive polarity items and obligatory exhaustivity. Semantics and Pragmatics 7(11), 1-61.
von Fintel, K. (1989). An unexceptional semantics for expressions of exception. In University of Massachusetts Occasional Papers in Linguistics, Volume 15, pp. 1-8.
von Fintel, K. (1993). Exceptive constructions. Natural Language Semantics 1(2), 123-148.
von Fintel, K. (1994). Restrictions on Quantifier Domains. Ph. D. thesis, University of Massachusetts-Amherst.
Vostrikova, E. (2019a). Besides exceptives. In M. Baird and J. Pesetsky (Eds.), Proceedings of NELS 49, pp. 265-275.
Vostrikova, E. (2019b). Compositional analysis for clausal exceptives. In K. Blake, F. Davis, K. Lamp, and J. Rhyne (Eds.), Semantics and Linguistic Theory (SALT) 29, Ithaca, NY, pp. 420-440. CLC Publications.
Vostrikova, E. (2019c). Phrasal and clausal exceptive-additive constructions crosslinguistically. Ph. D. thesis, UMass Amherst.
Vostrikova, E. (2021). Conditional analysis of clausal exceptives. Natural Language Semantics 29, 159-227.

[^0]: ${ }^{1}$ We would like to thank Luka Crnič, Kai von Fintel, Nina Haslinger, Aron Hirsch, Uli Sauerland, Benjamin Spector, and the audiences at Göttingen University, the University of Düsseldorf, the University of Tübingen, the workshop on "Alternatives, Expectations, and Domain Widening" at Bar-Ilan University, Creteling 2022 and Sinn und Bedeutung 27 for comments, suggestions, and criticism. The research reported here was supported by DFG grant STE 2555/4-1.

[^1]: ${ }^{2}$ Notice that (2) similarly to (3)-(5) carries the inference that Ann came. We will come back to the question of whether the status of the inference in (2) and in (3)-(5) is the same.

[^2]: ${ }^{3}$ This can also be implemented with Exh that negates all alternatives that are not entailed by the prejacent (see Chierchia 2013). We follow Hirsch (2016) in employing Fox's 2007 version of Exh based on innocent inclusion. The relevant difference here is that the application of the innocent inclusion based Exh for (3) to (5) is predicted to be vacuous and is ruled out by the constraint that blocks a vacuous application of Exh, whereas the Exh not based on the innocent exclusion would directly lead to contradictions in such cases.
 ${ }^{4}$ Formally, this can be implemented by introducing the requirement that the set of alternatives Exh employs has to be a subset of propositions denoted by the sentences in the set of structural alternatives:

[^3]: (i) a. $\quad E E x h_{A L T} \phi \rrbracket^{\mathrm{g}, \mathrm{w}}$ is defined only if $\operatorname{ALT} \subseteq\left\{\boldsymbol{\lambda} \mathrm{w}^{\prime} . \llbracket \phi^{\prime} \rrbracket^{g, w^{\prime}}: \phi^{\prime} \in \operatorname{ALT}_{\mathrm{str}}(\phi)\right\}$
 b. $\quad \operatorname{ALT}_{\text {str }}(\phi)=\left\{\phi^{\prime}: \phi^{\prime}\right.$ is derived from ϕ by replacing the focus marked x by y such that $\left.\mathrm{y} \lesssim \mathrm{x}\right\}$

[^4]: ${ }^{5}$ As shown in (Hirsch 2016), some additional assumptions have to be made about the case when there are exactly two salient individuals in the domain. In this case, the only alternative to the prejacent will be innocently excludable. If there are only two girls, say Ann and Bella, it is entirely possible that some girl in \{Bella\} came, but no girl in $\{\mathrm{Ann}\}$ came. This case is ruled out by the restriction on the use of an existential when it is known that there is exactly one individual satisfying the restrictor.
 ${ }^{6}$ Some of these cases also require some additional assumptions.

[^5]: ${ }^{7}$ Note that this approach assumes that the DP following an exceptive is a set denoting expression.

[^6]: ${ }^{8}$ The latter condition is needed to deal with exactly 0 when there is no individual satisfying both of the predicates.

