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Abstract. Questions with quantifiers such as Which book did every student read? can allow
for pair-list answers. However, whether or to what extent such pair-list answers are acceptable
varies for different types of quantifiers. Recently, van Gessel and Cremers (2021) experimen-
tally tested the acceptability of pair-list answers for questions with different types of quantifiers,
and discovered a full gradient in their acceptability judgments. In this paper, we start with the
intuitive idea that pair-list answers are expected if we let quantifiers take scope above questions,
and show that we can extend inquisitive semantics in a principled way using independently mo-
tivated ingredients to derive such wide-scope readings that expect pair-list answers for various
quantifiers. We also identify factors that contribute to their gradient acceptability.

Keywords: quantifiers, questions, pair-list readings, scope, inquisitive semantics, alternative
semantics, numerals

1. Introduction

Questions with quantifiers such as every student are known to allow for pair-list answers (e.g.,
May, 1985). For instance, (1) can be answered by (2), which specifies for each student x what
x read.2

(1) Which book did every student read?
(Intended interpretation ⇡ for every student x, which book did x read?)

(2) Alice read Martin Chuzzlewit, Bob read Nicholas Nickleby, and Carol read Oliver Twist.

An important question for any theory of question meanings is how to represent and compo-
sitionally derive the meaning of a question such as (1) so that pair-list answers such as (2)
are expected. Intuitively, such an interpretation of (1) can be roughly paraphrased by letting
the quantifier every student take scope over the entire question. That is, (1) is asking what x

read, for every student x. For this reason, we will call this the quantifier-over-question (Q >?)
reading of (1).3

It has been observed (see, e.g., Szabolcsi, 1997) that the Q >? reading is not as acceptable for
questions with quantifiers other than every and each. For instance, it is clearly unavailable for

1We would like to thank the reviewers and participants of the SuB conference and Yimei Xiang for their very
helpful comments and questions. Special thanks to Thom van Gessel and Alexandre Cremers for kindly sharing
their experimental data and discussing various issues with us. Of course, all errors are our own. This work is part
of a project that has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (Grant agreement No. 680220).
2Of course, (1) also has an interpretation that asks about a single book that was read by all students. Since this
interpretation can be straightforwardly derived by all existing accounts of questions, we will not discuss it here.
3This reading is often called the pair-list reading of a question, but in this paper we will stick with Q >? readings
for questions and reserve the term pair-list for answers. This highlights our formal analysis of such question
meanings and avoids potential confusion when it comes to quantifiers other than every and each.
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questions with negative quantifiers such as no student, as illustrated in (3). Indeed, the intended
interpretation sounds incoherent or self-defeating.

(3) #Which book did no student read?
Intended: for no student x, which book did x read?

However, the judgments are less clear for other quantifiers, including those where the head
noun is modified by bare numerals such as two, modified numerals such as fewer than three, or
the superlative most (4). On the one hand, the Q >? reading for numerals (bare or modified)
and most generally does not feel as natural as that for every. On the other hand, (4) does not
feel as incoherent as (3). This suggests that the Q >? reading might be somewhat available but
degraded for numerals and most, hence the question marks in (4).

(4) ?/??Which book did {two/most/fewer than three} students read?
Intended: for {two/most/fewer than three} students, which book did they (each) read?
A pair-list answer: Alice read Martin Chuzzlewit and Bob read Nicholas Nickleby

The judgments reported so far are based on introspection, and there are disagreements in the
literature on the judgments for numerals and most. Recently, van Gessel and Cremers (2021)
conducted an online experiment to systematically test for the acceptability of Q >? readings
for different quantifiers. Concretely, for questions containing the various types of quantifiers
in (1), (3), and (4), they asked participants to judge whether pair-list answers were appropriate.
Such judgments would indicate whether the Q >? readings of the questions were acceptable.

Their experimental results are shown in Fig. 1. In this paper we focus on matrix questions (the
bottom panel). The acceptability judgments for different types of quantifiers show a gradient.
Pair-list answers were most appropriate for every, and they were more and more degraded for
bare numerals, most, and downward-entailing modified numerals such as fewer than three. Note
that van Gessel and Cremers (2021) did not test the acceptability of pair-list answers to matrix
questions with no because, as discussed before, the intended Q >? reading of such questions is
incoherent/self-defeating. However, from the results of cases with embedded questions we can
reasonably conclude that such Q >? readings for questions with no were indeed unacceptable.

While van Gessel and Cremers’s (2021) experimental results confirm many empirical obser-
vations about the acceptability of pair-list answers for various types of quantifiers reported in
the literature based on introspection (in particular those of Szabolcsi, 1997), they also present
several important challenges. (i) The Q >? readings for numerals and most are at least some-
what acceptable (particularly for bare numerals such as two). This suggests that they should be
semantically derivable, but many existing theories either predict that they are not derivable or
provide no account of whether or how they can be semantically derived. (ii) The Q >? readings
for numerals and most, while acceptable to a certain degree, are also degraded and less ac-
ceptable than for every. Therefore, in addition to a semantic analysis that can compositionally
derive such readings, we also need to account for why they are degraded. (iii) In particular,
the Q >? readings for downward-entailing modified numerals such as fewer than three are the
most degraded, so we also need to account for why they are more degraded than two and most.4

We will propose an analysis of Q >? readings for various types of quantifiers that addresses
4In this paper, we will leave open the question of why the Q >? readings for most appear to be more degraded
than two (in matrix questions or when embedded under wonder).
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Figure 1: Results from van Gessel and Cremers’s (2021) online experiment. A ‘True/Yes’
response indicates that the participant considered the Q >? reading acceptable.

these challenges, which makes two original contributions. Concretely, we propose a novel
account that provides a uniform treatment of quantifier scope-taking in declarative and inter-
rogative clauses, and we identify two factors that contribute to the degraded acceptability of
Q >? readings for numerals and most.

The rest of the paper is organized as follows. In Section 2, we review a basic analysis of ques-
tions in inquisitive semantics and show that it already provides an account of the Q >? readings
for every and no. In Section 3, we address challenge (i) by extending this basic analysis in a
principled way to derive the Q >? readings for numerals and most. The ingredients we need
for the extension include an adjectival analysis of modified numerals and most (Buccola and
Spector, 2016), an alternative-semantic analysis of indefinites Charlow (2014, 2019, 2020),
and a distributivity operator defined in parallel with every generalizing from the classical one
(Link, 1987), which are all independently motivated. In Section 4, we address challenge (ii)
by showing that there is a tension between the Q >? readings for numerals and most and an in-
dependently motivated general constraint on question meanings (Hoeks and Roelofsen, 2019),
and we address challenge (iii) by showing that there is a tension between the Q >? reading
for fewer than three and a pragmatic constraint independently motivated based on examples in-
volving declarative sentences (Buccola and Spector, 2016). Section 5 concludes with remaining
issues and future directions.
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2. A basic analysis of questions with every and no in inquisitive semantics

Inquisitive semantics provides a unified treatment of declaratives and interrogatives. Below we
present a basic system that roughly follows Ciardelli et al. (2017) and Ciardelli et al. (2018).
The goal is to introduce and highlight the conceptual backbone of inquisitive semantics, and to
show that this basic system already provides an analysis of questions with every and no.

In inquisitive semantics, a clause (whether declarative or interrogative) denotes a non-empty,
downward-closed set of classical propositions.5 We will call such a set a Proposition and will
abbreviate its semantic type, hhs, ti, ti, as T .

Whereas classical propositions can be understood as representing the truth conditions of declar-
ative clauses, a Proposition in inquisitive semantics can be seen as representing the resolution

conditions of declarative and interrogative clauses. A resolution of a declarative clause is a clas-
sical proposition that verifies it.6 For instance, consider the sentence Alice is ready. A classical
proposition verifies this sentence iff it entails its classical denotation ready(a). Therefore, in
inquisitive semantics Alice is ready denotes a Proposition containing the classical proposition
ready(a) and all stronger classical propositions. Assuming for simplicity that the domain of
individuals only consists of Alice and Bob, this Proposition is schematically shown in (5).7

(5) JAlice is readyK = {ready(a)}#

ab ab

ab ab

A few remarks are in order. First, it should be clear by now why Propositions denoted by declar-
ative clauses are downward-closed: if a classical proposition p verifies a declarative clause S,
i.e., p entails S, then any classical proposition q that entails p would also verify S. Second, a
maximal element in a Proposition P (i.e., a classical proposition p 2 A such that for any q 2 P,
if q ◆ p then it must be q = p) is called an alternative. A declarative sentence such as Alice is

ready only has a single alternative, i.e., its classical denotation ready(a). Third, we define the
informative content of a Proposition to be its union, i.e., info(P) =

S
P.8 We can verify that

the informative content of a declarative clause is simply its classical denotation (6).

(6) info(JAlice is readyK) =S
({ready(a)}#) = ready(a)

Finally, we define the negation of a Proposition P to be the Proposition containing the set-
theoretic complement of the informative content of P, and all subsets thereof, and we can

5A set of classical proposition A is downward-closed iff the following condition holds: for any classical proposi-
tions p and q, if q ✓ p and p 2 A then q 2 A. The motivation for requiring downward closure will become clear
after we explain how the classical propositions in the set are understood.
6A classical proposition p verifies a declarative sentence S iff p ensures the truth of S. Resolution conditions can
be equivalently defined in terms of information states and the notion of support (e.g., Ciardelli et al., 2017, 2018).
Such an alternative formulation has some conceptual advantages and can be naturally integrated into models of
discourse dynamics, but discussing them would take us too far afield.
7Let A be a set of classical propositions. We define A

#, i.e., its downward closure, to be the set {q | 9p 2 A.q ✓ p}.
Note that even though it is not depicted in (5), the empty set /0 is also an element in the Proposition. In fact, due to
downward closure, /0 is an element of any Proposition.
8By extension, we also refer to the informative content of the Proposition denoted by a clause (whether it is
declarative or interrogative) as the informative content of the clause.

700



Quantifier scope in questions

verify that this indeed provides the correct denotation for Alice is not ready (7).9

(7) not(P) = {¬info(P)}#; JAlice is not readyK) = {¬ready(a)}#

Now we turn to interrogative clauses. A resolution of an interrogative clause is a classical
proposition that fully settles the issue it expresses. For instance, the polar question Is Alice

ready? is fully settled by the classical propositions ready(a) and ¬ready(a), as well as those
that entail either one of these (8). We see that the Proposition denoted by an interrogative clause
is also downward-closed, because for any classical proposition p that settles the question, so
does any classical proposition q that entails p.

(8) JIs Alice ready?K = {ready(a),¬ready(a)}#

ab ab

ab ab

To compositionally derive such resolution conditions for interrogative complements, we as-
sume that the interrogative complementizer denotes an operator h?i that ensures inquisitiveness
(i.e., multiple alternatives) in its argument (9).

(9) If P contains a single alternative, h?i(P) = P[ (not(P)), otherwise h?i(P) = P

We can verify that this correctly derives the denotations of polar questions (10).

(10) JIs Alice ready?K = h?i(JAlice is readyK) = h?i({ready(a)}#)
= {ready(a)}# [{¬ready(a)}# = {ready(a),¬ready(a)}#

Before we turn to constituent questions, we note that one attractive feature of inquisitive se-
mantics is that it provides a uniform treatment of conjunction and disjunction across clause
types. Below we illustrate this point with conjunction, which is analyzed as set intersection,
i,e., JandK= lPT lQT .P\Q, and we will provide further discussion on disjunction in Section 4.
First, we can verify that the conjunction of two declarative clauses denotes a Proposition whose
single alternative is the (classical) conjunction of their classical denotations (11).

(11) JAlice is ready and Bob is readyK
= {ready(a)}# \{ready(b)}# = {ready(a)^ ready(b)}#

ab ab

ab ab \

ab ab

ab ab =

ab ab

ab ab

Second, we can verify that the conjunction of two polar questions denotes a Proposition whose
elements settle both questions (12).

(12) JIs Alice ready? And is Bob ready?K
= {ready(a),¬ready(a)}# \{ready(b),¬ready(b)}# = {{ab},{ab},{ab},{ab}}#

ab ab

ab ab \

ab ab

ab ab =

ab ab

ab ab

9This definition ensures that the negation of a Proposition always has a single alternative corresponding to the
intuitively correct informative content. It also has an algebraic motivation (Roelofsen, 2013). We use ¬ to refer to
set complementation, which corresponds to the meaning of negation in classical semantics.
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The examples above show that conjunction can be treated uniformly as set intersection. Uni-
versal quantifiers such as every student have a parallel treatment in inquisitive semantics.10

(13) Jevery studentK = lFeT .
T

x:student(x)F(x)

For instance, assuming that Alice and Bob are the only students, we can see that (14) indeed
has the same denotation as (11).

(14) Jevery student is readyK= Jevery studentK(lxe.{ready(x)}#)=
T

x:student(x){ready(x)}#

= {ready(a)}# \{ready(b)}# = {ready(a)^ ready(b)}#

In the polar question Is every student ready?, every student can take narrow scope. In this case,
(14) becomes the argument of h?i, and the two alternatives in the denotation (15) correspond to
the yes/no answers to the polar question.

(15) JIs every student ready?K = h?i(J(14)K) = J(14)K[not(J(14)K)
= {ready(a)^ ready(b)}# [{¬(ready(a)^ ready(b))}#
= {ready(a)^ ready(b),¬(ready(a)^ ready(b))}#

However, in principle every student can also take scope above h?i. In this case the denotation
(16) is the same as that of the conjunction of two polar questions (12), which has four alterna-
tives. Under this Q >? reading, the question can be answered by both are ready, Alice is ready

but Bob is not, Alice is not ready but Bob is, and neither is ready, or anything that entails some
of these answers. Crucially, however, the question will not be settled by an answer weaker than
the ones above. For instance, Alice is not ready (and Bob may or may not be) would not settle
the question under this Q >? reading, even though it would under the ? > Q reading in (15).11

(16) JIs every student ready?K = Jevery studentK(lxe.h?i({ready(x)}#))
= Jevery studentK(lxe.{ready(x),¬ready(x)}#)
= {ready(a),¬ready(a)}# \{ready(b),¬ready(b)}#
= {{ab},{ab},{ab},{ab}}#

This provides a first example showing how universal quantifiers can be treated in parallel to
conjunction in inquisitive semantics, and that the Q >? reading can indeed be derived by letting
the universal quantifier take scope above h?i.

Now we turn to constituent questions. To avoid the additional complications due to the unique-
ness presupposition of singular which-questions, we start with the simpler wh-word what,
whose denotation we assume here to be similar to that of a universal quantifier, except that
set intersection in (13) is replaced by set union: JwhatK = lFeT .

S
x2D F(x). As an example,

the derivation of the radical of What did Alice read (i.e., before h?i is applied) is shown in

10For simplicity, we abstract away here from the internal composition of every student. Interested readers may
consult Ciardelli et al.’s (2017) implementation, but there are other possibilities as well. We also assume for
simplicity that there is no uncertainty about who the students are, so that student can be seen as extensional.
11Multiple reviewers asked whether such a reading is actually attested. We believe that it is, contra Chierchia
(1993). For instance, a waiter asking a group of guests Does everybody want a beer? would not consider the
question settled after hearing I don’t from one guest without also getting answers from the others. The same point
can be made with embedded questions: John would like to know whether everybody wants a beer before he makes

the order, but so far only Mary has told him that she does not, so he is still waiting for other people’s responses.
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(17).12 The resulting Proposition contains two alternatives corresponding to Alice read Martin

Chuzzlewit and Alice read Nicholas Nickleby.

(17) Jwhat did Alice readK = JwhatK(lxe.{read(x)(a)}#) =
S

x:book(x){read(x)(a)}#

= {read(m)(a)}# [{read(n)(a)}# = {read(m)(a),read(n)(a)}#

Note that the question What did Alice read? typically implies that Alice read something. This
is commonly characterized as the existential presupposition of a constituent question. For con-
creteness, we assume that immediately after the application of h?i, the informative content of
the result is added as a presupposition (following, e.g., Roelofsen, 2015; Dotlačil and Roelof-
sen, 2020), and we use • to separate the at-issue content (left) and the presupposition (right).
Combining this assumption and the definition of h?i in (9), we summarize the overall effect of
applying h?i in (18).

(18) The overall effect of applying h?i:
(i) if P has a single alternative, then h?i(P) = P[not(P) = {info(P),¬info(P)}#.13

(ii) if P has multiple alternatives, then h?i(P) = P•info(P).

This allows us to complete the derivation of What did Alice read? in (19).

(19) Jwhat did Alice read?K = h?i(J(17)K)
= {read(m)(a),read(n)(a)}# • (read(m)(a)_ read(n)(a))
= {read(m)(a),read(n)(a)}# •9x.(book(x)^ read(x)(a))

Similarly, when every student takes wide scope above h?i in What did every student read?, the
type-eT argument it is expecting is in (20).14

(20) Jwhat did read?K = lx.({read(m)(x),read(n)(x)}# •9y.(book(y)^ read(y)(x)))

Combining (13) and (20), we derive the Q >? reading in (21).

(21) Jwhat did every student read?K = Jevery studentK(Jwhat did read?K)

At-issue content:
T

x:student(x)({read(m)(x),read(n)(x)}#

= {read(m)(a),read(n)(a)}# \{read(m)(b),read(n)(b)}#
= { read(m)(a)^ read(m)(b), (i.e., A and B both read M)

read(m)(a)^ read(n)(b), (i.e., A read M and B read N)
read(n)(a)^ read(m)(b), (i.e., A read N and B read M)
read(n)(a)^ read(n)(b) (i.e., A and B both read N) }#

Presupposition (assuming universal projection):
8x(student(x)!9y.(book(y)^ read(y)(x)))

Let us break down the derivation in (21) step by step. We first focus on the derivation of the
at-issue content. The at-issue content of the Q >? reading is essentially the conjunction of the

12Here we assume that the domain D is further restricted to the set of contextually relevant things. And in this
case we assume for simplicity that the set only contains two books m and n.
13The presupposition to be added in this case, info(P)[¬info(P), is trivial and therefore omitted.
14Strictly speaking, eT is the type of the at-issue content of (20). We abstract away from the formal details of the
presupposition because the only assumption relevant for the later discussion is that it projects universally.
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two constituent questions What did Alice/Bob read?, which is expected given the parallel treat-
ment between universal quantifiers and conjunction. Each alternative in the denotation settles
both questions. In other words, each alternative corresponds to a pair-list answer, which is
exactly what we want. Now we consider the overall presupposition. Note that for each indi-
vidual x (Alice or Bob in this case), the corresponding constituent question has an existential
presupposition of the form x read a book. If we assume that this presupposition projects univer-
sally under every student, then the overall presupposition is that every student read a (possibly

different) book. Intuitively, this seems a reasonable result, but one might worry whether the
prediction is too strong. This worry can be alleviated by the fact that the existential presuppo-
sition of a constituent question is not particularly strong in the first place. As a result, we do
not need to assume that the universal projection is strong, either. Furthermore, as we will see
in the next section, the assumption of universal projection is only needed to account for why
the Q >? reading is degraded for numerals and most.

We have shown that basic inquisitive semantics can derive the Q >? reading for every student.
Now we consider no student and account for its lack of the Q >? reading. First, recall that
the overall effect of applying h?i to a Proposition P is such that the result is non-informative.
This is because either info(h?i(P)) is already the universe U (the set of all possible worlds),
or it is added as a presupposition. In any case, negating it would lead to a contradiction. Note
that the possibility of accommodating the presupposition would not make a difference here.
Consider (19) for instance. If its existential presupposition is accommodated (or simply does
not arise in the first place), then (19) would also have the negation of this existential presuppo-
sition as an alternative, because Alice did not read anything would be an answer that settles it
and therefore should be part of its resolution conditions. That is, the denotation of (19) would
be {read(m)(a),read(n)(a),¬9x.(book(x)^ read(x)(a))}#. But the informative content of
this denotation is still U , and hence negating it still leads to a contradiction. Therefore, nega-
tion taking scope above h?i always leads to a contradiction, regardless of whether we assume
presupposition accommodation.

Given this, together with the equivalence between Jno studentK(P0) and Jevery studentK(not(P0)),
we can see that there would be a contradiction if P

0 has the form h?i(P). Therefore, the Q >?
reading for no student is always contradictory.

3. A modular extension of basic inquisitive semantics for numerals and most

3.1. An adjectival analysis of numerals and most

In classical generalized quantifier theory, numerals and most are treated as determiners (Bar-
wise and Cooper, 1981).

(22) JtwoK = lPlQ. |P\Q|� 2
Jfewer than threeK = lPlQ. |P\Q|< 3
JmostK = lPlQ. |P\Q|> |P|/2

However, over the past two decades, adjectival analyses of numerals and most have gained
more prominence and are now widely adopted. The concrete analysis we present below mostly
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follows Buccola and Spector (2016), but with simplifications and modifications.

We start with the assumption that numerals and most are adjectival modifiers. Consequently,
composing them with the head noun results in new individual predicates (23).15

(23) Jtwo studentsK = lx.(students(x)^#x = 2)
Jfewer than three studentsK = lx.(students(x)^#x < 3)
Jmost studentsK = lx.(students(x)^#x > #students/2)

The new predicates are then composed with a silent indefinite determiner /0SOME and finally
with the VP. Just for now, we use Buccola and Spector’s (2016) definition of /0SOME to illustrate
how the adjectival analysis derives the denotation of two students read Martin Chuzzlewit in
the classical truth-conditional setup. According to (24), this sentence is predicted to be true
iff there exists a plurality of students with cardinality 2 who read Martin Chuzzlewit. This
correctly derives the one-sided, lower-bounded reading of the sentence. However, intuitively
the sentence also has a two-sided, “exactly two” reading. We will return to this issue later and
discuss its relation to the degradedness of Q >? readings, especially for fewer than three.

(24) J /0SOMEK = lPlQ.9x.(P(x)^Q(x)) (to be replaced)
J /0SOME two studentsK = lQ.9x.(students(x)^#x = 2^Q(x))
J /0SOME two students read Martin ChuzzlewitK= 9x.(students(x)^#x= 2^read(m)(x))

3.2. An alternative-semantic treatment of indefinites

According to the definition of /0SOME in (24), the result of composing it with the NP is a clas-
sical generalized quantifier (type et ! t). While such a treatment can derive the correct truth
conditions (modulo some complications concerning maximality to be discussed later), it does
not provide an explanation of the exceptional scope-taking behavior of indefinites (25).

(25) a. If two relatives of mine die, I will be rich. (two > if possible)
b. If every relative of mine dies, I will be rich. (every > if impossible)

In light of this, we adopt Charlow’s (2014, 2019, 2020) alternative-semantic treatment of in-
definites, which elegantly accounts for their exceptional scope-taking property, and update the
definition of /0SOME in (26).

(26) J /0SOMEK = lP.{x | P(x)}; J /0SOME two studentsK = {x | students(x)^#x = 2}

To facilitate semantic composition, in (27) we define an operator ✓ that allows us to compose
expressions of types {a} and a ! b and obtain an expression of type {b}.16

15We follow Buccola and Spector (2016) in adopting Link’s (1983) classic account of pluralities. We use #x to
represent the cardinality of an individual x (which can be atomic or plural) and reserve | · | for the cardinality of
a set. Slightly abusing the # notation, we use #student to represent the number of students. Technically, this is
just a shorthand for |{x | students(x)^atom(x)}|. Finally, we abstract away from the compositional details of the
modification to avoid having to introduce the full apparatus of degree semantics.
16We use {a} to represent the type corresponding to sets of objects of type a . Crucially, note that here we do
not assume the equivalence between sets and their characteristic functions, i.e., {a} is not the same as a ! t.
The symbol ✓ is chosen to suggest the intuition that A ✓ f amounts to applying the type a ! t function f

“point-wise” to each element (which is of type a) in A.
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(27) For A of type {a}, f of type a ! b , A ✓ f = { f (a) | a 2 A}, which is of type {b}.

Following Charlow, we can think of ✓ as a type-shifter, which transforms the type of an in-
definite from {e} to eb ! {b} so that it can take scope over type eb expressions. Concretely,
in the truth-conditional setup, the VP is of type et, and the result of /0SOME two students taking
scope over it is shown in (28), which is a set of classical propositions.

(28) J /0SOME two students read Martin ChuzzlewitK
= J /0SOME two studentsK ✓ Jread Martin ChuzzlewitK
= {x | students(x)^#x = 2}✓ read(m)
= {read(m)(x) | students(x)^#x = 2}

Finally, to retrieve a classical proposition from (28) , we apply Existential Closure (EC), which
is defined as set union (29). Note that we obtain the same classical proposition in (29) as in
(24), and therefore we indeed recover the correct truth conditions.

(29) J9( /0SOME two students read Martin Chuzzlewit)K
=

S
{read(m)(x) | students(x)^#x = 2}

= 9x(read(m)(x)^ students(x)^#x = 2)

3.3. Deriving Q >? readings for numerals and most

A nice feature of Charlow’s alternative semantic account is that it is modular, in that it provides
a general and principled way to extend any base system, so that it incorporates a notion of
alternatives for indefinites and accounts for their scope-taking behavior.

For instance, in (28), /0SOME two students, which is of type {e}, is composed with a VP de-
notation in classical truth-conditional semantics, which is of type et. However, note that the
type-shifter ✓, which facilitates the composition in (28), is defined in a general way in (27).
Due to this generality, /0SOME two students can also be type-shifted to eT ! {T}, which would
allow it to be composed with a type eT expression in inquisitive semantics. As a concrete
example, What did read? is of type eT . Its denotation, updated from (20) to reflect the
incorporation of plural semantics, is shown in (30).17 The type-shifted /0SOME two students can
take scope above it and this results in an expression of type {T} (31).18

(30) Jwhat did read?K = lx.({read(y)(x) | books(y)}# •9y.(books(y)^ read(y)(x)))

(31) Jwhat did /0SOME two students read?K
= J /0SOME two studentsK ✓ Jwhat did read?K
= {x | students(x)^#x = 2}✓ lx.{read(y)(x) | books(y)}#
= {{read(y)(x) | books(y)}# | students(x)^#x = 2} (type {T})

Similar to the case with declaratives in (29), we apply EC to retrieve a type T denotation (32).

(32) Applying EC to (31):
S
{{read(y)(x) | books(y)}# | students(x)^#x = 2}

= {read(y)(x) | books(y)^ students(x)^#x = 2}#

17Again, we assume that the domain of what is restricted to books.
18We focus on the at-issue content for now and will discuss how the existential presupposition projects.
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The alternatives in (32) have the form read(y)(x), where y is a plurality of books and x is a
plurality of students with cardinality 2. Such alternatives correspond to answers such as Alice

and Bob read Martin Chuzzlewit and Alice and Bob read Martin Chuzzlewit and Nicholas

Nickleby. This means that if we let /0SOME two students directly take scope above h?i, while we
do get a sensible Q >? reading, it is not the intended one that expects pair-list answers. Rather,
(32) corresponds to the cumulative reading of the question.

Upon further inspection of (31), we see that the problem is that when the denotations of
/0SOME two students and What did read? are composed via ✓, effectively the latter is com-
posed with each element in the former. This yields a Proposition corresponding to the question
What did x read? for every x that is a plurality of students with cardinality 2. However, in order
to ensure that only pair-list answers are expected, we need to further distribute the denotation of
What did read? to every atomic part of x. That is, we would like to generate questions of the
form What did each atomic individual in x read? for every x that is a plurality of students with
cardinality 2. Fortunately, the form of the question already suggests the last missing ingredient
that we need: a distributivity operator D ensuring that a type eT meaning is distributed over the
atomic parts of its type e argument (33), which is a straightfoward extension of the classical one
that distributes type et meanings (e.g., Link, 1987). Note that this definition of D is completely
parallel to that of every in (13).

(33) JDK = lFeT lx.
T

x0:(x0vx^atom(x0))F(x0)

Now we illustrate how we can derive the Q >? reading that expects pair-list answers with the
help of D. In order to tease this reading apart from the cumulative one, we now return to the
wh-questions van Gessel and Cremers (2021) used in (4). Crucially, since those questions use
which book instead of what, an answer to the cumulative reading can involve only one book.
Therefore the answer in (4) is indeed a pair-list answer.

The semantics of which book is similar to that of what, except that its domain is explicitly
specified by the NP and it also has a uniqueness presupposition (34).19

(34) Jwhich bookK = lFeT .
S

x:book(x)F(x)•9!x.info(F(x))

The derivation of Which book did Alice read is shown in (35). Its alternatives have the form
Alice read x, where x is a book, and it presupposes that there is a unique book that Alice read.
Since this denotation already has multiple alternatives, further composition with h?i will result
in the same denotation.

(35) Jwhich book did Alice readK
a. At-issue content: (lFeT .

S
x:book(x)F(x))(lx.{read(x)(a)}#)

=
S

x:book(x){read(x)(a)}#

= {read(x)(a) | book(x)}#
b. Presupposition: 9!x.read(x)(a)

19For compactness, we use 9! in the presupposition of which book, which means that besides the uniqueness
presupposition, the existential presupposition is also encoded in the meaning of which book. This assumption
is not crucial for our purposes in this paper, because for the Q >? readings we are interested in, the existential
presupposition will also be added by h?i. That said, to the extent that the existential presupposition of a which-
question is stronger than that of a what-question, this assumption might be independently justified. Finally, we
will not discuss the possibility that the uniqueness presupposition of which book takes scope at a site different
from its at-issue content, because as far as we can tell, it does not affect the analysis of the examples in this paper.
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Given (35), we can quickly verify the denotation in (36).

(36) Jwhich book did read?K = lx.({read(y)(x) | book(y)}# •9!y.read(y)(x))

Now we have all the ingredients we need to derive the intended Q>? reading of Which book did

two students read? that expects pair-list answers. As discussed earlier, (36) is first composed
with the distributivity operator D to ensure that a which-question is formed for every atomic
part of its individual argument. We first focus on the at-issue content, which is shown in (37).

(37) JD(which book did read?)K = (lFeT lx.
T

x0:(x0vx^atom(x0))F(x0))(J(36)K)
At-issue content: lx.

T
x0:(x0vx^atom(x0)){read(y)(x0) | book(y)}#

It helps to start with a simple example to get a sense of what the at-issue content amounts to.
Suppose the individual argument supplied to (37) is atb, which has two atomic parts a and b.
Then after taking this argument, we end up having the intersection between two Propositions
{read(y)(a) | book(y)}# and {read(y)(b) | book(y)}#. The two Propositions correspond to
the questions Which book did Alice read? and Which book did Bob read?, respectively. And
we know from Section 2 that their intersection amounts to conjoining the two questions. If we
further assume that the domain of (atomic) books only consists of m and n, the result of the
intersection can be shown more explicitly in (38).20

(38) {read(y)(a) | book(y)}# \{read(y)(b) | book(y)}#
= {read(m)(a),read(n)(a)}# \{read(m)(b),read(n)(b)}#
= { read(m)(a)^ read(m)(b), (i.e., A and B both read M)

read(m)(a)^ read(n)(b), (i.e., A read M and B read N)
read(n)(a)^ read(m)(b), (i.e., A read N and B read M)
read(n)(a)^ read(n)(b) (i.e., A and B both read N) }#

Each alternative in (38) specifies which book Alice read and which book Bob read, and there-
fore it indeed corresponds to a pair-list answer. Also, the alternatives in (38) exhaust all the
possible combinations. We can use functions representing dependencies from individuals to
atomic books to simplify (37) and highlight the fact that each alternative corresponds to a pair-
list answer ranging over the atomic parts of the individual argument (39).

(39) JD(which book did read?)K
At-issue content: lx.{

V
x0:(x0vx^atom(x0)) read( f (x0))(x0) | f 2 DF(book)}#,

where DF(book) is the set of functions that map individuals to (atomic) books.

Now, we let /0SOME two students take scope above (39) to derive the intended Q >? reading that
expects pair-list answers (40).

(40) Jwhich book did /0SOME two students read?K
= J /0SOME two studentsK ✓ JD(which book did read?)K
= {x | students(x)^#x= 2}✓ lx.{

V
x0:(x0vx^atom(x0)) read( f (x0))(x0) | f 2DF(book)}#

= {{
V

x0:(x0vx^atom(x0)) read( f (x0))(x0) | f 2 DF(book)}# | students(x)^#x = 2}

Essentially, in (40) we apply the type eT denotation in (39) to each plurality in the set denoted
by /0SOME two students (which is always a plurality of students with cardinality 2). For each
plurality, this leads to a Proposition whose alternatives correspond to a pair-list answer ranging
20Note that (38) is essentially the same as (21), reinforcing the parallel between D and every.
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over its atomic parts. Therefore, overall we end up having a set of Propositions as the at-
issue content in (40). Assuming that the uniqueness and existential presuppositions project
universally across the domain of students, the question presupposes that every student read a
unique (but possibly different) book. It is not too difficult to come up with a context where
this presupposition is natural. For instance, the question could be about a lecture on Charles
Dickens’s work, where every student is required to read one of his books. Such contexts might
even be considered quite typical or salient by the participants in van Gessel and Cremers’s
(2021) experiment. However, there may well be other contexts where weaker presuppositions
are more appropriate. In the next section, we will discuss how the presupposition can affect the
acceptability of the Q >? reading.

Finally, in order to retrieve a type T denotation from (40) so that we can obtain and verify the
resolution conditions predicted, we apply Existential Closure, which yields (41).

(41) Applying EC to (the at-issue content of) (40):S
{{

V
x0:(x0vx^atom(x0)) read( f (x0))(x0) | f 2 DF(book)}# | students(x)^#x = 2}

= {
V

x0:(x0vx^atom(x0)) read( f (x0))(x0) | f 2 DF(book)^ students(x)^#x = 2}#

Each alternative in (41) corresponds to a pair-list answer ranging over a plurality of students
with cardinality 2. For instance, an answer that would settle the question can be Alice read

Martin Chuzzlewit and Bob did, too, or Bob read Nicholas Nickleby and Carol read Martin

Chuzzlewit. Therefore, we have successfully derived the intended Q >? reading that expects
pair-list answers for two students. The Q >? readings for fewer than three students and most

students can be derived in a parallel way given their semantics in (23).

Summing up, in this section we provided a compositional derivation of the Q >? readings for
numerals and most. There are three main ingredients in our proposal: (i) an adjectival treatment
of numerals and most along the lines of Buccola and Spector (2016), (ii) Charlow’s (2014, 2019,
2020) modular alternative-semantic account of indefinites, and (iii) a distributivity operator D

defined in parallel with every generalizing from the classical one (Link, 1987). These ingre-
dients have motivations independent of the phenomenon of pair-list answers to questions with
quantifiers. In fact, their motivations are based on data that only concern declarative sentences
and their original implementations are in formal systems that do not involve question mean-
ings. However, since inquisitive semantics provides a uniform treatment of declarative and
interrogative sentences, and Charlow’s alternative-semantic account of indefinites is modular,
these ingredients can be incorporated into a theory of questions relatively straightforwardly.

4. Explaining the degraded acceptability of Q >? readings for numerals and most

In the previous section, we provided a way to compositionally derive the Q >? readings for
numerals and most. This accounts for why they are at least somewhat acceptable. In this
section, we address two remaining questions: Why are they generally degraded? Moreover,
why are Q >? readings more degraded for fewer than three than two students or most students?

To address the first question, we appeal to a general constraint on question meanings. Hoeks
and Roelofsen (2019) observe that (42) is infelicitous.
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(42) #Does Ann speak French, does she speak German, or does she not speak German?

Their formal account, which takes inspiration from Fox (2018), is based on a theory of ex-
haustification and has wider empirical coverage than just accounting for the infelicity of (42).
However, for our current purposes, we do not need to go into the details of their proposal.
In fact, it is not even necessary for us to be committed to their account. All we need is the
following generalization, or constraint, on question meanings (43).

(43) It is infelicitous to ask a question whose meaning has the following property: after
taking the presuppositions into account, i.e., by using them to restrict the context set,
there exists an alternative covered by a set of other disjoint alternatives.

Clearly, (42) satisfies the property in (43): the alternative Ann speaks French is covered by the
set containing Ann speaks German and Ann does not speak German.

Now we consider the Q >? reading for two students (41) and show that it also satisfies this
property, under the assumption that the existential presupposition projects universally. Recall
that each alternative in (41) corresponds to a pair-list answer ranging over a plurality of students
with cardinality 2. Therefore, (41) would at least contain the alternatives listed in (44).

(44) a. Alice read Martin Chuzzlewit and Bob read Nicholas Nickleby.
b. Bob read Nicholas Nickleby and Carol read Martin Chuzzlewit.
c. Bob read Nicholas Nickleby and Carol read Nicholas Nickleby, too.

Let us focus on (44a). Assume without loss of generality that Martin Chuzzlewit and Nicholas

Nickleby are the only books. We show that (44a) is covered by the set containing (44b) and
(44c) under the assumption that the existential presupposition projects universally, i.e., every
student read a book.21 This is because under this assumption, in each world in (44a) there would
be a book that Carol read, and hence the world must be in either (44b) or (44c). Therefore, (44a)
is indeed covered by the set containing (44b) and (44c). Moreover, (44b) and (44c) are disjoint
because of the uniqueness presupposition of which book, i.e., there can be at most one book
that Carol read. Therefore, under the assumption that the existential presupposition projects
universally, (41) satisfies the property in (43) and therefore is infelicitous.

However, without the assumption that the existential presupposition projects universally, (41)
need not satisfy the property in (43). Again, consider (44a). In this case, the alternative would
also contain a world w where nobody else read a book. Such a world w cannot be in any
alternative other than (44a), because (i) w cannot be in an alternative that involves Alice and
Bob because such an alternative is disjoint from (44a) due to the uniqueness presupposition of
which book, and (ii) w cannot be in an alternative that involves someone other than Alice and
Bob because such an alternative specifies a book this person read, contrary to the condition that
nobody else read a book in w. This means that (44a) is not covered by a set of other alternatives,
and by symmetry the same argument holds for any alternative in (41). Therefore (43) does not
apply when we do not assume universal projection of the existential presupposition.

21If there are more books, we just include more alternatives of the form Bob read Nicholas Nickleby and Carol

read y, where y ranges over all the books. Then these alternatives will still cover (44a) under the assumption that
the existential presupposition projects universally.
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The discussion above shows that if the existential presupposition holds across the domain of
students, i.e., it projects universally, the Q >? reading for two students would be infelicitous
due to (43). However, as discussed before, there are typical or salient scenarios where the
existential presupposition holds across the domain of students. If the participants in van Gessel
and Cremers’s (2021) experiment were indeed imagining such scenarios, the tension with (43)
would lead to degraded acceptability judgments. Crucially, note that the Q>? reading for every

does not suffer from this problem because its alternatives are all disjoint. Therefore, the Q >?
reading is correctly predicted to be less acceptable for two than for every. The same discussion
applies to fewer than three and most, and hence (43) provides an account of why Q >? readings
for numerals and most are generally degraded (in particular, less acceptable than for every).

Now we turn to why Q >? readings are less acceptable for fewer than three than two and most.
We start by taking a closer look at the adjectival analysis of fewer than three in (23) and spell
out its prediction for fewer than three students read Martin Chuzzlewit in (45).

(45) J9( /0SOME fewer than three students read Martin Chuzzlewit)K
=

S
{read(m)(x) | students(x)^#x < 3} = 9x(read(m)(x)^ students(x)^#x < 3)

According to (45), fewer than three students read Martin Chuzzlewit is true iff there is a plu-
rality of students x with cardinality less than three and x read Martin Chuzzlewit. This entails
that there is an atomic student x0 who read Martin Chuzzlewit, because read is distributive wrt
its subject: if x read Martin Chuzzlewit, then we can take x0 to be any atomic part of x and we
know that x0 read Martin Chuzzlewit. The other direction of the entailment also trivially holds:
if there is an atomic student x0 who read Martin Chuzzlewit, then x0 itself would be a plurality
of students with cardinality less than 3. This means that fewer than three students read Mar-

tin Chuzzlewit is equivalent to a student read Martin Chuzzlewit, but this does not seem right.
Intuitively, the former should be stronger than the latter in also having 3 as an upper bound.
That is, the former should entail that it is not the case that {three/four/. . .} students read Martin

Chuzzlewit. Given this problem for the adjectival analysis of fewer than three, first pointed out
by van Benthem (1986), one might think that such an analysis should be abandoned. However,
Buccola and Spector (2016) observe that this problem only arises when the VP is distributive.
For instance, fewer than ten students surrounded Martin is not equivalent to #a student sur-

rounded Martin (which does not even make sense). Neither does it entail that it is not the case
that 10 students surrounded Martin, because the sentence can be true by virtue of there being a
group of 7 students surrounding Martin, which does not exclude the possibility of there being
a different group of 10 students also surrounding Martin. In such cases, the adjectival analysis
in fact predicts the correct truth conditions (46).

(46) J9( /0SOME fewer than ten students surrounded Martin)K
= 9x(surrounded(m)(x)^ students(x)^#x < 10)

Therefore, the unavailability of the reading in (45) needs a different explanation. Buccola and
Spector (2016) suggest that it is due to pragmatic blocking. Recall that according to (45), fewer

than three students read Martin Chuzzlewit is equivalent to a student read Martin Chuzzlewit.
In fact, this will still be true if we replace three by any number n greater than one. Therefore,
in this case three is virtually irrelevant to the meaning of the sentence, and the reading in (45)
will be ruled out by the pragmatic blocking mechanism on the basis of this irrelevance. The
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only reading available is one where a maximality operator is applied, effectively conjoining
(45) with the negations of numbers higher than three (47).22

(47) Max(J9( /0SOME fewer than three students read Martin Chuzzlewit)K)
= J9( /0SOME fewer than three students read Martin Chuzzlewit)K
^¬J9( /0SOME three students read Martin Chuzzlewit)K
^¬J9( /0SOME four students read Martin Chuzzlewit)K^ . . .
= 9x(read(m)(x)^ students(x)^#x < 3)^¬9x(read(m)(x)^ students(x)^#x = 3)
^¬9x(read(m)(x)^ students(x)^#x = 4)^ . . .

Now we turn to the Q >? reading for fewer than three (48).

(48) J9(which book did /0SOME fewer than three students read?)K
= {

V
x0:(x0vx^atom(x0)) read( f (x0))(x0) | f 2 DF(book)^ students(x)^#x < 3}#

Before applying downward closure, each element in the set corresponds to a pair-list answer
ranging over the atomic parts of a plurality of students with cardinality less than 3. However,
because of downward closure, pair-list answers ranging over the atomic parts of a plurality of
students with cardinality 3 or higher will also be included in the set because they are more
informative answers. Therefore, similar to cases with declaratives, Which book did /0SOME

fewer than three students read? is predicted to be equivalent to Which book did some student

read?, and this is still the case if we replace three by any number n greater than one. Therefore,
the Q >? reading is pragmatic blocked. However, unlike cases with declaratives, applying
the maximality operator is not an option here. This is because it would result in negating
denotations of questions of the form Which book did n students read?, where n � 3, but we
already know that negating the denotation of a question leads to a contradiction.

Based on the discussion above, it might seem that the Q >? reading for fewer than three is
predicted to be simply unacceptable: it will be ruled out by Buccola and Spector’s (2016) prag-
matic blocking mechanism because its resolution conditions remain the same when we replace
three with other numerals greater than one, and it cannot be strengthened by a maximality op-
erator because that would lead to a contradiction. However, even though they are indeed the
most degraded, they still appear to be somewhat acceptable and more acceptable than no. We
suggest the crucial difference between fewer than three and no is that the Q >? reading of the
former is merely highly dispreferred due to its tension with the pragmatic blocking mechanism,
whereas the latter is a semantic contradiction. That is, we suggest that the Q >? reading for
fewer than three is not completely blocked, for two reasons. First, even though Buccola and
Spector (2016) seem to take the pragmatic blocking mechanism to be obligatory, they also ac-
knowledge experimental evidence suggesting that the intuitively unattested reading of fewer

than three (45) might still affect participants’ judgments to some extent (Marty et al., 2015).
This suggests that their pragmatic blocking mechanism is not entirely obligatory and can leave
room for what Marty et al. (2015) call “phantom readings.” Second, note that the equivalence

22Since we have not incorporated degree semantics into our formal system, we will not be able to provide a
precise definition of the maximality operator. In fact, it is still an open issue how to best define such an operator.
Buccola and Spector (2016) discussed various options but did not reach a definitive conclusion. However, for our
purposes, note that (47) specifies the intended outcome of applying the Max operator regardless of its specific
implementation. Therefore, to the extent that this outcome involves negating certain propositions, it will lead to a
contradiction in inquistive semantics when we consider the Q >? readings.
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between the Q >? readings of Which book did fewer than three students read? and Which

book did some student read? holds only in so far as their resolution conditions are considered.
However, the two readings could be different wrt other more fine-grained aspects of meaning.
One such aspect is the range of answers that are considered over-informative. For instance,
intuitively, whereas Alice read Martin Chuzzlewit and Bob read Nicholas Nickleby feels an
over-informative answer to Which book did some student read? in the sense that the answerer
provides more than what the question requires, this is not the case when it is an answer to Which

book did fewer than three students read? because such an answer is indeed expected by the
question. Such a distinction is not captured when only resolution conditions are considered.
However, under a more finer-grained semantic analysis of questions, one that goes beyond
resolution conditions, there would not be an equivalence between Which book did fewer than

three students read? and Which book did some student read?, and hence Buccola and Spector’s
(2016) pragmatic blocking mechanism would not apply. This way, we can account for why the
Q >? reading is still somewhat acceptable for fewer than three, while keeping our analysis of
why such a reading is the most degraded: pragmatic blocking can be avoided for fewer than

three only for some highly fine-grained meaning representations, whereas it would not apply
to two and most even if we only consider resolution conditions as the meaning representations.

5. Conclusion

In this paper, we provided a compositional analysis of Q >? readings of questions with various
quantifiers that expect pair-list answers and identified factors that affect the acceptability of
such readings. We started with a basic analysis of questions in inquisitive semantics, which
already accounts for the Q>? reading for every and the lack thereof for no. We then presented a
modular extension of the basic system to compositionally derive the Q>? readings for numerals
and most, using independently motivated ingredients. Specifically, we adopted Buccola and
Spector’s (2016) adjectival analysis of numerals, Charlow’s (2014, 2019, 2020) alternative-
semantic treatment of indefinites, and defined a distributivity operator D in parallel with every,
generalizing the classical treatment of distributivity (Link, 1987). Furthermore, we identified
two factors that contribute to the degraded acceptability of Q >? readings for numerals and
most. First, we showed that there is a tension between such readings and an independently
motivated constraint on question meanings against there being one alternative that is covered
by a set of other alternatives. This accounts for why Q >? readings for numerals and most

are generally degraded and less acceptable than for every. We then showed that the Q >?
reading for fewer than three is in tension with Buccola and Spector’s (2016) pragmatic blocking
mechanism and cannot be strengthened by a maximality operator.This accounts for why the
Q >? reading for fewer than three, while not entirely unacceptable, is the most degraded.

In general, our proposal demonstrates how insights from various research areas can be incorpo-
rated into a basic analysis of questions in inquisitive semantics, maintaining attractive features
such as a uniform treatment of declarative and interrogative clauses, and a simple and general
treatment of conjunction and universal quantification in terms of set intersection. But evidently,
many issues in this domain require further work, including in particular those concerning Q >?
readings of embedded questions, whose availability does not only depend on the quantifier
involved but also on the verb that takes the question as its argument (see Fig. 1). We also
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emphasize that the factors we identified in this paper as possibly affecting the acceptability of
Q >? readings may not be the only such factors. There could well be many other morpho-
syntactic/semantic/pragmatic/processing factors at play. For instance, Q >? readings being
inverse-scope readings could be another element reducing their acceptability, which potentially
accounts for the fact that their acceptability ratings were not at the ceiling even for every in
van Gessel and Cremers’s (2021) experiment. Finally, while we have provided a possible ac-
count of the gradient acceptability of Q >? readings with different quantifiers, we have not
made any attempt at arguing that this account is better than others. In the same vein, while we
have found that inquisitive semantics provides a suitable basis for an analysis of the interaction
between quantification and questions, we have not attempted to contrast it to other frameworks
in this regard. A systematic comparison between our proposal and various other approaches
(e.g., Groenendijk and Stokhof, 1984; Chierchia, 1993; Szabolcsi, 1997; Krifka, 2001; Sharvit,
2002; Dayal, 2016; Igel and Sachs, 2021; Xiang, 2022) must be left for future work.
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