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Capture-recapture (CRC) is currently considered a promising method to use non-probability samples to
estimate survey measurement error. In previous studies, we derived adjusted survey estimates using CRC
by combining probability-based survey data (as the initial data source) and non-probability road sensor
data (as the secondary data source). The design-based survey estimate was considerably lower than the
CRC estimates, which are based on multiple data sources and statistical models. A likely explanation is
measurement error in the survey, which is conceivable given the response burden of diary questionnaires.
This paper explores the potential of machine learning as a more flexible alternative to the commonly used
regression models as the basis for a number of CRC estimators. Moreover, we report on the potential impact
of the quality of the non-probability source degrading over time. In particular, we study differences in
prediction quality, point estimates, variance estimates, and estimates of measurement error in five years.
Results show that machine learning clearly outperforms the regression models, but the obtained CRC point
estimates remain largely unaffected. Log-linear estimators, in combination with machine learning models
seem more sensitive to a declining number of working sensors than the Lincoln-Peterson estimator, Huggins
estimator, and loglinear estimators with regression models.

Keywords: total survey error; survey underreporting; road freight transport survey;
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1 Introduction

There is increasing demand and interest in using nonproba-
bility-based data sources and machine learning within fields
such as survey research, official statistics, or economic and
social sciences (De Broe et al., 2021; Galesic et al., 2021;
Puts & Daas, 2021). Beaumont (2020) identified five caus-
ing key factors: declining survey response rates, high data
collection costs, increased response burden, the desire for
access to real-time statistics, and the growing availability of
nonprobability data sources. However, using non-probabil-
ity data and machine learning is still largely considered ex-
perimental in official statistics production (Beck, Dumpert,
& Feuerhake, 2018; Braaksma & Zeelenberg, 2020). To use
non-probability data in official statistics, Klingwort, Bue-
lens, and Schnell (2019) proposed linking non-probability
data with probability-based survey data to quantify survey
measurement error by applying capture-recapture (CRC)
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techniques. CRC estimation is typically used to estimate an
unknown population size. For instance, suppose 50 fish are
caught from a pond. All are marked and released again. If
40 fish are recaptured, 10 of which are marked, then the
simplest CRC estimate of the number of fish in the pond
is 50 � 40

10 = 200. The method’s applicability in estimation
of survey measurement error has been confirmed by an
additional in-depth study (Klingwort, Burger, Buelens, &
Schnell, 2021). The exact methodology will be explained
in Sect. 4.

Given the high-quality standards for official statistics
(Eurostat, 2017), assessing how consistent these results are
over time is required. Furthermore, the proposed CRC es-
timators were based on generalized linear modeling. This
paper will study whether a machine learning algorithm pro-
vides better predictions, resulting in more precise quantifi-
cations of the survey measurement error.

The paper is organized as follows. Sect. 2 provides the
research background of this study. Sect. 3 describes the
data used in this paper. Sect. 4 describes the methodology,
including CRC assumptions, generalized linear modeling,
machine learning algorithms, model selection, model per-
formance, and variance estimation. Results are presented in
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Sect. 5. Sect. 6 contains a discussion, and Sect. 7 concludes
the paper.

2 Research Background

Diary surveys, for example, those that require each partic-
ipant to report over multiple days, are among the surveys
with the largest response burden. To reduce the response
burden, respondents may respond inaccurately or not at all.
As a result, estimates may be biased and precision may
be compromised (Ashley, Richardson, & Young, 2009; Kr-
ishnamurty, 2008; Richardson, Ampt, & Meyburg, 1996).
These errors fall under measurement and nonresponse er-
rors in the Total Survey Error Framework (Biemer, 2010).
Weighting techniques are usually applied to correct selec-
tive nonresponse. However, quantifying and correcting the
measurement error is often impossible due to the absence
of external sources for validation. Klingwort et al. (2019)
proposed using CRC to quantify the measurement error by
linking non-probability road sensor data to the Dutch Road
Freight Transport Survey. The proposed CRC estimators
correct for both nonresponse and measurement error, while
the survey estimate is corrected for selective nonresponse
only. The difference between the CRC and survey point es-
timates can be attributed to measurement error. A likely ex-
planation for this difference is underreporting in the survey,
given the high response burden (Klingwort et al., 2021).

The proposed methodology by Klingwort et al. (2019)
is based upon well-established CRC estimators proposed
by Alho (1990), Fienberg (1972), Huggins (1989), Lincoln
(1935), and Petersen (1893). The model-based CRC estima-
tors use covariate information to improve the estimate’s ac-
curacy. For these models, logistic regression and log-linear
models are used. In this paper, we study whether a machine
learning algorithm will provide better predictions than the
statistical models and how this affects the estimation of
survey measurement error.

Breiman (2001) identified two cultures in statistical mod-
eling: one is focused on explanation by assuming stochas-
tic relationships between input and output (e.g. generalized
linear models), whereas the other is focused on prediction
without making these explicit assumptions (e.g. machine
learning). Machine learning algorithms have several advan-
tages over stochastic data models. They are more effective
and efficient in mapping complex, nonlinear relationships
and interactions between auxiliary information and a target
variable in a high-dimensional feature space (Boulesteix &
Schmid, 2014; Grimmer, Roberts, & Stewart, 2021; James,
Witten, Hastie, Tibshirani, & Taylor, 2023). In addition,
some machine learning algorithms, such as gradient boost-
ing, are less sensitive to multicollinearity and can handle
missing values naturally. Machine learning has gained mo-

mentum by the increase in digital data and improved hard-
ware and open software. Note that there is some confusing
terminology used by the two cultures: (multinomial) logis-
tic regression is a data model that is applied to a categorical
outcome variable, whereas in machine learning the term re-
gression is reserved for a numeric outcome variable.

The current state of research on using machine learning
for CRC is very limited. Whytock et al. (2021) applied ma-
chine learning to estimate species occupancy from camera
trap data. Rankin (2017) introduced statistical boosting for
an open-population CRC model, allowing for automatic
feature selection and including non-linear effects (an open
population means that the population size may change
during the study period as a result of births, deaths, immi-
gration, or emigration). Yee, Stoklosa, and Huggins (2015)
applied vector generalized additive models (VGAMs) to
capture-recapture data, which are a nonlinear extension of
commonly used parametric approaches. The current study
demonstrates a novel empirical application of machine
learning for CRC estimation for closed populations within
the context of official statistics and survey research.

Moreover, the study by Klingwort et al. (2019) was based
upon one year of data. To better understand the proposed
method, it is required to assess how consistent the con-
clusions are over time. This is particularly important con-
cerning the quality of the non-probability data (Carciotto &
Signore, 2021). As will be shown, the sensor data quality is
declining considerably over time, and whether this affects
the estimated survey measurement error will be studied.

3 Data

In this section, the survey data (3.1), sensor data (3.2), and
register data (3.3) are described. Furthermore, the data link-
age (3.4) and data pre-processing (3.5) are explained.

3.1 Survey data

The Road Freight Transport (RFT) survey is a manda-
tory self-administered diary survey conducted by Statis-
tics Netherlands providing statistics on Dutch commercial
vehicles1 at quarterly and annual intervals (Eurostat, 2016).
The target population is the Dutch commercial vehicle fleet,
excluding military, agricultural, and commercial vehicles
older than 25 years. Furthermore, only vehicles weighing
at least 3.5 tons and at least 2 tons of load capacity are con-
sidered. Stratified random samples are drawn quarterly from

1 To improve readability, the word ‘vehicle’ is used in the following
as a synonym for ‘road freight vehicle’, thus excluding bicycles, cars,
trains, ships, planes. Most road freight vehicles are trucks and tractors.
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RFT survey response categories (%) per year

the vehicle register. A sampling unit consists of a vehicle
license plate and a specific week. The owner of a sampled
vehicle is assigned a week for which he or she has to report
the days the vehicle was used. Therefore, this study’s target
variable is defined as the number of vehicle days (D). One
vehicle day is defined as a day a vehicle has been on the
road for transport purposes in the Netherlands.

The respondents could report per day whether the vehi-
cle was used or not used. It was possible to respond that the
vehicle was not owned. Those that did not respond were cat-
egorized as nonresponse. For this study, the response cate-
gory not owned is defined as frame error and excluded from
the analysis to avoid false-positive links. Reasoning and
potential effects are discussed by Klingwort et al. (2021).
Moreover, the nonresponse units are also excluded from the
analysis, and the survey weight is used to correct for the
nonresponse. This choice is different from the earlier stud-
ies, in which the CRC estimators ignored the survey weights
and treated nonresponse as reported ‘not used’ (Klingwort
et al., 2019; Klingwort et al., 2021). The distribution of
response categories is comparable over the years (Fig. 1).
Vehicles reported ‘not owned’ were considered a frame er-
ror and excluded from the response. Considering them as
nonresponse error slightly decreases the relative difference
between survey and CRC estimate (Klingwort et al., 2021).
After excluding not-owned vehicles, the sample size was
about 32 thousand per year.

3.2 Sensor data

Sensor stations (Weigh-in-Motion, WiM) on Dutch high-
ways continuously weigh every passing vehicle while reg-
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Daily number of working sensors between 2014 and 2018

istering the license plate and timestamp. The license plate
and timestamp registration are important for this study, as
they allow for the deterministic record linkage with the
survey and administrative data. The sensor system consists
of nine stations permanently installed in both directions
on Dutch highways, resulting in 18 sensor stations. Fig. 2
shows the daily number of working sensors. In 2014 and
2015, most of the sensors were operating and continuously
measuring. This number decreased beginning in 2016. In
2017, hardly any stations were active, and there were even
days without working sensors. At the beginning of 2018,
more sensors were recording again but still considerably
fewer than in previous years. This measurement inconsis-
tency poses concerns about whether the proposed method-
ology by Klingwort et al. (2019) is robust against a decline
in the quality of the nonprobability data because the initial
study was based on data from 2015, the year with the most
consistently working sensors.

3.3 Register data

The Vehicle Register (VR) and the Business Register (BR)
provide additional administrative data with information
about technical vehicle characteristics and vehicle owners,
respectively. The VR contains 16 covariates like vehicle
equipment class, emission class, the maximum mass of the
vehicle, the mass of the empty vehicle, loading capacity, the
status of the owner (person or company), province where
the owner is located, and vehicle classification. The BR
contains six covariates, examples being the classification of
economic activity (NACE), classification of company size,
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and the size of the vehicle fleet. For a complete list with
further details, we refer to Klingwort (2020).

3.4 Data linkage

The RFT survey response data, WiM sensor data, and VR
and BR administrative data were linked on micro-level: the
survey response and sensor data by license plate and date;
the VR and BR data by license plate, year, and quarter.
After linkage, contingency tables with the number of vehi-
cle days can be constructed per year. Cells include n1 de-
noting the weighted number of vehicle days reported used
in the survey, n2 denoting the weighted number of vehicle
days detected by the sensors, and m denoting the weighted
number of vehicle days both reported used in the survey
and detected by the sensors (see Sect. 4.3 for details).

Fig. 3 shows the observed inner cells of the contingency
table per year. In 2014 and 2015, comparable counts per
capture category were found. The decreasing number of
captured vehicles in 2016 is reflected in the decreasing
counts for n2 and m. The sensor data quality was lowest
in 2017 (see also Fig. 2), with the lowest counts for n2

and m, which increased again slightly in 2018. This figure
clearly shows the decision to exclude nonresponse units. If
nonresponse units were included, the count of the inner cell
n2–m would be considerably larger.
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Weighted number of vehicle days by year and data source:
reported used but not recorded (n1–m), both reported used
and recorded (m), and reported not used but recorded
(n2–m). n1 (sum of blue and gray bars) equals the weighted
survey estimate

3.5 Pre-processing

To model the heterogeneity in capture probabilities, register
data of the vehicles and their owners (Sect. 3.3), and the
number of working sensors were used as features. The ma-
chine learning algorithm used in this paper (gradient boost-
ing, see Sect. 4.3) handles missing values in a feature na-
tively by placing them in one of the two branches when
splitting the data by the feature. The traditional methods
(generalized linear models) by default ignore missing val-
ues in a feature. Removing observations with missing values
would decrease the population size estimate. To keep the
number of observations comparable, missing values were
imputed for the traditional models. The missing values in
a categorical feature were classified as a separate rest cat-
egory. The missing values in a numeric feature were im-
puted with the median if their weighted frequency was less
than 2%. If their weighted frequency was 2% or more, the
numeric feature was discretized into quartiles plus a rest
category for the missing values. Classes of a categorical
feature were pooled until their weighted frequency was at
least 2%. For the loglinear model (see Sect. 4.3), all numeric
features were discretized into quartiles. Medians, weighted
frequencies, and quartiles were calculated per year.

4 Methods

4.1 Capture-Recapture

CRC estimation originates in biology and is typically used
to estimate an unknown population size (McCrea & Mor-
gan, 2014). Usually, the population size is estimated by
linking multiple administrative data sources (Khodadost
et al., 2022; Larson, Stevens, & Wardlaw, 1994). In this
study, the RFT survey and the WiM sensor observations
are considered as two capture occasions. With two capture
occasions, the following assumptions are made: First, the
inclusion probability of the RFT survey is independent of
the inclusion probability of the WiM sensor data. Second,
the population is assumed to be closed. Third, all individu-
als in the population have a positive inclusion probability of
being included in each source. Fourth, the data sources only
include individuals that belong to the population. Fifth, the
observations can be linked perfectly using a unique identi-
fier. Sixth, the data sources do not include duplicates. The
seventh assumption is that the inclusion probabilities for at
least one of the samples are homogeneous (Bohning, Van
der Heijden, & Bunge, 2017). The assumptions are ful-
filled, but there is a possibility of imperfect linkage. The
potential effect of this violation on the estimated survey
measurement error is evaluated by Klingwort et al. (2021).
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In practice however, large numbers of false-positive links
are required to have a substantial effect on the population
size estimation. We refer to Klingwort (2020) for further
details on the assumptions.

4.2 Indicators

The indicator ısvy
ij is defined 1 if vehicle i was reported

‘used’ in the survey on day j and 0 otherwise. The indicator
ısen
ij is defined 1 if vehicle i was recorded at least once by

a sensor on day j and 0 otherwise. If a sensor recorded
a vehicle more than once on day j, this vehicle is counted
once in the analysis.

4.3 Estimators

We describe four estimators to estimate the number of ve-
hicle days driven by the vehicles in the sample in a year.

Survey estimator. The survey estimator is based purely on
RFT survey data. It does not use WiM sensor data and
is therefore not a CRC estimator. Auxiliary information is
only used to correct for selective nonresponse. The survey
estimator is a weighted sum of the number of days a vehicle
was reported ‘used’ in the assigned week:

bDSVY =
r

X

i=1

wi

J
X

j=1

ı
svy
ij (1)

where r denotes the number of vehicles in the sample for
which the owner responded, and J is the number of days in
the assigned week (usually seven but less in the first week
of some years; at least three). The survey estimator corrects
for nonresponse by weighting, where wi is the survey weight
for vehicle i. This wi is based on the initial post-stratification
weight w+

i (Centraal Bureau voor de Statistiek, 2021):

w+
i2h = 13

N +
h

rh

where N +
h is the total number of sampling units in stratum

h including vehicles reported not owned and rh the number
of respondents in stratum h excluding vehicles reported not
owned. The factor 13 extrapolates the weekly response to
a quarterly response. This study treated vehicles reported as
not owned as frame errors. Therefore, the initial poststrati-
fication weights were rescaled to the new sample size:

wi = w+
i

n
Pr

i=1 w+
i

where n is the sample size excluding vehicles reported not
owned.

Lincoln-Peterson estimator. The Lincoln-Peterson (LP) es-
timator (Lincoln, 1935; Petersen, 1893) is the most basic
capture-recapture (CRC) estimator, linking survey and sen-
sor data but not using auxiliary information. It assumes ho-
mogeneity in the capture probabilities and is based upon the
quantities derived from the contingency tables introduced
in Sect. 3.4:

n1 =
r

X

i=1

wi
X

j

ı
svy
ij = bDSVY

n2 =
r

X

i=1

wi
X

j

ısen
ij

m =
r

X

i=1

wi
X

j

ı
svy
ij ı

sen
ij

Assuming that n1
D

= m
n2

, the number of vehicle days D
can be estimated as follows:

bDLP =
n1n2

m
= bDSVY n2

m
(2)

Note that by weighting the response, we relax the as-
sumption that nonresponse equals reported not used, made
earlier in Klingwort et al. (2019).

Huggins estimator. The estimator proposed by Huggins
(1989) and Alho (1990) considers heterogeneity in the cap-
ture probabilities. It is the Horvitz and Thompson (1952)
estimator where, in the absence of a sampling design,
the design-based inclusion probabilities are replaced by
modelbased estimates:

bDHUG =
r

X

i=1

wi
X

j

1
b ij

(3)

where ψij is the probability that vehicle i on day j is either
reported used in the survey (A), recorded by a sensor (B),
or both:

 ij = P .A or B/
= P.A/ + P.B/ − P.A and B/
= P.A/ + P.B/ − P.A j B/P.B/

After data linkage, however, we can only estimate con-
ditional probabilities P.A j B/ and P.B j A/. The inclu-
sion probabilities can be estimated by assuming that the
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conditional probabilities equal the unconditional probabil-
ities, i.e., by assuming that the capture probability by one
source is independent of the capture probability by the other
source:

b ij = P .A j B/ + P .B j A/ − P .A j B/P .B j A/
= psvy

ij + psen
ij − psvy

ij p
sen
ij

= 1 −
�

1 − psvy
ij

� �

1 − psen
ij

�

where psvy
ij = P

�

ı
svy
ij = 1 j ısen

ij = 1
�

, i.e. the conditional
probability that on day j vehicle i is reported in the survey
given that it is recorded by a sensor, and analogously psen

ij =

P
�

ısen
ij = 1 j ısvy

ij = 1
�

.

The traditional way to estimate psvy
ij and psen

ij is by lo-
gistic regression, i.e. a generalized linear model (GLM) as-
suming δij follows a Bernoulli distribution with probability
pij, and the logit of pij is a linear combination of features.

This paper compares this traditional approach with
a machine-learning approach. Some advantages of machine
learning include the natural handling of missing values and
modeling non-linear relationships and interactions between
many potential features. Disadvantages include the lack of
regression coefficients to explain the direction and strength
of model terms and the need to tune hyperparameters.
Gradient boosting was chosen as the classifier, efficiently
implemented in the R package XGBoost (Chen & Guestrin,
2016).

XGBoost (XGB) was chosen because it has been shown
to outperform other popular machine learning algorithms,
such as neural networks (Chen & Guestrin, 2016). In gradi-
ent boosting, shallow decision trees are grown sequentially,
i.e., trained on prediction errors of previously grown trees
(James, Witten, Hastie, & Tibshirani, 2021).

Thus, we compare two versions of the Huggins estimator
that differ in the way the capture probabilities psvy

ij and psen
ij

are estimated:

bDHUG 2
n

bDHUGGLM
; bDHUGXGB

o

The Huggins estimator without auxiliary information, i.e.,
based on two intercept-only logistic regression models,
equals the Lincoln-Peterson estimator:

bDHUGGLM
int = n1+n2−m

m
n2

+ m
n1

− m2
n2n1

= n1+n2−m
m.n1+n2−m/

n1n2

= n1n2
m

= bDLP

Log-linear estimator. The log-linear (LL) estimator pro-
posed by Fienberg (1972) is another CRC estimator that
uses auxiliary information. The LL estimator is an uncondi-
tional likelihood estimator, whereas the Huggins estimator
is based on conditional likelihood.

The LL estimator estimates the number of vehicle days
in the contingency table. In the simplest case, without aux-
iliary information, the dataset looks like Table 1. Adding
auxiliary information will expand the number of strata to
H = 4

QG
g=1Cg, where Cg is the number of categories of

feature g and G the number of categorical features used to
define the strata (Table 2).

The number of vehicle days neither reported in the sur-
vey nor recorded by the sensors is estimated by fitting
a model on the observed counts and applying the model to
predict all counts. The LL estimator can then be constructed
in two ways: either as a purely model-based estimator by
replacing the observed counts with predicted counts and
summing over all strata (Table 2).

bDLLrepl =
H

X

h=1

byh (4)

or as the sum of observed counts (set S) supplemented with
predicted counts for the cells where ısvy

h = ısen
h = 0 (set R):

bDLLsupp =
X

h2S
yh +

X

h2R
byh (5)

For the LL estimator, the weights wi correcting for non-
response are included in the cell counts yh.

Disadvantages of the LL approach are that features have
to be, or made categorical, that the stratification has to be
decided before model selection, and that any interaction
between ısvy

h and ısen
h is assumed to be explained by the

features.
The traditional way to estimate yh is by Poisson regres-

sion, i.e., a generalized linear model (GLM) assuming yh

follows a Poisson distribution with mean and variance λh,
and the log of λh is a linear combination of features. With-

Table 1

Dataset for log-linear estimator without auxiliary infor-
mation

Stratum h Intercept ı
svy
h ısen

h yh

1 1 1 1 m

2 1 1 0 n1 −m

3 1 0 1 n2 −m

4 1 0 0 NA
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Table 2

Dataset for log-linear estimator with a single two-class feature x1

Stratum h Intercept ı
svy
h ısen

h x1h ı
svy
h x1h ısen

h x1h yh

1 1 1 1 1 1 1 y1

2 1 1 0 1 1 0 y2

3 1 0 1 1 0 1 y3

4 1 0 0 1 0 0 NA

5 1 1 1 0 0 0 y5

6 1 1 0 0 0 0 y6

7 1 0 1 0 0 0 y7

8 1 0 0 0 0 0 NA

out auxiliary information (Table 1) the missing count, y4,
can be predicted from a 3-parameter model:

yh � Poisson .�h/
log .�h/ = ˇ0 + ˇ1ı

svy
h + ˇ2ı

sen
h

by4 = eb̌0

With auxiliary information, the maximum number of pa-
rameters to be estimated is 3+3

PG
g=1

�

Cg − 1
�

. This number
can be reduced by model selection (Sect. 4.4).

Similarly, as for the Huggins estimator (Sect. 4.3), we
compare the traditional approach with a machine learning
approach. XGBoost (XGB) can be used for a wide variety
of learning tasks, including Poisson regression. Thus, we
compare four versions of the log-linear estimator that dif-
fer in whether the observed counts are replaced or supple-
mented (repl or supp) and the way the number of vehicles
in a stratum yh is estimated (GLM or XGB):

bDLL 2
n

bDLLGLM
repl ; bDLLXGB

repl ; bDLLGLM
supp ; bDLLXGB

supp

o

The Poisson regression without auxiliary information
(Table 1) can be solved analytically, also resulting in
the Lincoln-Peterson estimator:

8

<

:

y1 = eˇ0+ˇ1+ˇ2 = m
y2 = eˇ0+ˇ1 = n1 −m
y3 = eˇ0+ˇ2 = n2 −m

ˇ0 = log .n1 −m/ − ˇ1
�

log .n1 −m/ + ˇ2 = log m
log .n1 −m/ − ˇ1 + ˇ2 = log .n2 −m/

ˇ2 = log m − log .n1 −m/

ˇ1 = log m − log .n2 −m/

ˇ0 = log .n1 −m/ + log .n2 −m/ − log m

y4 = eˇ0 =
.n1 −m/ .n2 −m/

m

bDLLGLM
int = m + .n1 −m/ + .n2 −m/ +

.n1 −m/ .n2 −m/

m

=
n1n2

m

= bDLP

4.4 Model selection

The linked dataset was randomly split into a training set
.1 − f = 0.9/ and test set .f = 0.1/, stratified by year,
ı

svy
ij and ısen

ij . Per year, statistical and machine learning
models were trained on the training set, and model per-
formance was tested on the test set. Features to train the
models included vehicle and owner features, and the num-
ber of working sensors (Sect. 3). To estimate/train the
models, the negative log-likelihood (NLL) was minimized.
For the binary target variables, NLL follows from the
Bernoulli distribution (also known as binary cross entropy

or log loss): NLL = −log
Q

i

h

Q

jbp
ıij
ij

�

1 − bpij
�1−ıij

iwi
=

−
P

iwi
P

j

�

ıij logbpij +
�

1 − ıij
�

log
�

1 − bpij
��

. For the
count target variable, NLL follows from the Poisson dis-

tribution: NLL = −log
Q

h
e−byhbyh

yh

yhŠ
= −

P

h.yhlogbyh − byh −
log .yhŠ//.

To scale up from the test set to the population, the Hug-
gins estimates bDHUG and the observed counts yh were di-
vided by split fraction f, and the estimated counts byh (from
models trained on .1 − f / .n1 + n2 −m// by its comple-
ment 1– f.

Generalized linear models. For both logistic and Poisson
regression, the optimal balance between model fit and
parsimony was found by stepwise feature selection using
Bayesian Information Criterion (BIC) (function stepAIC
in R library MASS; Venables & Ripley, 2002). This re-
sulted in 15 regression models: 5 years × 3 target variables
(2 binary + 1 count).
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Hyperparameter tuning of XGB for count target variable yh, per year (columns). Effect of learn-
ing rate and maximum depth on Poisson negative log likelihood (averaged across K validation
sets). Points indicate optimal hyperparameter combination per year

Machine learning. Per year and target variable, the com-
bination of two hyperparameters in the gradient boosting
model—learning rate and maximum tree depth—was opti-
mized using K-fold cross-validation. The non-test set was
split into K = 5 folds of equal size, again stratified by year,
ı

svy
ij and ısen

ij . K–1=4 folds were used to train a model
with a hyperparameter combination, using a maximum of
100 boosting iterations. Its performance was tested on the
remaining fold. This was repeated for each hyperparame-
ter combination and fold. The results were averaged across

folds (Figs. 4 and 5). The combination with the lowest NLL
was chosen to retrain the model on the entire non-test set,
and final performance was measured on the test set.

To scale up from fold to population, the Huggins
estimates bDHUG and the observed counts yh were di-
vided by .1 − f / 1

K
, and the estimated counts byh by

.1 − f /
�

1 − 1
K

�

.
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4.5 Model performance

Model performance can only be evaluated on the observed
indicators δij and observed counts yh. The final estimates of
the number of vehicle days D cannot be validated because
the true value is unknown. For the binary target variables
ı

svy
ij and ısen

ij , model performance on the test set was mea-
sured by balanced accuracy. It is the (arithmetic) mean of
sensitivity and specificity. Sensitivity is the fraction of posi-
tive cases correctly predicted by the model; sensitivity is the
fraction of negative cases correctly predicted by the model.
For ısvy

ij j ısen
ij = 1, there are fm positive cases (recorded and

reported used) and f(n2–m) negative cases (recorded but re-
ported not used) in the test set (fn2). For ısen

ij j ısvy
ij = 1,

there are fm positive cases (reported used and recorded)
and f(n1–m) negative cases (reported used but not recorded)
in the test set fn1. In the survey, the positive class is the
majority class (prevalence m

n2
> 0.5), but in the sensor data,

it is the minority class (prevalence m
n1
< 0.5) (see Fig. 3).

Nevertheless, the balanced accuracy will be 0.5 when flip-
ping a coin or randomly guessing the positive class with its
prevalence.

For the count target variable yh, model performance was
measured by the relative root mean squared error (RRMSE):

RRMSE = RMSE
y

RMSE =

s

1
H

0

P

h

�

byh
1−f − yh

f

�2

y = 1
H

0

P

h

yh
f

where H
0

= 3
4H is the number of strata for which the

counts yh are known.

4.6 Variance estimation

Bootstrap methods may be used to obtain variance estimates
for both parametric and non-parametric models. For com-
parability, non-parametric bootstrapping was performed for
all estimators discussed in this section. Following Särndal,
Swensson, and Wretman (1992, Sect. 11.6), an artificial
population of license plate-week combinations was created
from the response. Each license plate-week combination
was replicated [Rwi] times, where R = 10 was chosen to
round non-integer weights to the nearest tenth. Œx� denotes
rounding of x using ceiling with probability d

10 and floor
with probability 1− d

10 , where d is the second decimal of wi.
From this artificial population, B = 500 bootstrap sam-

ples each of size r were drawn with replacement, propor-
tional to size, i.e., with inclusion probabilities �i = 1

ŒRwi �r
.

The number of bootstrap samples is sufficient as the esti-
mates converged around 100 (not shown). Each bootstrap

sample of r vehicle-week combinations was expanded by
linking the days of the assigned week, survey and sensor
indicators ısvy

ij and ısen
ij , weight wi, features on vehicles,

owners and the number of working sensors, and the test set
indicator. Previously selected models were retrained on the
training set of each bootstrap sample, using the previously
determined optimal hyperparameter combination in case of
XGB, and applied to the test set of each bootstrap sample
to obtain B bootstrap estimates bD�

b per estimator. Each
distribution of bootstrap estimates was summarized by the
relative standard deviation, i.e., coefficient of variation CV:

CV = s�

m�

s� =

s

1
B−1

P

b

�

bD�
b −m�

�2

m� = 1
B

P

b

bD�
b

For a fair comparison, bDSVY and bDLP were also based
on the test set only and therefore divided by fraction f.

5 Results

5.1 Model performance on test set

The XGB predictions are of better quality than the GLM
predictions, for both the survey indicator (reported) and the
sensor indicator (recorded), in all years (Fig. 6). In some
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Comparison of model performance between logistic regres-
sion (GLM) and gradient boosting (XGB) for binary target
variables ısvy

ij j ısen
ij = 1 (reported) and ısen

ij j ısvy
ij = 1 (re-

corded). Performance is measured by balanced accuracy on
the test set
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Fig. 7

Comparison of model performance between Poisson regres-
sion (GLM) and gradient boosting (XGB) for count target
variable yh. Performance is measured by RRMSE .byh/ on
the test set

years, the GLM models for the survey indicator perform in
some years only slightly better than random guessing. The
GLM models predict the sensor observations better than the
survey observations. Class imbalance is generally stronger
in the survey target variable (with a prevalence of about
93%) than in the sensor target variable (with a prevalence
of about 22% across years). However, the prevalence in the
sensor target variable was only 7% in 2017 (see Fig. 3)
without an apparent effect on balanced accuracy. In addi-
tion, the XGB models perform better on the survey indicator
than on the sensor indicator. Class imbalance is therefore
not a likely explanation. The decreasing number of working
sensors (see Fig. 2) also does not have an apparent effect
on model performance: the year with the least number of
working sensors (2017) does not stand out. Other perfor-
mance metrics, such as the Matthews correlation coefficient
or F1 of the positive and negative class show qualitatively
similar results (not shown).

The XGB predictions for the counts yh are also of bet-
ter quality than the GLM predictions in all years (Fig. 7).
The RRMSE is almost halved. In addition, the RRMSE
increases over time for GLM—presumably due to the de-
creased sensor quality (see Fig. 2)—but is fairly constant
over time for XGB. The RRMSE is generally large because
the mean count in the denominator is small due to the ex-
tensive stratification .H � 60 thousand ).
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Fig. 8

Estimated number of vehicle days bD by estimator and year.
The solid black line is the survey estimate bDSVY and the
dashed black line is the Lincoln-Peterson estimate bDLP

5.2 Point estimates

Fig. 8 shows the survey and CRC point estimates by esti-
mator and year. The Huggins and log-linear estimates are
compared with two baselines: the single-source weighted
survey estimate (solid black line) and the Lincoln-Peterson
estimate, a CRC estimate that ignores auxiliary information
(dashed black line). The SVY and LP estimates are reason-
ably constant over time. The same holds for the Huggins
and all GLM-based CRC estimates, which are similar to the
LP estimates. The combination of LL estimator and XGB
model yields point estimates similar to the LP, HUG and
LL-GLM models for the first three years. A large increase in
the point estimates, however, can be observed in 2017 and
2018. This is more likely to be caused by a lower number of
working sensors than a sudden increase in underreporting.
Since this effect is apparent in both LLrepl and LLsupp, the
increase is caused by the prediction of the unobserved cell
counts (see Eqs. 4 and 5). A prediction as low as 1 for un-
observed cells—not included in the RRMSE—can already
result in 1

4H = 15 thousand extra vehicle days (see Table 1).
Note that the survey estimate is always lower than any of
the CRC estimates (see Sect. 5.4).

5.3 Variance estimates

Fig. 9 shows the bootstrapped CVs of the estimated number
of vehicle days bD by estimator and year. Overall, the CVs
can be considered small with errors up to 4%. The CVs
of the survey estimates are reasonably constant since the
sample size and response rates are fairly stable (see Fig. 1).
The CVs of the LP estimates are slightly higher, which
is expected since linking the sensor data introduces more
uncertainty that is ignored by the survey estimator. Incor-
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Bootstrapped coefficient of variation of estimated number of
vehicle days bD by estimator and year. The solid black line
is the CV of the survey estimate bDSVY and the dashed black
line is the CV of the Lincoln-Peterson estimate bDLP

porating auxiliary information into the CRC estimators is
expected to reduce the CVs again, which is confirmed by
the GLM models. The XGB models, however, paint a com-
plex picture. HUG-XGB increases rather than decreases the
CVs. The CVs of the LL-XGB initially follow those of the
LL-GLM but spike in the years with few working sensors
(2017 and 2018), despite their higher point estimates in the
denominator (see Fig. 8).

5.4 Measurement error

Fig. 10 shows the relative difference of the estimated num-
ber of vehicle days bD between the survey estimate and
a CRC estimate by estimator and year. The relative dif-
ferences indicate the degree of measurement error in the
survey. The survey estimates are 7–8% lower than the LP
estimates. The CRC estimators HUG and LL show larger
differences than the LP, which does not consider hetero-
geneity. Hence, including auxiliary information to model
heterogeneity increases the relative difference. The XGB-
based differences seem less robust than the GLM-based
differences, and in 2017 and 2018, unreasonably large dif-
ferences were found.

5.4.1 Discussion

This discussion chapter will answer the research questions,
address the study’s limitations, and give recommendations
for future research.
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Relative difference between the survey and CRC estimates,
bDSVY

bDCRC
−1, by estimator and year. The dashed black line is the

annual relative difference between the survey estimate and
the Lincoln-Peterson estimate bDLP

General. One goal of capture-recapture analysis is to esti-
mate the measurement error in survey point estimates due
to underreporting. In this paper, we analyzed whether gradi-
ent boosting provides better predictions than generalized re-
gression models, resulting in more accurate quantifications
of the survey measurement error. Furthermore, we studied
the robustness of the CRC estimators to inconsistent sensor
data quality. Concerning the measurement error, we found
the survey estimates generally being at least 8% smaller
than the CRC estimates in all years studied. These findings
align with the literature (see Klingwort, 2020, for a recent
literature review). The relative differences are smaller than
those reported in Klingwort et al. (2019), Klingwort et al.
(2021), because nonresponse units were now excluded and
survey weights were used in the estimation procedures in-
stead. Regarding the quality of the predictions, XGB clearly
outperforms GLM, both for the individual capture probabil-
ities (logistic regression) and the aggregate counts (Poisson
regression). Regarding robustness, there is evidence that
the GLM and XGB are affected by inconsistent sensor data
quality. For example, a decline in the balanced accuracy
for the XBG and an increasing trend in the RRMSE of the
GLM were observed. Furthermore, large point estimates,
CVs, and relative differences were observed for the LL es-
timators with XGB models in years with lower data quality.
Hence, when extrapolating to unseen data, the results sug-
gest a higher risk of deriving biased estimates that are based
on machine learning applied to counts. Consequently, for
the moment, based on the results in this paper and despite
the considerably higher quality of the XGB predictions, the
use of GLMs for CRC seems to be the safer choice.
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Estimators and models. This study has two main limita-
tions. First, there is a chance of false positive links, result-
ing in the CRC estimators overestimating the measurement
error. False positives may result from recorded vehicles that
do not have to be reported used or a discrepancy between
the reported day of loading and the recorded day of driving.
This problem cannot be solved without additional infor-
mation, but implausibly large proportions of false-positive
links must be present to affect the estimated measurement
error’s size substantially (Klingwort et al., 2021).

Second, we are not able to assess which of the stud-
ied estimators and models has the smallest bias and the
correct estimated population variance. We are only able to
study which model-estimator combination is the most pre-
cise. This problem can be solved with a simulation where
the true number of vehicle days is known.

The CRC estimators’ assumptions and required decisions
must be mentioned in this regard. The HUG estimator is
based on the strong assumption that the conditional likeli-
hood equals the unconditional likelihood (for example, that
the probability of being recorded by a sensor given reported
used in the survey is the same as the probability of being
recorded by a sensor). We consider this a strong and implau-
sible assumption. The LL estimator assumes no interaction
between ısvy

h and ısen
h given the auxiliary information. How-

ever, the auxiliary information (features) to stratify have to
be chosen in advance. Without any theory on which fea-
tures to select, this decision is data-driven and might re-
sult in implausible CRC estimates. A model with too few
strata would result in underdispersion and with a too-de-
tailed model, there is the risk of overdispersion. Of course,
the choice of features could be optimized, but this has no
point without any true value given.

Lastly, we did not correct for days without sensors, but
we included the daily number of working sensors in the
models. We consider this a minor limitation with little effect
on the outcomes.

Future research. Further research is needed to obtain an es-
timate of the bias. This can be realized with a simulation
since the true value is and will remain unknown. Such a sim-
ulation would be one way to revise the above recommenda-
tion should it become evident that the XGB point estimates
are less biased (higher accuracy but less precision). Further-
more, it could be analyzed how the HUG would behave if
the target variables were balanced in the training set. The
decision to exclude nonresponse and use the survey weights
caused a severe imbalance in the data (prevalence was about
93%). This might cause the GLM not to pick up the rela-
tionship anymore, which is reflected in the low values for
the balanced accuracy. In addition, a simulation could help
to understand how to choose the best stratification for the
loglinear estimators.

6 Conclusion

This study has compared generalized linear models with
gradient boosting to estimate measurement error in diary
surveys using capture-recapture analysis. This work con-
tributes to the concept of multi-source statistics, as it is
based on a combination of survey, sensor, and administra-
tive data and demonstrates a use case of non-probability
data to improve the quality of official survey statistics.

Thereby, it was shown that non-probability data col-
lected, for example, through sensors, cannot be expected
to have alltime high quality. Such systems, as used in this
paper, need to be maintained; they might break down, re-
sulting in erroneous measurements or record no measure-
ments at all. Accordingly, using such systems as the only
data source used to produce official statistics cannot be rec-
ommended without hesitation (see for example Klingwort
& Burger, 2023). Therefore, using such data to complement
and enhance existing and high-quality data sources seems
recommended.

Furthermore, this work demonstrated the first applica-
tion of machine learning in capture-recapture research to
estimate survey measurement errors. It was shown that gra-
dient boosting outperformed the traditional generalized lin-
ear regression models on the labeled data, but when used in
CRC estimators gradient boosting could result in implausi-
ble point estimates and high variance.
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