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Appendix A

Maximum Likelihood Estimation

The likelihood function for both the standard Poisson model and the Poisson extension to

the unrelated question model (UQMP) is

L(π, λ) =
m∏

j=1

nj∏
i=1

[
P (“yes” |tj)aj · P (“no” |tj)bj

]
(A1)

with the number of groups m, the sample size per group nj, the time frame per group tj

that the question refers to, the observed number of yes-answers per group aj and the

observed number of no-answers per group bj. For the two models, P (“yes” |tj) is computed

via the Equations 5 or 10, for the standard Poisson model or the UQMP, respectively.

P (“no” |tj) can be computed per 1 − P (“yes” |tj). Taking the log of Equation A1 gives

log L(π, λ) =
m∑

j=1

nj∑
i=1

[
aj · log[P (“yes” |tj)] + bj · log[P (“no” |tj)]

]
. (A2)

Maximizing equation A2 by a numerical search routine yields the maximum likelihood

estimators for the parameters π and λ.
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Appendix B

Statistical analysis with R

In this appendix, we give an example for the statistical analysis of our data with the

proposed UQMP. The full analysis script and data set can be downloaded at

https://osf.io/5pkm4/.

## opt ions

# s e t t i n g RNG seed to a f i x e d value , so the boo t s t r ap procedure

# y i e l d s the same r e s u l t s in every run

set . seed (123)

## des ign parameters and observed v a r i a b l e s

# p r o b a b i l i t y p o f g e t t i n g s e n s i t i v e que s t i on

p <− 245 .25/365 .25

# p r o b a b i l i t y q o f a yes−answer to the neu t r a l que s t i on

q <− 181 .25/365 .25

# va lue s f o r parameter e s t ima t i on

l im <− 1e−10 # lower l i m i t f o r lambda

up_l im_lam <− 10 # upper l i m i t f o r lambda

# time frames t_j f o r a l l groups j = 1 , 2 , 3 , 4

t0 <− c ( . 2 5 , 1 , 6 , 12)

# number o f boo t s t r ap samples

nb <− 1000

# group s i z e s N_t
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N. t . uqm <− c (672 , 670 , 654 , 655)

# yes−answers a_t

a .uqm <− c (283 , 272 , 276 , 277)

# no−answers b_t

b .uqm <− c (389 , 398 , 378 , 378)

## func t i on s

# func t i on o f the UQMP

pc .uqm <− function ( t , p , q , PI , lam ){p∗PI∗(1−exp(−lam∗t ))+(1−p)∗q}

# log −l i k e l i h o o d −f unc t i on

MLE.uqm <− function (par , a , b){

PI <− par [ 1 ]

lam <− par [ 2 ]

pyes <− pc .uqm( t0 , p , q , PI , lam )

lLu <− a∗log ( pyes ) + b∗ log(1−pyes )

MLE.uqm <− −sum( lLu )

}

# G func t i on f o r t e s t i n g model f i t

Gf .uqm <− function (par , a , b){

PI <− par [ 1 ]

lam <− par [ 2 ]

N. t <− a + b

E. t . yes <− pc .uqm( t0 , p , q , PI , lam )∗N. t

E. t . no <− N. t − E. t . yes

G.uqm <− 2∗sum( a∗ log ( a/E. t . yes ) +
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b∗ log (b/E. t . no ) )

return (G.uqm)

}

## parameter e s t ima t i on v ia boo t s t r ap sampling

# " v e c t o r i z i n g " observed yes− and no−answers f o r every group

obs . t1 .uqm <− c ( rep (1 , a .uqm [ 1 ] ) , rep (0 , b .uqm [ 1 ] ) )

obs . t2 .uqm <− c ( rep (1 , a .uqm [ 2 ] ) , rep (0 , b .uqm [ 2 ] ) )

obs . t3 .uqm <− c ( rep (1 , a .uqm [ 3 ] ) , rep (0 , b .uqm [ 3 ] ) )

obs . t4 .uqm <− c ( rep (1 , a .uqm [ 4 ] ) , rep (0 , b .uqm [ 4 ] ) )

# boo t s t r ap sampling

PI . b .uqm <− numeric (nb )

lam . b .uqm <− numeric (nb )

for ( i in 1 : nb){

# resampl ing a and b from observed data

a . b .uqm <− c (sum(sample ( x = obs . t1 . uqm, s i z e = N. t . uqm [ 1 ] ,

replace = TRUE) ) ,

sum(sample ( x = obs . t2 . uqm, s i z e = N. t . uqm [ 2 ] ,

replace = TRUE) ) ,

sum(sample ( x = obs . t3 . uqm, s i z e = N. t . uqm [ 3 ] ,

replace = TRUE) ) ,

sum(sample ( x = obs . t4 . uqm, s i z e = N. t . uqm [ 4 ] ,

replace = TRUE) ) )

b . b .uqm <− N. t . uqm − a . b .uqm
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# maximum l i k e l i h o o d es t ima t i on o f the redrawn sample

ML.uqm <− optim(par = c ( 0 . 5 , 0 . 8 ) , a = a . b .uqm, b = b . b .uqm,

fn = MLE.uqm, method = ’L−BFGS−B ’ ,

lower = c ( lim , l im ) ,

upper = c(1− lim , up_l im_lam ) )

# e x t r a c t i n g p i and lambda e s t ima t e s

PI . b .uqm[ i ] <− ML.uqm$par [ 1 ]

lam . b .uqm[ i ] <− ML.uqm$par [ 2 ]

}

# e x t r a c t i n g parameter es t imators , SEs and 95%−CIs

# po in t e s t imate f o r p i

PI .m.uqm <− mean( PI . b .uqm)

# standard error f o r p i

PI . se . uqm <− sd ( PI . b .uqm)

# 95%−CI f o r p i

PI . c i . uqm <− quantile ( PI . b .uqm, c ( . 0 2 5 , . 9 7 5 ) )

# poin t e s t . f o r lambda

lam .m.uqm <− mean( lam . b .uqm)

# se f o r lambda

lam . se . uqm <− sd ( lam . b .uqm)

# 95%−CI f o r lambda

lam . c i . uqm <− quantile ( lam . b .uqm, c ( . 0 2 5 , . 9 7 5 ) )

# G−t e s t
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Gest .uqm <− optim( c ( 0 . 5 , 0 . 8 ) , a = a .uqm, b = b .uqm,

fn = Gf .uqm,

method=’L−BFGS−B ’ ,

lower = c ( lim , l im ) ,

upper = c(1− lim , up_l im_lam ) )

# e x t r a c t i n g G−va lue

Gval .uqm <− Gest .uqm$value

# computing p−va lue f o r G−t e s t d e c i s i on

pval .uqm <− pchisq ( Gest .uqm$value , df = 1 , lower . t a i l = FALSE)
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Appendix C

Follow-up study: Estimating blue eye color prevalence with a UQM curtailed sampling approach

Introduction

To investigate a possible explanation for the unforeseen results of the main study,

namely the unexpected difference between prevalence estimates of blue eye color via DQ

and UQM (see Hypothesis 4 of the main study), a follow-up study was preregistered (see

Iberl et al., 2022c) and conducted. To be precise, we tested whether the unexpected results

could have emerged due to order effects of the posed questions. The basic idea of the

follow-up study was to collect further data from a sample confronted with the UQM

method, but while exchanging the order of the drinking and driving and eye color

questions. If an order effect was responsible for the unforeseen results, swapping the order

of the questions should lead to a prevalence estimate of blue eye color via UQM that is

similar to the one generated by the DQ method in the main study.

Because of this rather simple premise and to reduce sample sizes, we opted for a

sequential sampling application for the UQM as proposed by Reiber, Schnuerch, and Ulrich

(2022). Contrary to classical statistical methods, the basic idea of sequential testing is to

stop the sampling process as soon as sufficient information is generated to align with a

preset hypothesis. One variant of sequential sampling, curtailed sampling, was proposed by

Wetherill (1975) (for a detailed description, see Reiber, Schnuerch, & Ulrich, 2022). In this

method, certain stopping rules are set before the sampling process. Those are defined by a

maximum sample size, Nmax, defining the maximum needed sample size to align with one

of the hypotheses, and cs, a limited number of observed “successes” (here: yes- answers)

needed to reject the null hypothesis. In turn, the null hypothesis is confirmed if

cf = Nmax − cs + 1 “failures” (here: no-answers) are observed. Nmax and cs are determined

via power analysis, depending on the preset hypotheses H0 and H1 and on the preset error

probabilities α (to falsely reject H0) and β (to falsely reject H1). Reiber, Schnuerch, and

Ulrich (2022) created applications for curtailed sampling to RRMs, including the UQM,



UQMP 52

which we used for the follow-up study.

In the follow-up study, we calculated a sequential binomial hypothesis test

according to Reiber, Schnuerch, and Ulrich (2022). We set π ≤ 0.387 as the null

hypothesis, stating that the prevalence for blue eye color prevalence is lower than or equal

to the upper boundary of the 95% confidence interval for the blue eye color estimated via

DQ in the main study. As alternative hypothesis, we set π ≥ 0.489, stating that the

mentioned prevalence is at least equal to the lower boundary of the 95% confidence interval

for the prevalence estimated via UQM in the main study. α and β were set to 0.05 each.

The UQM variables p and q were set to the same values as in the main study, so to circa

0.67 and 0.5, respectively. With these variables, the power analysis resulted in the

maximum possible sample size of Nmax = 579. After cs = 265 yes-answers or cf = 315

no-answers would be observed, sampling would be stopped.

We predicted that there would be an order effect in accordance to our explanation

for the unexpected results. So, we hypothesized that H1 would be rejected, meaning that

the estimate of blue eye color prevalence is in line with the corresponding DQ estimate of

the main study.

Method

The follow-up study amounted to a simple one-group-design without experimental

manipulations.

Like in the main study, we commissioned Bilendi S.A. to generate a sample with

demographics as similar as possible to those of German citizens with a driver’s license (see

Kraftfahrt-Bundesamt [Federal Office for Motor Traffic], 2022).

The procedure and materials used in the follow-up study were identical to those in

the main study. The only differences were that in the follow-up study, there was no DQ

group, and the order of the eye colour question and the drinking and driving question was

switched. Additionally, since it was not necessary to vary the time constraints in this

design, the drinking and driving question always referred to the past year. The data
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exclusion procedure was similar to the one used in the main study as well. But, to make

sure that the sampling process was not stopped prematurely, participants who answered

the survey too fast were marked as fast respondents immediately after completing the

survey. To do this, we assumed the average response timings in the follow-up study to be

similar to the response times of the UQM group in the main study. This seemed like a

valid assumption, since the surveys were identical except for the order of two questions.

Thus, we compared the RSI values (according to Leiner, 2019b) of the participants directly

with the corresponding RSI values in the UQM group in the main study.

Sampling started on September 16th, 2022 and was completed on September 20th,

2022.

Results

Sampling was stopped after N = 498 observations. Because the stopping criterion of

265 yes-answers was reached, the null hypothesis was rejected.

The sample was similarly distributed in terms of demographic data compared with

the data for Germans with driver’s licenses (Kraftfahrt-Bundesamt [Federal Office for

Motor Traffic], 2022), as illustrated in Table C1.

To estimate π, we used an estimator for the parameter λ that corrects for bias

induced by the sequential sampling procedure (Reiber, Schnuerch, & Ulrich, 2022),

γ̂ = cs − 1
N − 1 . (C1)

Inserting the corrected estimate γ̂ into the standard formulae for calculating π in the UQM

(see Equations 7 and 9) yields the point estimate π̂ = 0.548 (95% CI [0.483, 0.614]).

Discussion

In conclusion, the hypothesis test points toward the follow-up study’s UQM

estimate for the prevalence of blue eye color not being significantly lower than than the one

in the main study. Thus, an order effect seems unlikely as the explanation for the

unexpected differences between blue eye color prevalence estimates using DQ and UQM
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Table C1

Distribution of demographics in the sample of the

follow-up study compared to those of the German

population owning a driver’s license

Demographic Distribution

sample population

Gender female 46.2% 43.1%

male 53.6% 56.9%

non-binary 0.2% 0.0%

Age 18-29 years 15.1% 16.8%

30-39 years 19.7% 20.1%

40-49 years 16.7% 14.2%

50-59 years 19.1% 16.7%

60 years and older 29.5% 31.8%

Note. The reference distribution of demographics is

based on data by the Kraftfahrt-Bundesamt [Federal

Office for Motor Traffic] (2022).

methods in the main study.


