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Response propensity (RP) models are widely used in survey research to analyse response processes. One
application is to predict sample members who are likely to be survey nonrespondents. The potential nonre-
spondents can then be targeted using responsive and adaptive strategies with the aim of increasing response
rates and reducing survey costs. Generally, however, RP models exhibit low predictive power, which limits
their effective application in survey research to improve data collection. This paper explores whether the use
of a Bayesian framework can improve the predictions of response propensity models in longitudinal data.
In the Bayesian approach existing knowledge regarding model parameters is used to specify prior distri-
butions. In this paper we apply this approach and analyse data from the UK household longitudinal study,
Understanding Society (first five waves) and estimate informative priors from previous waves data. We use
estimates from RP models fitted to response outcomes from earlier waves as our source for specifying prior
distributions. Our findings indicate that conditioning on previous wave data leads to negligible improvement
of the response propensity models’ predictive power and discriminative ability.
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1 Introduction

It has become more difficult in recent years to conduct so-
cial surveys because of an increase in nonresponse rates and
survey costs (Carlson & Williams, 2001; de Leeuw & de
Heer, 2002; Luiten, Hox and de Leeuw 2020). Increasing
nonresponse rates reduce stakeholder confidence in the abil-
ity of surveys to inform public policy due to concerns about
the representativeness of samples and the generalisability of
findings to wider populations. Therefore, survey researchers
are keen to understand and address the factors which influ-
ence nonresponse. Such factors include socioeconomic and
demographic attributes of members of the public (Gjonça
& Calderwood, 2004; Goldberg et al., 2001), salience of
survey topics (Groves et al., 1992), and survey design cha-
racteristics (Fan & Yan, 2010; Moss, 1981).
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An increase in nonresponse rates has resulted in interest
among survey practitioners in developing improved under-
standing of nonresponse behaviour, chiefly with response
propensity (RP) models (Särndal & Swensson, 1987). For
example, Olson & Groves (2012) employed RP models to
predict changes of individual response propensities under
responsive and adaptive strategies. Durrant, et al. (2015)
showed that the predictive power of RP models for final call
outcome and length of call sequence improves when infor-
mation from most recent calls is included as explanatory
variables. However, the explanatory power of RP models
in terms of pseudo R2 tends to be low and ranges between
2 and 8% (Fricker & Tourangeau, 2010; Kreuter & Olson,
2011; Olson & Groves, 2012). Therefore, ways of improv-
ing the predictive power of RP models is an active and
important area of research in survey design.

Some of the steps taken to improve the predictive power
of RP models in responsive and adaptive designs relate to
collection and/or use of new auxiliary data such as para-
data which are data about the survey process (Biemer et al.,
2013; Durrant et al., 2015 and 2017; Kreuter, 2013; West,
2011). Alternatively, researchers can potentially improve
prediction accuracy through implementation of more suit-
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able statistical models. One possibility in the latter context
is the use of a Bayesian approach which utilises informa-
tive priors to improve the prediction model (Coffey et al.,
2020; Coffey & Elliott, 2023; Schouten et al., 2018; Wag-
ner et al., 2023; West et al., 2023; Wu et al., 2022). For
example, West et al. (2023) have shown that using histor-
ical data in a Bayesian setting can improve predictions of
RP models in the early or middle periods of data collection
in cross-sectional studies.

This paper aims to extend our understanding of the util-
ity of the Bayesian framework in maximising prediction
accuracy in RP models. We investigate whether using in-
formative priors derived from the coefficients from models
fitted to previous waves can improve the predictions of final
call outcome in the current or subsequent waves of a longi-
tudinal survey. In the context of longitudinal surveys, infor-
mative priors from previous waves can, in principle, pull the
estimates of the current wave closer to the accurate values
which may lead to improved bias in estimates (Fearn et al.,
2004; Simon, 2009). Additionally, in a situation where both
the informative prior and current data can accurately esti-
mate the parameters of interest, their combination has the
potential to reduce the mean squared error (MSE) due to re-
duction in the effects of sampling variation (i.e., shrinkage)
(Fearn et al., 2004; Simon, 2009).

Our primary objective, then, is to assess whether the use
of informative priors derived from models fitted to previ-
ous waves in a longitudinal survey can improve prediction
accuracy in RP models. If this can be achieved, the model
predictions can be used for better planning of fieldwork at
the next wave, for example, by for example targeting mon-
etary incentives, household communication strategies and
sending more experienced interviewers to low propensity
households. Model performance is assessed using a range
of evaluation criteria such as Watanabe Akaike Information
Criterion (WAIC), sensitivity, specificity, area under the re-
ceiver operating characteristic (ROC) curve, and positive
and negative predicted values. Data from the UK House-
hold Longitudinal Study Understanding Society Waves 1–5
are used for the analysis (University of Essex et al. 2016).

The remainder of this paper is structured as follows: We
first provide the background and motivation for the study.
We then describe the Understanding Society survey that
form the basis of our analysis and the approach used to
construct the analysis samples. This is followed by the de-
scription of the analysis methodology and presentation of
our key findings. We conclude by a discussion of the impli-
cations of our findings for survey practice, acknowledge-
ment of the limitations of our study and suggestions for
future research.

2 Background and motivation

RP models were introduced by David, Little, Samuhel, &
Triest (1983) who extended the propensity score theory of
Rosenbaum & Rubin (1983) as a tool for evaluating nonre-
sponse behaviour in surveys. RP models produce a single
score which summarises the likelihood of a sample mem-
ber responding to a survey request as a function of vari-
ables that are observed for both respondents and nonrespon-
dents (Kalton & Flores-Cervantes, 2003). Traditionally, the
method for estimating response propensities is a logistic re-
gression model, where the outcome is a binary indicator of
survey response. The fitted probabilities from such a model
are the response propensities and these have been used for
a variety of purposes, including obtaining a better under-
standing of nonresponse, and associated mechanisms (Dur-
rant & Steele, 2009), developing nonresponse weights (Lit-
tle, 1986), calculating representativeness indicators such as
R-indicators and coefficients of variation (CVs) (Schouten
& Cobben, 2007), predicting response outcomes either dur-
ing or right at the end of data collection (Durrant et al.,
2011, 2013, 2015, 2017), and providing information to tar-
get interventions for adaptive and responsive survey designs
(Coffey & Elliott, 2023; Groves & Heeringa, 2006; Wagner
et al., 2023).

The effectiveness of RP models in helping survey re-
searchers implement fieldwork decisions is, however, hin-
dered by their generally low predictive power (Brick &
Montaquila, 2009; Kreuter, Olson, et al., 2010; Olson et al.,
2012; Olson & Groves, 2012). For example, a RP model de-
veloped by Olson & Groves (2012) had a pseudo R2 of 2%.
Olson, Smyth, & Wood (2012) investigated the effect of re-
spondents’ choice on their preferred survey mode using RP
models and obtained pseudo R2 ranging between 3.2 and
8%. The low predictive power of these models is primarily
due to the use of auxiliary variables which are not strongly
correlated with response outcomes because more strongly
correlated variables are generally not available to be linked
to the sampling frame (Brick & Montaquila, 2009; Kreuter,
Olson, et al., 2010).

One of the strategies adopted by researchers to improve
the fit of RP models involves the collection of new kinds
of auxiliary variables and paradata to be used as predictors
(Biemer et al., 2013; Blom, 2009; Peytcheva & Groves,
2009; Sinibaldi & Eckman, 2015; Sinibaldi, Trappmann,
& Kreuter, 2014). For example, Durrant et al. (2015, and
2017) found that the inclusion of call record variables, es-
pecially from the most recent calls, improved the predictive
power of RP models from 9 to 26%. Sinibaldi & Eckman
(2015) used interviewer observations at call level and found
an improvement of in terms of both pseudo R2 and the Area
Under the Curve (AUC) of the Receiver Operating Charac-
teristic (ROC) curves. Likewise, Blom (2009) showed that
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the predictive power of RP models improved when demo-
graphic variables are combined with paradata using Euro-
pean Social Survey (ESS) data for nonresponse adjustment.

Historically, RP modelling has been implemented within
a frequentist statistical framework (Durrant et al., 2015,
2017; Olson et al., 2012; Olson & Groves, 2012; Sini-
baldi & Eckman, 2015). However, Bayesian models are
increasingly being implemented and hold promise for im-
provements to prediction accuracy (Coffey et al., 2020; Cof-
fey & Elliott, 2023; Schouten et al., 2018; Wagner et al.,
2023; West et al., 2023; Wu et al., 2022). The main dif-
ferences between frequentist and Bayesian frameworks are
the treatment of the observed data and the interpretation
of uncertainty (Fearn et al., 2004; Simon, 2009; Skorczyn-
ski, 2012; Wagenmakers et al., 2008). Statistical inferences
based on the frequentist framework make probability state-
ments about random events by assuming that parameters
are fixed, and the data are random in which any uncer-
tainty is due to randomness, while a Bayesian model treats
all unknown quantities as random variables and represents
uncertainty over those quantities using probability distribu-
tions (Fearn et al., 2004). In addition, Bayesian inferences
are exact since they are conditioned on observed data satis-
fying the likelihood principle, unlike frequentist inferences
that rely on asymptotic approximations (Steel, 2007).

The starting point of Bayesian analysis is expressing
prior knowledge about unknown parameters in the form
of a prior distribution (Zyphur & Oswald, 2015). The ob-
served data are then combined with this prior distribution
using Bayes’ theorem to obtain an updated prior in the form
of a posterior distribution (Fearn et al., 2004; Gill, 2014;
Simon, 2009; Zyphur & Oswald, 2015). In many practi-
cal situations, there is little or no previous knowledge on
the phenomenon of interest. This leads to the specification
of ‘vague’ or ‘noninformative’ prior distributions that have
minimal influence on the posterior estimates (Gill, 2014).
However, when researchers have some pre-existing knowl-
edge about the parameters of interest, it is possible to spec-
ify ‘informative’ prior distributions (Coffey et al., 2020;
Coffey & Elliott, 2023; Gill, 2014; Schouten et al., 2018;
Wagner et al., 2023; West et al., 2023; Wu et al., 2022). In-
formation to specify informative priors can be derived from
a range of sources including, but not limited to existing
studies, expert opinions, and pilot studies (Gill, 2014; West
et al., 2023; Wu et al., 2022).

In the context of a longitudinal survey, posterior distri-
butions that summarise knowledge on the parameters at the
current wave may also be used as the basis for deriving prior
distributions for subsequent waves. This can, in principle at
least, lead to estimates with reduced variance for accurate
and stable predictions which can enhance optimal alloca-
tion of survey fieldwork efforts in the subsequent wave. This
procedure is known as sequential Bayesian updating (SBU)

(Lindley, 1972). SBU has been applied in fields such as sur-
vey methodology (West et al., 2023), traffic analysis (Yu &
Abdel-Aty, 2013), big data applications using web sourced
data (Oravecz et al., 2015), and in clinical trials (Viele et al.,
2014) in which model parameters were updated as new data
became available without the need to repeatedly compute
the likelihood. It has also been found that Bayesian models
with informative priors have increased power and reduced
bias when implemented for datasets with small sample sizes
(Schouten et al., 2018; van de Schoot et al., 2015).

The use of a Bayesian approach using informative priors
has also attracted the attention of survey methodologists in
recent years in the context of adaptive and responsive sur-
vey designs (Coffey & Elliott, 2023; Schouten et al., 2018;
Wagner, 2016; Wagner et al., 2023; West et al., 2023). For
instance, Schouten et al. (2018) found that a correctly spec-
ified Bayesian model leads to robust results compared to
a non-Bayesian model especially when used for smaller
sample sizes. West et al. (2023) showed that using quar-
terly historical data to define prior distributions can lead to
higher quality predictions of RP models compared to stan-
dard approaches not using prior information. In the same
vein, Wagner et al. (2023) and Coffey & Elliott (2023)
showed that informative priors derived from historical data
improved the evaluation of optimisation rules for data qual-
ity and costs in responsive and adaptive survey designs. In
situations where historical data are not available, informa-
tive priors elicited from experts or derived from the existing
literature have also been shown to be effective in improving
prediction accuracy (Coffey et al., 2020; West et al., 2023;
Wu et al., 2022). Our objective in this paper is to extend our
understanding of whether and how informative priors can
be used to improve RP prediction accuracy in a longitudi-
nal survey context. Our rationale is that informative priors
derived from the coefficients of the previous wave (t-1) RP
model have the potential to produce MSE improvements in
the estimates of the current wave (t) which in turn leads to
stable and accurate predictions compared to a frequentist
model. This can improve the adoption of adaptive survey
designs aimed at reducing attrition among households with
low response predictions in subsequent waves (t + 1) in
longitudinal studies.

3 Data

Understanding Society is a large-scale household longitudi-
nal survey which collects information on health, work, edu-
cation, income, family and social life and aims to explain
their stability and changes among individuals and house-
holds living in the UK (Buck & McFall, 2012; Knies, 2014).
The survey uses a multi-stage sample design with cluster-
ing and stratification. Households are clustered within inter-
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Table 1

Number of households in each wave linked to previous wave auxiliary data, missing cases and wave final sample size

Missing cases

Waves Linked Households n % Final sample

1 and 2 24,738 288 1.20 24,450

2 and 3 19,791 618 3.10 19,173

3 and 4 17,856 490 2.70 17,366

4 and 5 16,705 578 3.50 16,127

viewers and within the primary sampling units (PSU). The
details of sample selection can be found in Lynn (2009). The
study also collects call record data and interviewer obser-
vation variables (Knies, 2014). The survey aims to achieve
interviews with all individuals in sampled households who
are aged 16 years and above and young people aged 10–15.
Data collection for each wave is scheduled across a 24-
month period, with interviews taking place annually.

This study uses the first five waves of the survey which
were collected between January 2009 and December 2014.
The General Population sample covering Great Britain
(GB) only is used for the analysis, since the Northern
Ireland (NI) sample does not contain call record data,
which are required for the analysis, since previous wave
call record data are incorporated in the models. The waves
are linked pairwise (wave 1 to wave 2; wave 2 to wave 3,
etc.) using unique personal identifiers. The analysis sample
for each current wave consist of only those individuals
who responded in the immediate previous wave as non-
respondents to that wave do not have observations on the
variables included in the prediction model. This means
there is a declining sample size in each subsequent wave
due to attrition. Note also that each wave’s sample size
comprises both respondents and nonrespondents based on
the final call outcome of that wave. For example, the sample
for wave 2 consists of wave 1 respondents only. Details
about the four pair-wise datasets across the five waves of
interest are presented in Table 1.

As the Bayesian models with informative priors are
likely to perform better when used with smaller sample
sizes (Gill, 2014), we also derive informative priors for
random subsamples of the full analysis samples. This is to
investigate whether data used to derive informative priors
have dominating effects on the posterior results. Therefore,
random subsamples of 2%, 5% and 10% of the main sample
are selected to obtain estimates for informative priors.

3.1 Outcome and explanatory variables

The outcome variable in the RP models is the final call
outcome (of the current wave). This is coded (1) if at least
one interview is conducted in a sequence of call attempts
to a household, otherwise the response is recorded as un-
successful (0). The choice of household level response as
the variable of interest (as opposed to individual-level re-
sponse) is motivated by the fact that this study aims to
include variables from the call record data (paradata) RP
models, which are only recorded at the household level, as
is the case for most surveys. The definition of a call se-
quence in the response propensity models is informed by
the definition presented in Durrant et al. (2015) and the dis-
tribution of the final call outcome (of the current wave) is
presented in Table 2.

The explanatory variables included fall under the follow-
ing four main groups:

1. Geographical and design variables: Government Office
Regions (GORs), urban/rural indicator, and month and
year of household issue.

2. Survey variables: lone parents, pensioners in household,
employment status, number of cars, highest education
qualification in household, household income, tenure,
household size.

3. Interviewer observations: accommodation, relative con-
dition of property, presence of unkempt garden in ad-

Table 2

Distribution of the final call outcome of the current wave
in the final analysis sample

At least one
interview No interview

Waves n % n % Total

2 18,928 77.40 5522 22.60 24,450

3 15,741 82.10 3432 17.90 19,173

4 15,016 86.50 2350 13.50 17,366

5 14,271 88.50 1856 11.50 16,127
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dress, conditions of surrounding houses, presence of
trash/litter/junk in street or road, heavy traffic on street
or road, presence of car/van and children in household.

4. Call record data: length of call sequence, proportion of
noncontacts, proportion of appointments, proportion of
contacts, proportion of other call outcomes and propor-
tion of interviews. The denominator used for all the pro-
portions is the length of call sequence which is the total
number of call attempts made to a household within one
wave.

4 Methodology

The final call outcome (for the current wave) is modelled us-
ing binary logistic regression (Durrant et al., 2015; Hosmer
& Lemeshow, 2000). Let the binary response of household
i in current wave be denoted byyi ; i = 1; : : :. The response
variable for the final call outcome in current wave is given
as:

yi =

8
ˆ̂
<̂

ˆ̂
:̂

1 successful final call outcome
(at least one interview in a sequence)

0 unsuccessful final call outcome
(no interview)

(1)

for household i. The response probabilities for yi are denoted
as �i = P r .yi = 1/ and .1 − �i/ = P r .yi = 0/ : Observed
responses yi are proportions with the standard assumption
that they are binomially distributed.

yi � Bin .ni ; �i / (2)

where ni is the current wave number of households. The
logistic regression model, which predicts the response
propensities in each current wave, is defined as

logit .�i / = log

�
�i

1 − �i

�

= ˇ0+ˇ1x1 +: : :+ˇJ xJ = BT X j

(3)

where B = .ˇ0; ˇ1; : : : ; ˇJ / is vector of current wave
regression parameters and Xj is a vector of current wave ex-
planatory variables at household level; with j = .0; 1; : : : ; J /

being an index for the number of explanatory variables.
The Bayesian logistic models are fitted using the INLA

package (Fong, Rue, & Wakefield, 2010; Rue, Martino, &
Chopin, 2009) in R version R-3.3.0. INLA produces fast
and accurate approximations compared to Markov chain
Monte Carlo (MCMC) alternatives for latent Gaussian mod-
els (Rue et al., 2016). INLA’s Bayesian inferences are ap-
proximated deterministically, making it practically feasible

to fit models which contain many regression parameters and
complex structures (Rue et al., 2009). A detailed descrip-
tion of the INLA methodology can be found in Rue et al.
(2009).

To complete the model described in Eq. 3, normal dis-

tributions denoted by ˇj � N
�
�j ; �2

j

�
, j = 1; : : : j; are

specified as priors for regression parameters (Gelman et al.,
2008). The normally distributed priors are not conjugate
with the likelihood of the data, and they are incorporated
in the model by altering the weighted least squares step of
the algorithm and augmenting the approximate likelihood
with the prior distribution (Gelman et al., 2008). The idea
of conjugacy implies that prior-to-posterior updating yields
a posterior that is also in the same distribution family. The
analysis starts by specifying vague normal prior distribu-
tions denoted by ˇj � N .0; 10000/ for regression param-
eters in the model predicting wave 2 final call outcome.
Posterior summaries are then obtained from the INLA that
summarise the knowledge on the parameters given the data.
The posterior results are summarised in terms of the means
that express the updated knowledge of the regression pa-
rameters and their variances. The estimated posterior means
and variances are then used as informative priors for the
subsequent wave analysis.

A frequently voiced concern in the use of Bayesian anal-
ysis is the ‘subjectivity’ associated with the choice of in-
formative priors (Bijak & Bryant, 2016). Therefore, when
informative priors are used, it is important to quantify prior
impact under different specifications which involves fitting
models with vague priors and altering the variance compo-
nent of informative priors (Evans et al., 2011; Gill, 2014).
That being said, it is important to note that the ‘subjec-
tivity’ associated with informative priors is precisely what
can improve model predictions when there is consistency
in the data generating mechanism between posterior predic-
tive distribution (i.e., likelihood of current data) and priors
generated from previous waves. Since the normal distri-
bution is a location-scale family distribution, altering the
variance parameter provides the best way of assessing the
sensitivity of the informative priors because the variance
influences the posterior results’ dispersion. Therefore, pos-
terior sensitivity is assessed by multiplying the informative
prior variance parameters by a factor of 0.1, 2.0, 5.0, 10.0,
and 100.0 and by observing the effect on the resulting pos-
terior distribution in terms of predictive and discriminative
measures.

This spectrum of mis-specified priors gives the relative
weighting of the variance for the likelihood function from
highly to less informative priors. For example, the esti-
mated variance multiplied by 0.1 and 2.0 implies that the
new variance is based on the effective sample sizes that are
10 and 0.5 times larger than the original sample sizes re-
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Table 3

Prior distributions used for Bayesian response propensity models in each wave

Prior type Specification of prior distribution for regression parameters in wave n
Model
name

Effective sample size relative
to original

Vague ˇn
k � N .0;0:001/ M1 –

ˇn
k � N

�
ˇn−1

k ;
�
�n−1

k

�2
�

M2 1

ˇn
k � N

�

ˇn−1
k ;

�
�n−1

k � 0:1
�2

�

M3 10

ˇn
k � N

�

ˇn−1
k ;

�
�n−1

k � 2
�2

�

M4 0.50

ˇn
k � N

�
ˇn−1

k ;
�
�n−1

k � 5
�2

�
M5 0.20

ˇn
k � N

�
ˇn−1

k ;
�
�n−1

k � 10
�2

�
M6 0.10

Informative

ˇn
k � N

�

ˇn−1
k ;

�
�n−1

k � 100
�2

�

M7 0.01

spectively. As an uncertainty measure, the variance works
well for determining prior impact, where a higher variance
‘flatten’ out the informative prior, making it less informative
(Gill, 2014). The different prior specifications employed in
this study are presented in Table 3 where models M1 and
M3–M7 makes the prior wave sample smaller, while M3
makes it larger.

The posterior results from the best fitting model in each
wave are then used to specify the informative priors for
the subsequent wave model. We do not consider correlation
structures among the regression parameters due to the large
number of explanatory variables used in the models, which
make it computationally demanding. The model parameters
for frequentist models are fitted using Maximum Likelihood
Estimation (MLE) in Stats Package in R for comparison
purposes (R Core Team, 2015).

4.1 Model Selection

The variables included in the final models were selected in
a two-step process for both the frequentist and Bayesian
models and using the wave 2 outcome, with models for
subsequent waves employing the same set of explanatory
variables for comparability. The explanatory variables with
p values < 0:05 for frequentist models and 95% credi-
ble intervals that do not cover zero for Bayesian models
were selected for inclusion in the propensity models based
on bivariate comparisons. Contingency tables with zero or
low cells that may cause numerical problems in models are
grouped (i.e., categorical levels that have few cases are com-
bined into one group). The strength of association between
each of the explanatory variables and the final call out-
comes were assessed using Cramer’s V which is a measure
of correlation for categorical variables (Liebetrau, 1983).

Cramer’s V ranges from 0 to 1 where they indicate no and
strong associations between two variables respectively.

The second step involved iterative refitting of frequentist
and Bayesian models using a forward selection approach
(Hosmer & Lemeshow, 2000). The explanatory variables
that were significant in both the frequentist and Bayesian
models were retained in the final model. This ensures that
explanatory variables selected for inclusion in the final fre-
quentist and Bayesian models are equivalent for compari-
son purposes. For the frequentist and Bayesian models, the
Akaike Information Criterion (AIC) and WAIC measures
were used for selecting the final models (Freese & Long,
2006; Gelman et al., 2013). AIC is calculated using the
maximum likelihood estimate, while WAIC is computed us-
ing log pointwise predictive density and both adjust for the
effective number of parameters. The model with the low-
est AIC and WAIC value when compared with alternative
models is considered to have the best fit to the data. WAIC,
as an out of sample predictive measure of the estimated
model, is also used to evaluate whether use of informative
priors leads to an improvement in the MSE. In addition, the
proportion of variance in the final call outcome accounted
for by the explanatory variables in the frequentist models is
assessed using a Nagelkerke pseudo R2 (Nagelkerke, 1991).

Although the AIC, WAIC, and pseudo R2 are useful for
evaluating model adequacy, they cannot assess the accuracy
of the model predictions in terms of correctly classifying
nonrespondents and respondents (Plewis et al., 2012). In
addition, using WAIC and AIC makes it difficult to com-
pare the predictive performance of frequentist and Bayesian
models directly. We therefore supplement our diagnostics
with measures for classification, discrimination (sensitivity
and specificity), prediction (positive and negative predicted
values), and AUC of the ROC which help to deal with
the issues of arbitrary cut-off values in discrimination and
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Fig. 1

Graphical representation of sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV) and
classification rate derivation

Table 4

Evaluation criteria for frequentist models using Akaike Information Criteria (AIC), Nagelkerke’s pseudo R2 and Watan-
abe Akaike Information Criteria (WAIC) for Bayesian models

Waves Model AIC Nagelkerke R2 (%) WAIC

Frequentist 12,559 7 –1 and 2

M1 – – 12,561

Frequentist 8701 5 –

M1 – – 8701

M2 – – 8704

M3 – – 8857

M4 – – 8693

M5 – – 8696

M6 – – 8699

2 and 3

M7 – – 8701

Frequentist 6865 6 –

M1 – – 6865

M2 – – 6868

M3 – – 6997

M4 – – 6854

M5 – – 6858

M6 – – 6862

3 and 4

M7 – – 6871

Frequentist 5593 6 –

M1 – – 5594

M2 – – 5810

M3 – – 5627

M4 – – 5604

M5 – – 5593

M6 – – 5592

4 and 5

M7 – – 5594

prediction (Durrant et al., 2017; Pepe, 2003; Plewis et al.,
2012).

An overall summary of the predictive power of the model
is the proportion of the correct classifications referred to as
the classification rate, which measures the proportion of
households that would be correctly classified by the model.
Sensitivity is the proportion of households that experience
no interview and are correctly predicted as such, while
specificity is the proportion of households which are cor-
rectly predicted as providing at least one interview (Agresti,
2013; Durrant et al., 2015; Plewis et al., 2012). The positive
predictive value (PPV) is the probability that a household
is indeed a nonresponse given that it is predicted as non-
response, while the negative predicted value (NPV) is the
probability that a household is indeed a response given that
it is predicted as a response (Agresti, 2013; Durrant et al.,
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2015; Plewis et al., 2012). A graphical representation of
sensitivity, specificity, NPV and PPV, including their deriva-
tions, are given in Fig. 1. The R package epiR is used to
evaluate classification rate, sensitivity, specificity, NPV and
PPV (Mark et al., 2016).

The AUC of the ROC curve measures the model’s ability
to discriminate between households which did not have in-
terviews and those which had at least one interview (Plewis
et al., 2012). The AUC represents an overall accuracy of
model predictions and has a range of 0.5 to 1.0. A value
of 0.5 means the model predictions are no better than ran-
dom guessing, while a value of 1.0 represents perfect dis-
crimination between households that experience at least one
interview and those which do not. The ROC curves are im-

Table 5

Results of classification table and AUC of ROC curves, sensitivity, specificity, positive predictive values (PPV) and nega-
tive predictive values (NPV) for the final call outcome

Wave Modelling approach Classification (%)
AUC
(%)

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

Frequentist 78 64 52 78 3 991 and 2

M1 78 64 53 78 3 99

Frequentist 82 62 25 82 0 100

M1 82 62 27 82 0 100

M2 82 57 –a 82 0 100

M3 82 62 50 82 0 100

M4 82 62 40 82 0 100

M5 82 62 30 82 0 100

M6 82 62 27 82 0 100

2 and 3

M7 82 62 27 82 0 100

Frequentist 87 63 40 87 0 100

M1 87 63 40 87 0 100

M2 87 58 –a 87 0 100

M3 87 62 50 87 0 100

M3 87 58 –a 87 0 100

M5 87 63 25 87 0 100

M6 87 63 40 87 0 100

3 and 4

M7 87 63 40 87 0 100

Frequentist 89 64 45 89 1 100

M1 89 64 45 89 1 100

M2 89 52 –a 89 0 100

M3 89 63 43 89 0 100

M4 89 64 38 89 0 100

M5 89 64 50 89 1 100

M6 89 64 56 89 1 100

4 and 5

M7 89 64 45 89 1 100

a Division by zero

plemented in the R pROC package, a tool for visualising,
smoothing, and comparing ROC curves (Robin et al., 2011).

These measures are evaluated using out-of-sample pre-
dictions of test data as this approach is less sensitive to
outliers and overfitting (Hastie et al., 2009). This is done
by partitioning the analysis samples into training and test-
ing subsets which are used for model fitting and evalua-
tion respectively (Hastie et al., 2009). We use 50% of the
sample for an out-of-sample prediction. The training and
testing subsets are obtained by randomly splitting the given
wave data using the R caret package (Kuhn et al., 2016).
Cross-validation was done by splitting each dataset twice
into a training dataset and a validation dataset.
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In summary, if using previous wave RP model coeffi-
cients to specify informative priors for the subsequent wave
model is effective it should lead to a reduction in WAIC val-
ues (improved MSE) and an increase in sensitivity, speci-
ficity, NPV and PPV values (reduced bias). In a situation
where WAIC is lower without a change in sensitivity, speci-
ficity, NPV and PPV values, it shows an improvement in
MSE without a loss in bias. Our analysis proceeds in two
stages: 1) identify variables using wave 2 to be included
in the predictions of the final call outcome, and 2) eval-
uate whether inclusion of regression coefficients for these
variables from the RP model from the previous wave as
informative priors can improve predictions of final call in
the subsequent waves. This is important since it provides
a mechanism which enables the prediction of final call out-
come for waves 2, 3, 4, and 5.

5 Results

Our results consist of 23 models for final call outcome
across Waves 2, 3, 4, and 5, respectively. In Wave 2,
only two models are presented: a frequentist model and
a Bayesian model with vague priors. A total of 9 models
(i.e., a frequentist, a Bayesian model with vague prior,
and 7 Bayesian models with different specifications of
informative priors) are fitted for the final call outcome at
the subsequent Waves (Waves 3, 4, and 5, respectively).
The posterior summaries from the Bayesian model with
the lowest WAIC among alternative models in the previ-
ous wave is used to specify the informative priors for the
current wave analyses. At each wave, a model with vague
priors is used as the reference when comparing the predic-
tive performance of informative prior models. Cramer’s V
values obtained for the final call outcome ranged between
0.02 to 0.26 indicating a weak bivariate correlation between
outcome and explanatory variables used in all models.

Table 4 presents pseudo R2 coefficients and the values
for AIC and WAIC for the 23 models in Waves 2, 3, 4
and 5. Table 4 shows that in Wave 3, all models with differ-
ent specifications of informative priors have lower WAIC
values compared to a model with vague priors except mod-
els M2 and M3, which have higher WAIC values indicating
a poor model fit. The inclusion of previous wave data via
informative priors in Wave 4 produces mixed results. Mod-
els M2, M3 and M7 have higher WAIC values compared
to model M1 with vague prior indicating a poor model fit.
However, there is a slight decrease in WAIC values for mod-
els M4, M5 and M6 compared to model M1 showing an im-
provement in model fit. In Wave 5, models with informative
priors have higher WAIC values compared to a model with
vague priors, while models M5, M6, and M7 have WAIC
values similar to the ones obtained in vague priors’ model.

This indicates that our strategy of using previous wave data
in the final call models via informative priors does not im-
prove the model fit especially when the prior wave sample
is larger. However, reduction of the effective prior sample
by half (M4) yields a somewhat smaller WAIC, indicating
an improved MSE.

Table 4 also shows that the Nagelkerke pseudo R2 values
for the frequentist models are between 4.9 and 7% for the
final call outcome, which are similar to pseudo R2 values
of nonresponse models reported in previous studies (Olson
et al., 2012; Olson & Groves, 2012). These results indicate
that the use of informative priors leads to a slight improve-
ment in model fit in the earlier waves of the survey relative
to models with vague priors which is consistent with the
findings of West et al. (2023). However, the performance of
the Bayesian models is worse at later waves. This difference
between earlier and later waves could be due to substantive
changes in the survey fieldwork, such as the introduction of
phone interviews for some households in wave 3. In addi-
tion, this may also be explained by the reduction in strength
of borrowed information in later waves due a longer period
which renders informative priors from previous wave less
consistent with current wave data. Therefore, using the im-
mediate previous wave is expected to be more informative
about households in comparison to the informative priors
derived from the full follow up data (e.g. priors derived
from combined waves 2, 3 and 4 on wave 5 outcome). This
is because household characteristics are more likely to be
stable in the short to medium term. The RP models with
informative priors with larger variances (standard deviation
multiplied by a factor of 10 and 100) have WAIC values
similar to those for the models with vague priors.

Table 5 presents the classification tables and AUC values
for ROC curves based on 50% out-of-sample predictions.
For classification tables, 50% of the cases for the final call
outcomes are classified correctly by chance, with values
above 50% indicating more predictive powers. Here, the
observed classification values are 82%, 87% and 88% in
Waves 3, 4 and 5 respectively. These values are similar to
the proportion of households which had at least one inter-
view at each wave because classification rates are sensitive
to the largest category of the response variable (Agresti,
2013). These classification values for the final call out-
comes, then, show that the models do not perform better
than the observed distribution.

The AUC values of ROC curve greater than 50% indi-
cate that any discrimination for the outcome is not due
to random variation, with values above 70% considered
to represent better discrimination (Hosmer & Lemeshow,
2000). For the final call outcomes, Table 5 shows the AUC
values obtained in all waves range between 62 and 64%,
indicating a minimal discrimination. In all waves, the dif-
ferences in AUC values for models with informative and
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vague priors ranged between ˙0:0% and ˙0:03%, which
are negligible. Although there are slightly higher AUC val-
ues for RP models with informative priors, they are not
statistically significant. Overall, the results show that the
use of informative priors does not lead to improvements in
the predictive power of the models.

Overall, sensitivity values range from 25 to 56%, in-
dicating moderate success in the proportion of households
correctly predicted as not being interviewed (Table 5). How-
ever, the low PPV values (ranging from 0 to 3%) suggest
that none of the households which were not interviewed
were predicted as nonrespondents. Considering the anal-
ysis sample at each wave consisted of all respondents in
the immediately previous wave, this may have contributed
to the low proportion of households that were nonrespon-
dents and, therefore, a low PPV. The specificity values range
from 78 to 89% suggesting that most households are cor-
rectly predicted as being interviewed. The higher NPC val-
ues (99–100%) show that most households, which were
indeed interviewed, are correctly predicted as respondents.

Table 5 also shows improvement of sensitivity values for
the final call outcome model (M3) in waves 3 and 4 relative
to model (M1). The sensitivity values for model (M2) give
a non-numeric value (Nan—which occurs when fraction’s
numerator is zero) in all waves indicating that a tight infor-
mative prior does not correctly predict any households that
were not interviewed. The reason for this is that the infor-
mative prior specified is very strong, since it puts most of
its mass on parameter values that are large in absolute value
and, therefore, strongly influences the posterior inference.
Considering the percentage of households that were not
interviewed was lower (i.e. ranged between 11.5 to 23%)
compared to those interviewed (77.4 to 89%), condition-
ing on a tight informative prior may have contributed to
the prediction that none of the households were correctly
classified as nonrespondents. The mis-specified informative
prior models with larger variances have similar sensitivity
values as vague priors, except in Wave 5 which has slightly
improved values. In addition, the specificity values for mod-
els with informative and vague prior models are similar in
each wave. Sensitivity and specificity results show that the
use of previous wave information does not improve the dis-
crimination power of the models. Table 5 also shows that
the positive and negative predictive values for final call out-
come models with informative priors and vague priors in
waves 3, 4, and 5 are similar, with very small differences
of˙1%. Note that sensitivity, specificity, PPV and NPV
values in Table 5 are integers because of the nature of data
used. The coefficient estimates for RP models (i.e., M1,
M2, M3 and M7) for waves 3, 5 and 4 are provided in
Tables A3, A4 and A5 in the Supplementary material.

The additional analysis (Tables A6 and A7 in the Sup-
plementary material) based on a random subsample of 10%

of the main sample had similar results in terms of discrim-
ination and prediction power. Thus, a smaller sample size
does not have an impact on the discrimination and predic-
tion power in response propensity models. The results for
sensitivity analyses using 2% and 5% subsamples were sim-
ilar to those obtained for 10%. Analyses using the length
of the call sequence as the outcome also produced similar
results. This confirms the finding that the use of informa-
tive priors based on previous waves does not seem to lead
to significant improvements of the predictive ability of the
models (at least not for the example analysed here).

We also investigated whether inclusion of explanatory
variables in RP models that are highly correlated with the
final call outcome (i.e. income and employment variables)
only influenced the strength of informative priors in improv-
ing the predictive power (results are shown in Tables A8 and
A7 in the Supplementary material). The results demonstrate
that also these models’ predictive and discrimination abili-
ties are not very different from those obtained in the main
analysis. This indicate that the strength of correlation be-
tween variables in the data used for this analysis does not
influence the effectiveness of the borrowed information.

6 Discussion

To better understand survey nonresponse and to counter
the effects of rising nonresponse rates, there is a need to
improve the generally low predictive power of RP mod-
els. Our goal in this paper has been to explore whether
gains in predictive power can be obtained by using pre-
vious wave information to specify informative priors in
a Bayesian analysis at the subsequent wave. The utility
of such an approach has been demonstrated in cross-sec-
tional survey contexts (Schouten et al., 2018; Wagner et al.,
2023; West et al., 2023). In principle such an approach
is potentially very attractive because it would enable pre-
dictions of whether a sample unit will respond or not by
updating current wave data with information contained in
regression coefficient estimates of previous waves through
the specification of informative priors, and thus generat-
ing cumulative predictions. Our rationale is that Bayesian
estimation with informative priors can potentially achieve
bias-reduction when the observed data are in some sense
misleading as the prior can pull the estimates closer to the
truth. Additionally, a Bayesian framework might also of-
fer efficiency improvement; if both the prior and the data
provide correct estimates, their combination implies more
information about the quantity of interest, in effect, a larger
sample.

Our findings are not encouraging. The RP models with
informative priors are not a significant improvement com-
pared to models with vague priors. Models with informa-
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tive priors with half the effective sample size of the current
wave (i.e., M4) have a slightly better predictive accuracy
indicating an improvement in MSE without losses in bias.
However, their specificity values are similar in each wave,
indicating no improvement in the predictive power. Some
small improvements in sensitivity values for models with
informative priors were observed in earlier wave. This was
as expected since they pull the estimates closer to the true
values, but this effect diminishes and then reverses in later
waves. We speculate that this is because at later waves in-
formative priors were misleading when combined with the
current wave data due to the introduction of a mixed-mode
design during the last two quarters of Wave 3 in this sur-
vey. This makes earlier information about the correlates of
response from earlier waves less relevant. These findings
are consistent with Schouten et al. (2018) and West et al.
(2023) who find informative priors derived from more re-
cent data to be better at improving the predictive power of
RP models (i.e., improved bias) compared to using earlier
data. The high specificity and NPV values obtained in our
study implies this approach can be adopted in early stages
of data collection to predict sample units that are likely
respond leading to reduced survey costs and improved re-
sponse rate.

Altering the variance component of the informative prior
did not produce notable changes in the range of the predic-
tive and discrimination measures. This also suggests that
informative priors were not effective in improving bias.
The discrimination values indicate that models with better
fit in terms of WAIC do not produce better discriminative
power. Also, the AUC values alongside the positive and neg-
ative predicted values from models with informative priors
show no prediction improvements compared to models with
vague priors. Discriminative and predictive results obtained
from smaller subsamples were not appreciably different to
those for the main analysis.

An important assumption in this study involves specify-
ing no correlations among regression parameters, which is
informed by weak correlations between explanatory vari-
ables and the complexity involved in trying to incorpo-
rate covariance structure with higher dimensionality (due
to many explanatory variables) into the model. The length
of call sequence as response outcome was also analysed.
For this analysis, the discriminative and predictive results
were similar to the results reported in this paper. It observed
that using different samples with small sizes leads to sim-
ilar conclusions as the main sample. However, note that
subsamples were obtained randomly from the main data,
and it is probable that using a different survey with a small
sample size might lead to different results.

Previous studies suggest that available paradata and aux-
iliary data are not sufficiently correlated with the response
outcomes for effective predictive accuracy in household sur-

vey responses (Kreuter, Couper, et al., 2010; Kreuter, Olson,
et al., 2010; Olson & Groves, 2012). Our findings suggest
that borrowing this weakly predictive information from pre-
vious waves does not improve predictive accuracy of subse-
quent waves, since such informative priors do not bring any
additional information (Kaplan et al., 2023). However, they
may lead to stable estimates over time (improved MSE)
especially when data generating mechanisms for data used
to derive informative priors and current data are consistent.
That is, model prediction accuracy (MSE), and not power
(i.e. bias) of the final call outcome, improves because infor-
mative priors from previous waves can help provide a better
representation of data patterns and relationships in the cur-
rent wave. It is also important to note that, while informative
priors can improve model predictions, this approach can
also increase bias when informative priors are not consis-
tent with the likelihood (current wave) and should therefore
only be used with careful evaluation of model performance.

A unique feature of longitudinal studies such as Un-
derstanding Society is that responsive and adaptive strate-
gies are adopted as the survey progresses, which may
lead to changes in the auxiliary data compositions across
waves for effective borrowing of previous wave’s data via
Bayesian sequential updating (Gill, 2014; Plewis et al.,
2012; Schouten et al., 2018). According to Gill (2014), the
use of informative priors derived from previous data can be
uncertain if the data generating mechanism keeps changing
over time relative to the data used for estimating the first
posterior estimates. It has also been shown that the robust-
ness of informative priors depends on the time difference
between the historical and current data (Schouten et al.,
2018; West et al., 2023). Bayesian sequential updating re-
stricts inclusion of additional variables in the RP models as
the survey progresses since the selection of the explanatory
variables is done during the initial wave (Oravecz et al.,
2015).

We also found that the data forming the likelihood
component from the current wave dominates the posterior
estimates, rendering information borrowed from previous
waves as informative priors less relevant. Usually, the
likelihood component depends on the sample size, which
implies that the influence of an informative prior from
previous waves decreases in longitudinal studies with large
samples (Lynch, 2007; Schouten et al., 2018). However,
the dominating effect of the likelihood in this context is
not always dependent on the sample size but also how
strongly the data contribute to the posterior. The results
from the informative priors estimated using subsamples
showed that previous wave data had a dominating effect on
the posterior results irrespective of the specification of the
priors. The results from mis-specified informative priors
show robustness in the model specification since alterations
in the variance component do not lead to large changes in
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the ranges of the predictive and discrimination measures.
Although variance as an uncertainty measure works well
for determining prior impact, when altered, it is a poor
detector of any prior and likelihood conflict which occurs
when the prior puts all its mass in the tails of the likelihood.
The prior and likelihood conflict may be detected using
prior to posterior divergences measures. These measures
were not considered in this study but could be considered
in future analyses.

Our findings are consistent with those reported by Dur-
rant et al. (2017), suggesting it is difficult to predict nonre-
sponse with the sorts of variables that are typically available
for this task, possibly exacerbated by the potential that non-
response reflects a quite random process. That being said, it
may be fruitful to explore different sources of prior informa-
tion in the longitudinal survey context, such as qualitative
analysis of reasons of why households refuse to partici-
pate in surveys in the first place, or use of expert surveyors.
However, caution is needed since informative priors derived
using this process may potentially end up masking the true
estimates of the real data if they have different data distri-
butions. Those results might point survey methodologists
to the direction of where the efforts should be put in order
to improve survey efficiencies.

While our largely null findings are disappointing, our
findings contribute to a better understanding of how pre-
vious wave data can be leveraged to improve predictions
of RP models in longitudinal settings. While our analysis
examples showed only slight or no real improvements in re-
sponse predictions, the procedures and principles developed
here will, we hope, help to establish a new framework for
the exploration of other sources of informative priors under
different study settings. We encourage future researchers in
this area to apply and extend the approach we have imple-
mented here to other surveys and country context.
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