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This paper investigates how the number of brackets and the choice of upper cut-offs in grouped data affect
the metric approximation of income and wealth. The literature currently lacks a definition of what should
be considered too few brackets or too-low cut-offs. Using German survey data, we show that more than
six (eight) brackets and an upper cut-off at the 95th (97th) percentile are sufficient to provide an adequate
approximation of the income (wealth) distribution.
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1 Introduction

Many data sets only include information on income or
wealth in brackets.1 Advantages of grouping information
in aggregated brackets include reduced survey length and,
more importantly, fewer missing values (Heeringa and Suz-
man 1995), for example, when a respondent cannot give a
precise figure or is unwilling to provide detailed informa-
tion. Even though many surveys and administrative data
sets include brackets in their questionnaires, there is lit-
tle evidence for how many brackets should be included to
adequately approximate the income or wealth distribution.
Applied researchers may prefer as many brackets as possi-
ble because a higher number reduces the unknown variance
within brackets. For survey designers, however, a higher
number of brackets comes at a cost: Not only do more
brackets make questionnaires longer, but they may also re-
sult in increased item non-response if the bracket size is
too small. This paper addresses this trade-off by determin-

1 Also referred to as binned, censored, or grouped data.
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ing an empirical minimum number of brackets that survey
designers should include.

We show a stylized version of a question module ask-
ing for disposable household income information in Fig. 1.
In this example, the questionnaire provides seven brackets,
five of which are characterized by a minimum and maxi-
mum value. The last bracket is typically open-ended above
a threshold, which we refer to as the upper cut-off of the
grouped distribution. At the same time, several alternative
estimation methods are available, including parametric and
non-parametric approaches, to derive metric information
from grouped data2 and even also tools to calculate dis-
tributional statistics from grouped data (Ho and Reardon
2012; Jargowsky and Wheeler 2018; Jenkins 2012; Scott
and Sheather 1985; Von Hippel et al. 2016). However, there
is no empirical evidence on the measured quality of differ-
ent numbers of brackets and very little evidence on the
quality of the metric approximation (Carr 2022). We argue
that two configurations may potentially bias the distribu-
tional parameter of interest. In the first configuration, too
few brackets measure the distribution of income or wealth.
In the second, the upper cut-off is too low. In the research
to date, however, there is no definition of what constitutes
too few brackets or too-low cut-offs.

We assess the quality of grouped data information for
varying numbers of brackets and cut-off points. For that
cause, we artificially group metric income and wealth scales
and estimate several moments of the distribution. Then, we
measure the quality of those estimates by comparing them

2 An overview of the different estimation methods is provided in
Table 3 in the Appendix.
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Fig. 1

Questionnaire item asking for income: Example with seven
brackets and an upper cut-off at $10,000

with those based on the original, ungrouped metric scale.
In doing so, we extend the methodology proposed by Jar-
gowsky and Wheeler (2018), who introduced a procedure to
calculate distributional statistics from grouped data called
mean constrained integration over brackets (MCIB). The
analysis confirms that our extension of the MCIB method
is an effective procedure for estimating complete metrical
distributions from grouped income and wealth data– even if
the moments of the original distribution are unknown. Our
data bases are monthly net household income and gross
household wealth data from the German Socio-Economic
Panel (SOEP) in 2017.

Our analysis reveals three central findings. First, higher
numbers of brackets combined with higher upper cut-offs
lead to better approximations. The distribution of net in-
come (gross wealth) can be approximated with a correlation
over 0.95 if the number of brackets is higher than six (16)
and the cut-off is above the 95th (97th) percentile. Second,
fewer than six (eight) brackets are insufficient to produce
a reliable metric approximation. Third, the quality of the
approximated distribution of wealth is more sensitive to the
choice of the number of brackets and upper cut-off, as it
is typically more skewed. Therefore, a cut-off below the
95th percentile leads to an imprecise approximation of the
wealth distribution, and more brackets do not improve it.
For income, low cut-offs can be compensated for by includ-
ing more brackets.

Our results provide helpful guidance for applied re-
searchers, data methodologists, and survey designers alike.
On the one hand, applied researchers can refine the approxi-
mation if their analysis relies on grouped data. On the other
hand, researchers can improve their data infrastructure by
choosing an appropriate number of brackets and a suitable
upper cut-off when designing new questionnaires. We see
the number of brackets as the primary dimension that can
be controlled for, as the actual distribution of interest is

typically unknown. Nevertheless, this article shows how
a low upper cut-off can be compensated for with more
brackets and when this increase reaches its limits.

2 Analytical Strategy and Data

2.1 Research design

Based on a long-term panel study with metric income and
wealth information, we artificially group the available data
with different numbers of brackets and upper cut-off lim-
its. We chose net household income and gross household
assets as they are typically fundamental elements of so-
cioeconomic surveys. Once we set the upper cut-off, the
remaining n − 1 brackets were arranged into equally sized
quantiles. For instance, if we created 12 brackets and set the
99th percentile as the upper cut-off, we defined a bracket
size as 99=.12 − 1/ = 9 percentiles.3 We then apply an
extended version of the mean-constrained integration over
brackets method (MCIB) to each setting, drawing 20,000
(15,000) values for income (wealth) from the approximated
density functions. We compare the resulting values in dif-
ferent ways. First, we compare key moments (mean, stan-
dard deviation, various percentiles) and various inequality
measures of the distribution of the two variables of interest
based on the original and artificially grouped data. Second,
we analyze correlation coefficients for different numbers
of brackets and upper cut-off limits. Third, we show how
different numbers of brackets and upper cut-offs affect the
estimated percentiles of the two exemplary variable distri-
butions.

We refrained from including zero values in our estimates
for two practical reasons: first, our estimated distribution
can be compared directly with the original survey data.
Second, participants were only asked for their net income
or gross wealth in the survey modules if it was above zero.
If the lowest group included zero values, the estimation at
the bottom tail might be more biased. However, this can
be circumvented by offering an additional item with a zero
value instead of a filter question.

3 One could argue that the bracket size could be another variable to
maximize the quality of the approximation. For comparability reasons,
we defined the bracket size equally across percentiles. It may be that
fewer brackets are needed if the bracket size differs across the distribu-
tion. We discuss this question with an example in Sect. 4.
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2.2 MCIB

We use the mean-constrained integration over brackets
method (MCIB) developed by Jargowsky and Wheeler
(2018) to analyze how many brackets are needed to ap-
proximate a good fit for the underlying metric concept. We
opt for the parametric MCIB method, as other approaches
may ignore variances within brackets, as is the case with
midpoint estimations, or need at least one moment of the
actual distribution, as is the case with random empirical
distribution. The MCIB approach thus can be seen as a
proper procedure for our analysis as it fits the income and
wealth distribution well. Carr (2022) supports this argument
by comparing several estimation methods and showing that
the MCIB is the best approach to estimating percentiles of
the distribution.

The MCIB estimation assumes three different types of
distributions within the brackets. The first bracket is speci-
fied as a uniform distribution. The following closed-ended
brackets are described via linear density functions. The top
bracket is characterized as an open-ended definition with a
lower threshold. From there, the MCIB approach assumes a
Pareto distribution, a common assumption used to approx-
imate the top of the income or wealth distribution (Cowell
2011; Cowell and Van Kerm 2015; Jenkins 2017).

Following Jargowsky and Wheeler (2018), the MCIB es-
timation follows three steps: first, we estimate the density
functions of the closed-end brackets. Each bracket b in-
cludes nb households, adding to the total number N. The
linear density functions for each closed-ended bracket can
be defined as

fb.y/ =
mby + cb

N
; (1)

where mb is the slope and cb is the constant of the line
that describes the relative frequency of households in the
bracket. The slopes and intercepts for the brackets are cal-
culated by taking the number of households in each bracket
divided by the width of the bracket, which is the frequency
per dollar of income for each bracket. Then, the slopes mb

are calculated as the average of the slopes from bracket b−1

to b and from b to b + 1. The constants cb are then calcu-
lated to force the line of slope mb through the frequency
point relative to the neighboring brackets, thus preserving
the correct overall frequency for the bracket b (Liebenberg
and Kaitz 1951). The density sums to nb

N
, i.e., the bracket’s

contribution to the overall income or wealth probability
function.

Second, we estimate the mean and Pareto parameters for
the open-ended top bracket B. Here, it is crucial to tackle
the problem of unlimited possible values in the top bracket.
Jargowsky and Wheeler (2018) work around this by defin-

ing the overall mean of income as the total income minus
the aggregate of all income below the top bracket, divided
by the number of households in the top bracket. In this
formulation, the mean of the top bracket is constrained by
the overall mean. Assuming linear trends in the household
distribution, Jargowsky and Wheeler (2018) show that one
can approximate the mean incomes in the brackets below
the top bracket. Inserting this approximation in the over-
all mean allows us to calculate the top bracket mean �B ,
which, in turn, is required for estimating the Pareto alpha
parameter

˛ =
�B

�B − ˇ
; (2)

where ˇ represents the upper cut-off. In our analysis, we
show how different choices of upper cut-off ˇ affect the
quality of the income and wealth distribution approxima-
tion.

Jargowsky and Wheeler (2018) empirically validate their
approach by grouping household incomes in 297 metropoli-
tan areas in the United States and they compare their dis-
tributional estimations with the original distribution. They
found that for several moments of the distribution, the
MCIB approach provides better estimates than methods
applied previously in the literature.4

We extended the MCIB approach by randomly gener-
ating numbers from the approximated density functions
fb.y/.5 These numbers were randomly merged into the ob-
servations in the data set depending on their preassigned
bracket. In this way, we imputed a full metrical distribution
based on grouped information.

Our approach has limitations, as discussed in Jargowsky
and Wheeler (2018). Generally, it is difficult to fit the tails
of the distribution. Especially at the top, values may be
exceptionally high. Jargowsky and Wheeler (2018) state
that their estimates are generally reliable but lose accuracy
below the 5th percentile or above the 95th percentile. As we
empirically investigate different cut-offs of the top bracket
directly, our contribution helps to qualify the imprecision
at the tails. Nevertheless, we winsorize all our distributions
at the 0.5 and the 99.5 percentile, so we cannot include the
very bottom or top of the distribution.

4 For instance, compared to approaches using the midpoint or the mean
of the individual bracket; see Jargowsky and Wheeler (2018) for a de-
tailed discussion.
5 This step required an adjustment of the Stata command mcib, which
only allows estimation of moments of the distribution, percentiles, and
inequality measures. The authors provide the code upon request.
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2.3 Data

We applied the extended MCIB to the net monthly house-
hold income and gross household wealth of German house-
holds using 2017 SOEP data. The SOEP is a panel survey
of individuals in private households in Germany that started
in 1984 and has been repeated annually up to the present
day (Goebel et al. 2019). The SOEP currently consists of
around twenty subsamples, ranging from pure random sam-
ples to oversamples of certain subgroups such as high-in-
come households, migrants, refugees, or families with many
children. All of them are randomly drawn in a multi-stage
sampling procedure (Siegers et al. 2022). The first stage
of the stratification is usually at the regional level (Nuts1,
Nuts2, Nuts3, or municipality size) and clustered for pri-
mary sampling units (PSU). The second stage encompasses
a random walk in each PSU. Information for migration or
refugee samples are either coming from administrative data
from the German Federal Employment Agency or the Ger-
man Central Register of Foreigners.

The question about net monthly household income is
asked every year at the end of the household questionnaire
after various types of income such as receipt of child ben-
efit, housing benefit, basic security in old age, social assis-
tance, or capital income have been asked in order to obtain a
better assessment of a household’s financial situation.6 The
wealth module is included in the questionnaire every five
years and consists of twelve asset and debt components. On
the assets side, questions are asked about the market value
of real estate assets, investments, private insurance, building
savings contracts, and tangible assets. As the wealth mod-
ule was last surveyed in 2017, we chose this year as the
basis of our analysis. Our data set contained metrical dis-
tributions with 19,700 households with positive net income
and 12,698 households with positive gross wealth.7

3 Results

This section describes our three major results. First, we
show that the extended MCIB approach can be used to
approximate income and wealth distributions. Second, we
provide the correlation between the original and approxi-
mated income and wealth distributions for various numbers

6 The original question is as follows: If you look at the total income of
all of the members of your household: what is your monthly household
income today? Please state the net monthly income after deductions
for taxes and social security. Please include regular income such as
pensions, housing allowances, child benefits, grants for higher educa-
tion, maintenance payments, etc. If you do not know the exact amount,
please estimate the amount per month ...euros per month.
7 Note that the SOEP imputes missing values for both variables.

of brackets and cut-off limits. Third, we demonstrate how
the different settings fit the percentiles of the distributions.

We start with an application of the extended MCIB ap-
proach. Table 1 provides key moments from the net income
and gross wealth distribution based on the original and ar-
tificially grouped data using the extended MCIB. The sec-
ond and fifth columns list several statistics and inequality
measures for the original distribution, and the third and
sixth columns show the approximation based on MCIB.
Additionally, the fourth and seventh columns show the dif-
ferences in percent, and the differences in percentiles are
normalized by the mean. In this example, we include ten
brackets and a cut-off at the 98th percentile because, for
instance, the European Social Survey uses ten brackets for
grouped income data.

The table shows that the estimates from the extended
MCIB adequately fit the income and wealth distribution.
The mean, median, and standard deviation are close to the
original data in the SOEP. The distribution between the 5th
and the 99th percentile is well approximated in this set-
ting. While the mean-adjusted difference is small at the
bottom tail but relatively large at the 99th percentile, with
14% for income and 61% for wealth. Generally, the mean-
adjusted difference at the top is greater for wealth. No-
tably, the number of households with positive net income,
at 19,700, is higher than the number of households with po-
sitive gross wealth, which aligns with previous findings for
Germany (Grabka and Westermeier 2014). Finally, the in-
equality measures from the extended MCIB are also close
to those in the original data. Here, the difference is pro-
vided in percent. The difference is relatively large for the
mean log deviation and the Theil index for income, but the
absolute difference is small. The approximated inequality
measures for wealth are close to the original estimates.8 At
0.96 and 0.91, the correlation between net income and gross
wealth is high.

Table 1 shows that the extended MCIB fits several mo-
ments of the distribution well for both concepts. Therefore,
fitting a metric distribution based on MCIB is feasible for
net income and gross wealth. However, this finding holds
for only one specific set of grouped data. We are interested
in how well the distribution of income and wealth can be
approximated with various brackets and upper cut-off lim-
its.

We now focus on the correlation between the original
metric distribution and the MCIB approximation from arti-
ficially grouped data. The correlation allows us to specify
the quality of the imputed distribution by a simple number

8 Note that this holds for the distribution between the 0.5th and the
99.5th percentile. We obtain similar findings when we run this estima-
tion with single wealth components instead of gross wealth for differ-
ent survey years. Estimates are available upon request.
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Table 1

Original data compared to MCIB estimations with ten brackets with an upper cut-off limit to the 98th percentile

net household income gross household wealth

orig. MCIB Δ% orig. MCIB Δ%

mean 2654 2665 0.41 271,144 274,028 1.06

(7) (7) (0.38) (2167) (2143) (1.11)

sd 1748 1828 4.59 416,787 401,723 –3.61

(7) (9) (0.65) (5360) (4465) (1.65)

median 2250 2261 0.51 156,000 155,722 –0.18

p1 320 76 –9.18 400 533 0.05

p5 518 383 –5.10 2300 2728 0.16

p10 820 771 –1.86 5000 5420 0.15

p25 1400 1397 –0.11 23,000 23,042 0.02

p75 3500 3542 1.57 350,000 346,950 –1.12

p90 5000 4955 –1.68 610,987 672,557 22.71

p95 6000 6068 2.55 900,000 997,407 35.92

p99 9000 9381 14.35 2,300,000 2,133,898 –61.3

N 19,700 19,700 12,698 12,698

Inequality Measures

Mean Log Dev 0.22 0.28 25.11 1.14 1.14 –0.67

(0.00) (0.00) (1.11) (0.01) (0.01) (0.89)

Theil 0.20 0.22 10.03 0.73 0.72 –1.41

(0.00) (0.00) (0.86) (0.01) (0.01) (1.11)

Gini 0.35 0.36 3.48 0.62 0.62 0.38

(0.00) (0.00) (0.39) (0.00) (0.00) (0.46)

COV 0.66 0.69 4.16 1.54 1.47 –4.63

(0.00) (0.00) (0.51) (0.01) (0.01) (1.00)

Rel. Mean Dev 0.25 0.26 3.07 0.45 0.46 0.73

(0.00) (0.00) (0.41) (0.00) (0.00) (0.52)

Correlation 0.96 0.91

(0.00) (0.00)

Compiled by authors based on SOEP v37. The table provides several moments of the net income and gross wealth distribution at the household
level in 2017, with non-negative and non-zero values. The original distribution (orig.) is taken directly from the SOEP data. For the MCIB
distribution, the data are artificially grouped into 10 brackets with an upper cut-off at the 98th percentile. Variables are winsorized at the 0.5th
and the 99.5th percentiles. The difference in percent is mean-adjusted for the percentile estimates. Bootstrapped standard errors are in
parentheses based on 500 bootstrap weights.

between –1 and 1. In our application, a correlation equal
to one would describe a perfect estimation using the MCIB
method. The quality of an approximation described by cor-
relation is ultimately a normative decision: We argue that
an estimation above 0.95 is an excellent approximation and
one above 0.90 is a good approximation. Additionally, the
estimates should fit the percentiles of the respective distri-
bution well.

Figure 2 provides the correlation for numbers of brack-
ets (x-axis) and several upper cut-off percentiles (y-axis) for

net household income and gross household wealth, respec-
tively. The left panel shows that the correlation is relatively
high, with a value larger than 0.91, as soon as more than
six brackets are included. Setting the cut-off high enough
improves the correlation to a value above 0.99 with more
than 16 brackets and a cut-off above the 97th percentile.
Moreover, high correlations can be achieved by a relatively
high number of brackets and a low upper cut-off or vice
versa.
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Fig. 2

Correlation between original and grouped data by number of brackets and upper cut-off per-
centiles. Compiled by authors based on SOEP v37. The figure shows the correlation between
the original distribution and the MCIB approximation for net income (left panel) and gross
wealth (right panel) at the household level in 2017. The y-axis depicts different upper cut-off
limits; the x-axis shows different numbers of brackets. Variables are winsorized at the 0.5th and
the 99.5th percentiles, respectively

Generating high correlations is considerably more diffi-
cult for wealth than for income. The right panel in Fig. 2
provides the same graph for gross household wealth. The
correlation rises above 0.91 if more than ten brackets are
included, and the upper cut-off is above the 97th percentile.
Hence, the correlation is more sensitive to the cut-off set-
ting than income. It shows that more brackets cannot offset
a too-low upper cut-off. Nevertheless, if the cut-off is above
the 97th percentile, the correlation can reach levels above
0.95 for more than 16 brackets.

We learn from Fig. 2 that a high correlation between the
original and grouped data can be achieved in different set-
tings of grouped data for income and wealth.9 The higher
sensitivity of gross wealth is not surprising, as the distri-
bution of gross wealth is generally more skewed than the
distribution of net household income. For income, a low
upper cut-off can be compensated for with more brackets.
However, this does not hold for wealth: Setting an upper
cut-off below the 95th percentile generally provides approx-
imations with a correlation of 0.85 or lower.

As a final step, we want to see how the different num-
bers of brackets and upper cut-offs affect the estimated per-
centiles of the net household income and the gross wealth

9 This is further supported by Tables 4 and 5 in the Appendix. They
show descriptive statistics for the 90th, 95th, and 99th cut-offs for sev-
eral bracket configurations for income and wealth, respectively. High
cut-off thresholds and more brackets lead to excellent approximations
of income and wealth.

distribution. This is necessary because the extended MCIB
can still achieve a high correlation while structurally over-
or underestimating the values of the distribution. Accord-
ingly, Figures 3 to 6 are arranged similarly for both con-
cepts. The figures show the mean-adjusted percentile dif-
ference in percent between the extended MCIB estimations
and the original distribution on the y-axis. The percentiles
of the income or wealth distribution are on the x-axis. The
upper two panels provide the mean-adjusted difference for
6, 10, 14, 18, 22, and 26 brackets for the upper cut-off
at the 95th percentile (left) and the 98th percentile (right).
The lower two panels depict the mean-adjusted difference
for the upper cut-offs at the 90th, 92nd, 94th, 96th, and 98th
percentile for 10 and 26 brackets, respectively.10

Figures 3 and 4 display the results for net household
income. In Figure 3, including more brackets gradually re-
duces the mean-adjusted difference along the percentiles
for both cut-offs. Setting six or ten brackets leads to un-
derestimating lower percentiles and overestimating the top
percentiles to a lesser extent. The more brackets we include,
the smaller the mean-adjusted difference along percentiles.
However, the gain from more than ten brackets is small.
We vary the upper cut-offs for ten or 26 brackets in the

10 We include only some settings for the sake of clarity. Additionally,
in Figures 7 to 10 in the Appendix, we provide bracket variation for
a cut-off at the 99th percentile and cut-off variation for four brackets.
The percentile differences of all other bracket and cut-off combinations
are available upon request.
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Fig. 3

Variation of number of brackets: net income. Compiled by authors based on SOEP v37. The
panels show the mean-adjusted difference in percent between the original distribution and the
MCIB approximation (y-axis) along percentiles of households’ net income (x-axis) in 2017.
The panels depict differences for various numbers of brackets. Variables are winsorized at the
0.5th and the 99.5th percentile, respectively

Fig. 4

Variation of cut-off limits: net income. Compiled by authors based on SOEP v37. The panels
show the mean-adjusted difference in percent between the original distribution and the MCIB
approximation (y-axis) along percentiles of households’ net income (x-axis) in 2017. The pan-
els depict differences for various cut-off limits. Variables are winsorized at the 0.5th and the
99.5th percentile, respectively
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Fig. 5

Variation of number of brackets: gross wealth. Compiled by authors based on SOEP v37. The
panels show the mean-adjusted difference in percent between the original distribution and
the MCIB approximation (y-axis) along percentiles of gross wealth at the household level (x-
axis) in 2017. The panels depict differences for various numbers of brackets. Variables are
winsorized at the 0.5th and the 99.5th percentile, respectively

lower two panels. The mean-adjusted difference is small at
the lower end but increases at the top. For ten brackets, a
cut-off at the 90th percentile induces large mean-adjusted
differences at the 85th percentile. A higher cut-off point
lessens the bias up to the 90th percentile. With 26 brackets,
the bias remains small up to the 95th percentile.

The figures reveal that the net income distribution is well
approximated, at least up to the 85th percentile if we in-
clude more than 6 brackets. Large parts of the distribution
can be approximated reasonably well even with six brack-
ets. The distortions for lower percentiles are low, as the
absolute difference is still relatively small, and the mean-
adjusted differences account for this. The figures support
the findings of the correlations above that the precision of
the approximation reduces with fewer brackets, but it is still
relatively high at later cut-offs. Therefore, we argue that
more than six brackets and an upper cut-off limit above the
95th percentile limit are sufficient for a high correlation and
a good fit of the percentiles for household net income.

Turning to Figures 5 and 6, the results for gross wealth
are different. For all bracket settings with a cut-off at the
95th percentile, the two panels in Fig. 5 show mean-ad-
justed differences below 10 percent across all percentiles.
At an upper cut-off at the 98th percentile, the mean-adjusted
difference is up to >60 percent for 6 brackets at the top per-
centiles. Therefore, a setting with 6 brackets is not as close

to the original distribution with a cut-off at the 98th per-
centile as it is with a cut-off at the 95th percentile. However,
increasing the number of brackets reduces the differences
in the distribution’s tails. The two panels in Fig. 6 show
that the gross wealth distribution’s percentiles fit relatively
well with several upper cut-off limits. Again, the cut-off at
the 98th percentile is biased at the top, especially for ten
brackets. The lower right panel shows that the percentiles
seem to fit well if the number of brackets is relatively large.

Figures 5 and 6 show that gross wealth can be approx-
imated well if more than 6 brackets are provided. In ac-
cordance with the findings above, it is more sensitive to
the different cut-offs, which can distort the top 20 percent
even if we use up to 14 brackets. Increasing the number of
brackets reduces the bias at the top substantially. A later
cut-off can additionally lead to biased top percentiles, but
as we learned above, the correlation is generally higher for
later levels of cut-offs. For example, with a cut-off at the
95th percentile, the gross wealth distribution’s percentiles
are well approximated, but the correlation is below 0.90.

Evaluating our findings for gross wealth as strictly as for
net income, we advise more than 16 brackets and an upper
cut-off beyond the 97th percentile for an excellent approxi-
mation. However, a setting with more than six brackets with
a cut-off beyond the 96th percentile still achieves a good
approximation, but in this case, one should be aware that
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Fig. 6

Variation of cut-off limits: gross wealth. Compiled by authors based on SOEP v37. The panels
show the mean-adjusted difference in percent between the original distribution and the MCIB
approximation (y-axis) along percentiles of gross wealth at the household level (x-axis) in 2017.
The panels depict differences for various upper cut-off limits. Variables are winsorized at the
0.5th and the 99.5th percentile, respectively

the correlation is lower. We argue that the appropriate set-
ting depends on the application at hand: If researchers want
to use individual metric values, more brackets improve the
precision of the estimates. If a good approximation of the
percentiles is required, fewer brackets and lower cut-offs
are sufficient.

4 Discussion and Conclusion

Our analysis provides researchers with guidance on the
quality of grouped data, such as information on income
and wealth, with varying numbers of brackets and cut-off
points. Generally, our findings encourage the use of grouped
data in empirical analyses. More than 6 brackets provide
close approximations of net household income, while gross
wealth requires more than 16 brackets for similar quality.
Nevertheless, 8 brackets are still sufficient for good ap-
proximations if the upper cut-off is at the 97th percentile
or higher.

The upper cut-offs can lead to problems for researchers.
Suppose no background information is available for a given
country and wealth concept. In such cases, it is impossible
to find a suitable cut-off ex-ante, that is, before a survey
is conducted or administrative data becomes available. A
solution could be to ask for metric values and brackets if

the value is unknown.11 In future years, the metric values
can help to set the upper cut-off limits.

The findings proved valid after several robustness
checks. One aspect that affects the quality of the MCIB
procedure approximation is the underlying number of ob-
servations in the database. Our robustness analyses show
that randomly reducing the number of observations does
not affect the estimates substantially. Dropping 50 per-
cent, or even 75 percent, of the SOEP sample (Table 6
in the Appendix) shows that more than 6000 (more than
2000) observations provide good approximations of the net
income (gross wealth) distribution. We see this as sugges-
tive evidence that our findings may also hold for smaller
surveys.

For the sake of comparability, our analyses are based on
brackets with the same percentile size. One could argue that
the size variation in the brackets may affect the approxima-
tion’s quality. We address this in two ways: first, we spread
the brackets along the household gross wealth distribution
with ten brackets and a cut-off at the 98th percentile. We
show the old and the new settings in kernel density plots
in Fig. 11 in the Appendix. Additionally, Table 7 shows

11 Surveys such as the European Quality of Life Survey and the Panel
Study of Income Dynamics in the United States apply this methodol-
ogy.
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descriptive statistics for the original and new approxima-
tion. The results remain relatively stable, with small gains
at the 90th and 95th percentile and an increase in the cor-
relation. Second, we estimate the correlations between the
original and grouped income data using equally sized in-
come brackets. Figure 12 in the Appendix shows the results.
The estimates show an overall slightly smaller correlation,
i.e., around 0.95 in their maximum. This is due to less
precise estimates, especially at the lower end of the dis-
tribution. However, the recommended number of brackets
holds. These robustness checks show that the bracket size
configuration matters for the approximation quality. Some
settings are superior to the quantile approach from our main
analysis, while equal widths produce slightly less precise
estimates. However, the use of brackets of the same size
rarely occurs in practice (for example, the grouped query
of income in the German microcensus), since the density of
income is usually higher at the bottom of the distribution
and it therefore makes sense to use a different bracketing
than for the upper half of an income distribution. Our analy-
sis suggests that including smaller brackets for lower levels
of income and wealth might be favorable for capturing the
true distribution.

The baseline guidelines derived from our main analy-
sis pertain specifically to Germany in 2017, prompting the
question if the results can be generalized to other national
contexts. To explore this, we conducted simulations across
various income distributions characterized by both elevated
and diminished variances. Our findings affirm that the estab-
lished baseline rule for income remains valid for distribu-
tions exhibiting a Gini coefficient typically ranging from 0.2
to 0.4. When simulating a larger variance, exemplified by a
Gini coefficient of 0.6, the relevance of cut-offs increases,
rendering the baseline rule of wealth more pertinent.12 We
see these findings as suggestive evidence for the poten-
tial universality of our baseline guidelines, as the simulated
distributions could mirror income distributions from other
nations. However, further exploration is warranted, partic-
ularly to pinpoint the precise transitional threshold between
a Gini coefficient of 0.4 and 0.6, at which the baseline rule
for wealth supersedes that for income. Further investigat-
ing this threshold in an international context would be a
valuable extension of our study.

We conclude that the findings in this paper provide re-
searchers with useful information about the quality of ex-
isting grouped income and wealth data and how to organize
new survey items in the future.
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