Worst Case Resistance Testing: A Nonresponse Bias Solution for Today’s Survey Research Realities - Supplemental Material

This supplemental material contains the two appendices for the “Worst Case Resistance Testing: A Nonresponse Bias Solution for Today’s Survey Research Realities” paper. Appendix A contains optimization algorithms for the single sample t test and correlation test WRCT methods. Appendix B contains inference and an optimization algorithm for the two-sample test WRCT methods.
APPENDIX A: Optimization Algorithms
Optimization Algorithm for Single Sample t Test Inference
Equation (9) in the main paper cannot be solved outright as both and  are dependent on n2, creating cross-dependencies. However, the equation can be solved using a simple fixed-point algorithm. First rearrange (9) as follows, for the critical point, setting .
	
	(A-1)


1) Utilize an initial starting value of n2 = n1 and call this nOpt. 
2) 

 Calculate ,, and sc using nOpt. 
3) Calculate n2 from equation (9), using n2 = nOpt in the RHS of the equation, and store this in variable nCalc, i.e., .
4) Recalculate nOpt as (nOpt+nCalc)/2.
5) Repeat steps 2-4 until |nOpt-nCalc|<, where  is some pre-set convergence criterion.
In practice, the values of nOpt and nCalc converge so that |nOpt-nCalc|<.
Optimization Algorithm for Correlation Inference
The fixed-point method used for the one-sample tests did not converge for the correlation test, due to Equation (16) in the main paper having both a negative and positive root. Thus, a divide and conquer optimization method was employed. It takes advantage of the fact that given a candidate value of zrc, the value of n2 can be calculated by rearranging Equation (12) in the main paper as follows:
	
	(A-2)


Collecting n2 terms gives (A-3).
	
	(A-3)


Rearranging in terms of n2 gives (A-4).
	
	(A-4)


1. The algorithm works by exploring the possible values of zrc, calculating z and then constraining z towards . Calculate zr1 from r1. Calculate zr2 from r2. For a nonresponse effect size r2, the steps are as follows:
2. From (12) in the main paper, zrc is a linear combination of zr1 and zr2, so lies between these two values. For scenarios 1 and 4 in Table 2 in the main paper, set LB = zr2 and UB = zr1; for scenarios 2 and 3 set LB = zr1 and UB = zr2.
3. 

Set  and then use this value of to calculate n2, using (A-4).
4. 
Calculate the value of . 
5. 

Now, if , set LB =  else set UB = .
6. 
If , where  is a convergence criterion then exit. Otherwise go to step 3.
If the value of  is not in the range of the initial [LB,UB] this indicates that there is no possible n2 for the selected r2 that can give a z that reaches the critical value. Typically, for scenarios 1 and 4, when increasing effect size, this occurs when r2 is around 0, i.e., where the trade-off of the low effect size against high n2 reaches an equilibrium.
APPENDIX B: Two-Sample Tests
The calculations of the number of items required to change significance for two-sample independent sample tests work in a similar manner to the calculations for the single sample tests[footnoteRef:1]. Consider data sampled from two distinct populations A and B and the following definitions: [1:  We do not include paired sample tests, as these can be implemented as a single sample test on the difference between groups] 

d0: The hypothesized difference between the population means.

: The sample means.
n1A, n1B: The sizes of the samples.
s1A, s1B: The sample standard deviations.
Three possible tests are outlined below.
A z test:

								(B-1)
The Welch’s t test:


, as per (10), where 		(B-2)
The Student’s t test:


, where. 							(B-3)
In addition, the pooled standard deviation can be defined as,

								(B-4)


Here we wish to find the minimum n2A, n2B, so that the direction of the hypothesis is reversed. There are several differences between a single sample test and a two-sample test. First, the fact that both groups can have different value of n introduces additional degrees of freedom. In fact, one could find infinite solutions to the problem by repeatedly increasing n2A and decreasing n2B. To get around this, a single multiplier ϕ is used, so that  and .
[bookmark: _Hlk64634266]There are several measures of effect size for two-sample tests. Hedge’s g utilizes the pooled standard deviation and Cohen’s d gives the maximum likelihood estimate for the pooled standard deviation (McGrath and Meyer, 2006).

										(B-5)

						(B-6)
For a consistent definition of pooled standard deviation, we use (B-5). 




For a right tailed significance test where t > tcrit[footnoteRef:2], consider additional data sampled from the population with some overall effect size g2 that is less than g1, such that there is some finite , so that  and , and the test on a combined samples of  and  will not be significant, i.e. t ≤ tcrit.  [2:  The same logic applies to the two-sample independent samples z test.] 

The following variables are defined for the appended data:
g2: The effect size for the appended data.

: The sample means.
n2A, n2B: The sizes of the samples.


s2A, s2B: The sample standard deviations for the appended data. As before, one can define some θ , where  and  to create bounds for the WRCT n values. However, for the remainder of the derivation, the simplifying assumption is made that θ = 0 and that the group variances for the appended data are the same as for the sample data.
The effect size for the second sample is given below.

										(B-7)
This can be rewritten as follows:

										(B-8)
The effect size gives a difference between the groups, but not the exact location. To ensure feasibility, we make the simplifying assumption of keeping the center of the groups to be the same, i.e., 

									(B-9)
Thus:

							(B-10)

							(B-11)
When it comes to weighting by n, we use the relative weights (1 for the original data and  for the appended data). The aggregate value for the difference between the two means for the combined sample can be given as follows:

 								(B-12)
The associated value for the standard deviation for the combined data for sample A is given below, adapted from the combined standard deviation formula in Higgins (2019). A similar equation can be given for sample B.

				(B-13)



The value of  needs to be calculated to derive the WRCT sample sizes  and . For a right-sided test where we wish to find the lowest n for which t ≤ tcrit, define some small quantity , such that .

				(B-14)
The same calculation can be used for Welch’s t test, but with the degrees of freedom given in (B-15).

						(B-15)
For the student t test:


, with  		(B-16)
As per the one-sample test and Table 2 in the main paper, there are four combinations of left-sided/right sided and significant/non-significant tests. A local search algorithm is utilized to calculate the value of value of  needed to reverse the test for a given WCRT effect size g2. The algorithm steps are given below.
1. Utilize an initial starting value of  = 1. Call this variable Opt and use it to calculate n2A and n2B. Also define an algorithm step size Change (with initial default at Change = 0.5), MaxSameDirection to help control the speed/sensitivity of the search, and a convergence criterion  for the test statistic  (default at 1E-6).
2. 



Calculate , , , , scA, scB, and for the Student-t test, scp. 
3. Calculate the value of the test statistic (t or z), which we will denote tz. If the test statistic is sufficiently close to the critical value so that  then terminate the algorithm.
4. For scenarios one and four in Table 2, increase the value of Opt by Change if  and decrease the value of Opt by Change if . The opposite action should be taken for scenarios two and three.
5. Update Change to control algorithm convergence. If the move direction has changed from the previous move (e.g., increase to decrease) then divide Change by 2. If MaxSameDirection consecutive moves have occurred in one direction, then multiply Change by 2.
6. Repeat steps 2 to 5 until algorithm convergence is found in step 3.
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