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This study proposes a method of nonresponse assessment based on meta-analytical file-drawer techniques,
also known as worst-case resistance testing (WCRT), and suitable for a wide range of data collection scenar-
ios. A general method is devised to estimate the number of significantly different nonrespondents it would
take to significantly alter the results of an analysis. Estimates of nonrespondents can be plotted against ef-
fect sizes using “n-curves”, with similar interpretation to p-curves or power curves. Variants of the general
method are derived for tests of means and correlations. A sample using a well-established survey instrument
from previous behavioral research is used to test the method. The results suggest that employing worst-case
resistance testing can be used on its own or in conjunction with wave analysis to precisely flag nonresponse
risks.
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1 Introduction

All quantitative empirical methods rely on the assumption
that the sample participants represent the population of in-
terest sufficiently to justify extrapolation of findings beyond
the sample measured (Chesney & Obrecht, 2012). However,
some portion of the participants solicited in almost every
study do not respond, and as the proportion of those non-
respondents grows larger, the study’s results suffer from
potential bias (Boyd & Westfall, 1965). This participant
nonresponse bias is the focus of this paper.

Participant nonresponse bias has been attributed to the
variation of characteristics between respondents and non-
respondents (Deming, 1953), and this variance has the po-
tential to confound the variance observed between the con-
structs measured in any given empirical test (Groves and
Peytcheva, 2008) and introduce bias into statistical tests.
This bias can be thought of as a type of selection bias
and unlike bias for nonresponse of individual items this
bias cannot be corrected without gathering data from non-
respondents (Berg, 2005).

The growing use of internet surveys for behavioral sur-
vey research has changed the nature of survey response
and nonresponse. While scholars have well accepted means
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of assessing nonresponse bias—most notably, wave anal-
ysis—those methods were developed based upon physical
mail collection of surveys. By contrast, much survey and
experimental research today employs electronically curated
samples that can be gathered in hours, or even minutes and
that does not have well defined participant response data.

Accordingly, this study develops a set of methods inde-
pendent of the survey delivery mode, allowing researchers
to examine the robustness of statistical tests against partic-
ipant nonresponse bias1 by calculating the number of cases
needed to reverse a statistical test over a range of different
effect sizes. The resulting “n-curves” provide similar insight
to related methods, such as power curves and p-curves, and
provide a measure of robustness for the results of statisti-
cal tests in situations where participant nonresponse may
affect the results and conclusions from such tests. Monte
Carlo experiments are used to test the properties of the pro-
posed method across multiple statistical tests. An empirical
survey of customer satisfaction is then used to show how
these methods can be used on their own or combined with
wave analysis to flag statistical tests where nonresponse
bias may be problematic. The data files and code used in
the creation of this paper have been made available (France
et al., 2024a, b).

1 For the sake of parsimony, as this paper focuses on participant nonre-
sponse issues, subsequent mentions of nonresponse refer to participant
nonresponse rather than item nonresponse (e.g., Skafida et al., 2022).
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Table 1

Summary of Nonresponse Bias Assessments and Remedies

Technique Description References

Comparison of
Sample and
Population

Compare demographics of known population characteristics to collected sample
characteristics

Armstrong and Overton (1977);
Groves (2006); Beebe et al.
(2011)

Wave Analysis Compare early respondent answers to later respondent answers Armstrong and Overton (1977)

Follow-up Analysis Obtain responses from subjects who did not respond to the original data collection in
order to test for differences

Aiken (1981), Sosdian and
Sharp (1980)

Bayesian Analysis Utilize Bayes rule to estimate nonresponse data, assuming independence of attributes
and known characteristics across respondents and nonrespondents

Daniel and Schott (1982)

Passive and Active
Nonresponse
Analysis

Attempt to assess why active nonrespondents declined to participate through focus
groups, interviews, and surveys about the original data collection. Resend the survey to
address passive nonrespondents

Rogelberg and Stanton (2007);
Rogelberg et al. (2003); Roth
(1994)

Interest-level
Analysis

Include questions about subject interest in the survey topic among the measured items
and statistically control for interest when analyzing responses

Rogelberg and Stanton (2007);
Rogelberg et al. (2000)

Benchmarking Compare sample demographics with those of other studies of similar phenomena to see
if there are inconsistencies of means or standard deviations

Rogelberg and Stanton (2007)

Replication Conduct multiple surveys using different samples to assess whether findings remain
consistent

Rogelberg and Stanton (2007)

Weighting Add additional covariates and use correlations of these covariates with nonresponse to
weight responses

Wetzel and Hünteler (2022)

Selection Bias
Function

Creation of a selection bias function based on expert judgments of feasible variable
ranges to account for missing data in parameter estimates

Rotnitzky et al. (1998);
Scharfstein and Irizarry (2003)

Propensity Score
Analysis Weighting

Utilizing propensity score analysis to weight observations using covariate information Lee (2006); Schonlau et al.
(2009)

Manski Bounds Calculate minimum and maximum values of the dependent variable given a feasible
range for missing data and utilize these estimates to create bounds on the dependent
variables

Horowitz and Manski (1998);
Manski (2016)

2 Background

In recent years, dedicated efforts have examined practices
such as “p-hacking” to recall the academy to replicable
research methods (Simmons et. al, 2011). Similarly, re-
cent failures to replicate psychological research have been
a cause for concern (Stanley et al., 2018), leading to a call
for more transparency in research (Inman et al., 2018). This
includes the reporting of data collection techniques, statis-
tical power, effect sizes, and potential biases that might
influence results.

Arising from a combination of sampling error and cover-
age error, nonresponse error results in a sufficient difference
between the data sought by a researcher and the data ac-
tually obtained to compromise a study’s validity (Collier
& Bienstock, 2007). Conceptually, nonresponse error holds
that the potential responses of subjects who do not answer
a solicitation to participate in a given research study might
be different enough from the responses recorded to alter
the findings of the study and higher nonresponse rates can
negatively affect the representativeness of a sample (Cook

et al., 2000). When records of response data are available, it
is quite easy to assess participant nonresponse, but “there is
no magical response rate below which an observed mean,
standard deviation, or correlation becomes automatically
invalid” (Newman 2009, pp. 7). Still, the larger the per-
centage of the solicited sample measured, the lower the
error resulting from nonresponse bias tends to be (Olson,
2006).

Scholars have developed several procedures to adjust sur-
vey results to account for survey nonresponse bias, as de-
tailed in Table 1 (following Halbesleben & Whitman, 2013),
but they all inherently rest on a key assumption: “... respon-
dents and nonrespondents within a weighting class have the
same values on key variables ...” (Groves 2006, pp. 653).
Accordingly, attempts to assess nonresponse bias rely on an
assumption that differences causing some solicited subjects
to forego answering a survey are related to how a non-
respondent might react to a study’s constructs of interest.
Based on this assumption, for decades, the most widely used
method of assessing nonresponse bias has been Armstrong
and Overton’s wave analysis technique (1977).
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2.1 Covariate Methods

Several of the listed methods in Table 1 utilize covariate
information in order to account for differences between
the sample and the solicited respondents. Methods include
weighting using correlations with covariates (Wetzel &
Hünteler, 2022), propensity score methods (Lee, 2006;
Schonlau et al., 2009), and methods that utilize feasible
ranges of covariate information to create selection bias
functions for parameter estimation (Rotnitzky et al., 1998,
Scharfstein & Irizarry, 2003) and for creating solution
bounds (Horowitz & Manski, 1998; Manski, 2016). These
methods can be particularly useful in longitudinal data
collection, where subject covariates are known, but sub-
jects may miss measurement occasions or drop out of an
experiment.

2.2 Wave Analysis

Simply put, wave analysis compares relationships between
variables observed among early respondents to a measure-
ment instrument with those observed among later respon-
dents (Armstrong & Overton, 1977). “The basic assump-
tion ... is that subjects who respond less readily are more
like those who do not respond at all than those who do
respond readily (i.e., those who respond sooner and those
who need less prodding to answer)” (Kanuk & Berenson,
1975, pg. 449). The method poses that a lack of signifi-
cant difference between early and late respondents to a re-
search solicitation implies that potential subjects that did
not respond do not represent observations that might alter
an analysis’s results.

For all its long-proven utility (over 21,000 citations at
this writing), wave analysis was explicitly built around
mail surveys, which generally require considerable periods
of time to collect (Kanuk & Berenson, 1975) and where
information on early and late response waves can easily
be found. Studies employing postal mail and citing wave
analysis have included follow up prompts of up to four
weeks (Diamantopoulos & Winklhofer, 2001; Mohr &
Spekman, 1994; Sirdeshmukh et al. 2002). Even surveys
distributed over email have noted significant time spent
waiting for responses from subjects (Pavlou, 2003). As
of 2020, the vast majority of surveys were completed via
the internet (Daikeler et al., 2020). The “internet age” of
surveys has seen a growth of third-party survey platforms,
such as Qualtrics and Prolific, who recruit participants well
in advance of any study, and pay participants fees to com-
plete studies. The resulting participants are more likely to
reply quickly because they have pre-agreed to participate in
studies (Qualtrics, 2020). On some research platforms, such
as Prolific (Peer et al., 2017) and the Amazon Mechanical

Turk (Chandler et al., 2019), potential respondents, when
logging on, will pick from a list of potential surveys or work
to complete. In this situation, unless user click/screen view-
ing behavior is analyzed, it is difficult to identify and quan-
tify nonresponses (e.g., Boas et al., 2020; Paolacci et al.,
2010) and the early and late response waves required by
wave analysis.

2.3 Resampling

A typical means of addressing potential nonresponse bias
is to simply resolicit sample nonrespondents (Aiken, 1981;
Hartman et al., 1986; MacDonald et al., 2009), often em-
ploying shorter surveys that assess only the items whose
constructs are of critical importance to the observed find-
ings, to look for differences from the findings of the original
survey (Lambert & Harrington, 1990). However, the ab-
sence of a specific response rate below which nonresponse
bias is considered problematic (Newman, 2009) implies that
supplemental sampling—whether among the originally so-
licited group, or from a different group of potential respon-
dents—may not necessarily address nonresponse bias of
a sample relative to the population of interest. A different
potential solution may lie in using meta-analysis techniques
to address a bias issue known as the file drawer problem.

2.4 Meta-Analysis and the File Drawer Problem

The file drawer problem is a term used in meta-analytic lit-
erature to describe a conceptual, but quantifiable sampling
bias. Because meta-analyses examine the standardized re-
sults of extant literature, they are presumed to be biased by
the tendency of statistically significant findings to achieve
academic publication, and the corollary tendency of non-
significant results of similar phenomena never entering the
scholarly body of knowledge (Rosenberg, 2005). The worst
assumptions hold that 95% of contrary findings do not sur-
vive the academic publication process, and that the body of
knowledge is, therefore, a victim of Type 1 error (Rosen-
thal, 1979).

Rosenthal (1979) proposed a solution to the file drawer
problem, sometimes known as worst-case resistance test-
ing, or fail-safe number calculation (Rosenberg, 2005). The
technique calculates the number of studies required to sig-
nificantly alter an observed mean of effect sizes, assuming
the hypothetical unobserved studies have a collective mean
significantly different than that of the observed effect sizes.
As this calculated number of studies increases, the likeli-
hood of a file drawer bias decreases. In other words, the
larger the effect size observed in tests of a given sample,
and/or the less stringent the standard of testing significance,
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the more hypothetical contradictory cases it would take to
cast doubt on the observed findings. The technique has
been used in varying meta-analytic studies including (but
by no means limited to) electronic word of mouth (Babić
et al., 2016), interstitial space impacts on consumer appeal
(Sevilla & Townsend, 2016), and consumer responses to
humanoid robots (Mende et al., 2019).

The nonresponse bias problem is very similar to the file
drawer problem in that both seek to assess a difficult-to-
quantify bias of findings stemming from uncollected data
presumed to contradict results based on observed data. It
stands to reason that the file drawer or worst-case resist-
ance testing (WCRT) solution should also be efficacious in
assessing nonresponse bias.

3 Methodology

To illustrate how file drawer concepts can be applied to
the nonresponse bias problem, the problem is given in gen-
eral in terms of the basic NHST (null hypothesis signifi-
cance test) paradigm. Though this paradigm has been much
criticized (e.g., Gill, 1999; Hubbard & Armstrong, 2006;
Hunter, 1997; Schneider, 2015) it is still by far the predom-
inantly used framework for building theory in empirical
management and social science research.

Furthermore, most alternative approaches proposed to
replace NHST also have criticisms. For example, the use of
confidence intervals for inference leads to the same “inverse
inference” that is criticized in NHST testing, and Bayesian
analysis requires specification of prior distributions, which
can be conceptually difficult (e.g., Trafimow, 2017). While
at least one journal has banned significance testing (Wool-
ston, 2015), most journals and scientific associations in the
behavior sciences and business disciplines have focused on
best practice to improve the use of NHST results and to put
these results into context.

Scholars have advanced several recommendations to im-
prove the implementation of NHST methods. These include
putting p values into context and avoiding erroneous overly
strong conclusions from p values (Wasserstein & Lazar,
2016), focusing on the magnitude and size of any statisti-
cal effect and incorporating information from prior beliefs
using Bayes factors (Harvey, 2017; Valentine et al., 2019),
reporting of descriptive statistics and reporting guidelines
for major statistical tests (JCR, 2021), including detailed
graphs and discussions of effects and utilizing robust error
statistics (Schwab et al., 2011), and calculating power val-
ues for each statistical test and ensuring that the Type II
error rate (β) is less than 0.05 when making conclusions on
a lack of “effect” relative to a null hypothesis (Baroudi &
Orlikowski, 1989; Cashen & Geiger, 2004).

A theme in most of the rules and suggestions described
above is the “triangulation” of NHST results with other
metrics to build evidence for hypothesis test conclusions.
As such, the methodology described in this paper fits in
with this theme. The aim is to provide a set of measures
of robustness of statistical results to problems caused by
nonresponse bias. However, the methods described can be
used beyond the realm of nonresponse bias to examine ro-
bustness to other sources of error, such as the experimental
design.

In this study, the WCRT methodology is described using
a generic NHST hypothesis testing procedure. Examples
are included for problems with simple hypothesis testing
of means and of correlations, where equations are given
for “finding the number of additional studies” required to
negate a conclusion and then models are developed to solve
these equations.

3.1 The General Model

The general problem is outlined as follows: Consider a situ-
ation with a NHST performed on data collected from a sur-
vey. The purpose of the test is to find sufficient evidence to
reject a null hypothesis (H0) in favor of an alternative hy-
pothesis (HA). There is some critical value at which enough
evidence is gathered so that the researcher flips from failing
to reject the null hypothesis to rejecting the null hypothe-
sis. If the researcher finds enough evidence to reject H0,
but H0 is in fact true, then the researcher is considered to
have committed a Type I error with a probability denoted
as α. The value of α is usually defined in terms of extreme
results in the distribution of expected sample values in the
H0 distribution, which can be denoted as ˛ = P .R jH0 /,
where R is rejection of H0. Given the distribution of H0,
H0 is rejected if there is enough evidence, operationalized
by the sample statistic being far enough away from a “null
effect” in a sampling distribution.

A researcher will often make the “opposite assertion”,
that given insufficient evidence to reject H0, one can con-
clude that H0 is in fact true. However, there is a danger
with this assertion in that researchers may assume a trivial
effect without understanding the implications of the power
of the statistical test (Baroudi & Orlikowski, 1989; Cashen
& Geiger, 2004; Sawyer & Ball, 1981). If the researcher
fails to reject H0 and in fact HA is true, then the researcher
has made a Type II error, i.e., ˇ = P .Rc jHA /, where the
power of the test is 1–β. An issue here is that HA can take
multiple values and that the power varies with the “effect
size” difference between H0 and the HA used to calculate
power. Solutions to this issue include calculating power us-
ing a reasonable effect size based on prior studies, standard
small, medium, and large effect sizes (Cohen, 1992), and g
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raphing power values across a range of effect sizes, a “so
called” power curve (Faul et al., 2007).

In the context of nonresponse bias and WCRT, the focus
is to find the number of nonrespondents who can reverse
a statistical conclusion and use this as a measure of robust-
ness of the solution. But how is the effect size for these
studies chosen? Is it a “zero effect”, the opposite effect, or
a smaller effect in the same direction? The methodology
outlined in this paper mirrors the work described above in
choosing effect sizes for power analyses. The number of
nonrespondents needed to reverse a statistical test can be
calculated for a range of feasible effect sizes, which can be
estimated from wave analysis or by examining effect sizes
for similar studies. These values can be plotted, creating
an “n curve”, which is similar to curves used for determin-
ing quality bounds for confidence intervals (e.g., Trafimow,
2018) or p-curves used to map sample sizes for different
p values at different power levels (Simonsohn et al., 2014).

At the core of the analyses in this paper is the idea of
a standardized effect size (Cohen, 1988). An effect size can
be thought of as a quantitative measure of the phenomenon
being studied (Kelley & Preacher, 2012). For example, for
a single sample t test, the effect size d, is given in (1).

d =
x − �0

s
=

.x − �0/ =
p

n

s=
p

n
=

tp
n

; (1)

where x is the sample mean, s is the sample standard
deviation, μ0 is the hypothesized population mean, and n is
the sample size. This invariance towards n is particularly
useful for large sample size experiments, as effect sizes can
put into context results that are statistically significant with
only a small effect size, but a very large sample size (e.g.,
Coe, 2002). Different statistical tests have different effect
size calculations. For example, effect sizes for the compari-
son of two group means, such as Cohen’s d and Hedge’s g,
have a similar format to the effect size given in (1), while
for Pearson’s correlation, the sample regression coefficient
r is often used as a measure of effect size (Hemphill, 2003).

In the context of a WCRT analysis of a NHST test, we
define a general effect size φ, which can be substituted
by the appropriate metric for a specific test (e.g., d for
a sample mean test). Consider the following situations:

1. With a sample size of size n1 and effect size φ1 there is
enough evidence to reject H0. We wish to find n2, where
this is the number of items or nonrespondents with ef-
fect size φ2 required to negate the result, so that H0 is no
longer rejected.

2. With a sample of size of n1 and effect size φ1, there is not
enough evidence to reject H0. We wish to find n2, where
this is the number of items or nonrespondents with effect

size φ2 required to negate the result, so that H0 is now
rejected.

A set of candidate effect sizes needs to be defined for φ2.
This is key to the methods described in this paper and the
appropriate range can be informed by previous research, the
results from a wave analysis of the data, and the effect size
φ1 (for example, if there is a significant effect, an effect size
greater or equal to φ1 and in the same direction is not going
to negate the hypothesis test). For each φ2, the procedure
will give the n2 value needed to reverse the result of the
statistical test.

3.2 Inference for Single Sample t test

Consider a single sample t test of a population mean being
equal to hypothesized mean μ0. The notation is as per (1)
and the null hypothesis is Ho W � = �0. The methodology
outlined in this section covers both two tailed tests where
the alternative hypothesis is defined as Ha W � ¤ �0 and
one-tailed tests where the alternative hypothesis can be de-
fined as Ha W � > �0 or Ha W � < �0: The test statistic
derived from the sampling distribution is defined as (2) by
rearranging (1).

t =
.x1 − �0/

s1p
n1

= d1
p

n1 (2)

Here, the subscript 1 indicates that the sample values are
based on the responses, while the subscript 2 will be used
for the sample values for hypothesized nonresponses. The
t distribution has n-1 degrees of freedom and varies with n.
Let t� be the critical boundary between rejecting and failing
to reject H0. Dependent on n and the strictness of the test
(using the Type I error α), H0 is rejected if jt j > t� = t˛=2

for a two-tailed test and t > t� = t˛(or t < t� = −t˛) for
a one-tailed test.

Here we consider four different scenarios2.

1. For a one-tailed upper test or a two-tailed test with t >

0; H0 is rejected as t > t�. We wish to find, for some
nonrespondents with effect size d2, the n2 for required to
reverse this conclusion, so that t � t�.

2. For a one-tailed upper test or a two-tailed test with t > 0;

H0 is not rejected as t � t�. We wish to find, for some
nonrespondents with effect size d2, the n2 required to re-
verse this conclusion, so that t > t�.

2 The only scenario not covered by the above is the “so-called” type III
error scenario (Leventhal & Huynh, 1996), where the sample mean is
in the opposite direction to the population mean.
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Table 2

Scenarios for Single Sample t test

Scenario Test Direction Test Result Find min{n2} to make ε Nonresponse d2 Bounded

1 Upper Significant Non-significant " � 0 Upper

2 Upper Non-significant Significant " < 0 Lower

3 Lower Significant Non-significant " � 0 Lower

4 Lower Non-significant Significant " > 0 Upper

3. For a one-tailed lower test or a two-tailed test with t < 0;

H0 is rejected as t < t�. We wish to find, for some non-
respondents with effect size d2, the n2 required to reverse
this conclusion, so that t � t�.

4. For a one-tailed lower test or a two-tailed test with t < 0;

H0 is not rejected as t � t�. We wish to find, for some
nonrespondents with effect size d2, the n2 required to
reverse this conclusion, so that t < t�.

A simplifying assumption is to assume that s1 = s2, i.e.,
the nonresponse and response data have the same standard
deviations. However, if the nonresponse data have different
characteristics than the original data then this assumption
will not hold. A solution is to set some range for s2, so that
.1 − �/ s1 � s2 � .1 + �/ s1, where 0 � � � 1 and θ is set
based on some prior inferences regarding the data. Given
s2, the effect size for the nonresponse data is given in (3).

d2 =
x2 − �0

s2
(3)

The sample mean for the nonresponse data is found by
rearranging (3) to give (4).

x2 = d2s2 + �0 (4)

This value can be used to find the sample mean for the
combined response and nonresponse samples.

xc =
n1x1 + n2x2

n1 + n2
(5)

The pooled standard deviation can be calculated using
the meta-analysis formulation given in Higgins et al. (2019).

sc =

s
.n1 − 1/ s2

1 + .n2 − 1/ s2
2 + n1n2

n1+n2

�
x2

1 + x2
2 − 2x1x2

�
n1 + n2 − 1

(6)

Consider the overall t test with the combined data for
scenario 1. We wish to find the lowest n2 for which t � t�,
and define some small quantity ε, such that t + " = t�, with
" � 0, so that t = t� − ".

t� − " =
xc − �0�

scp
n1+n2

� (7)

Utilize to expand out xc in terms of n1 and n2.

t� − " =
n1x1+n2x2

n1+n2
− �0�

scp
n1+n2

� (8)

Multiply both the numerator and denominator by n1 + n2

and then rearrange the numerator terms.

t� − " =
n1 .x1 − �0/ + n2 .x2 − �0/

sc

p
n1 + n2

(9)

The task is to find the smallest integer value of n2 for
which " � 0. By making minor alterations, (9) can be used
for scenarios (2)–(4). The four scenarios are summarized in
Table 2.

For each scenario, Table 2 gives the test direction (upper
or lower), the result of the test on the response data, the op-
posite result, the range of ε for which the minimum integer
n2 is being found, and how the nonresponse effect size is
bounded3. Given that the t-value in (9) is dependent on n2,
giving a cross-dependency, n2 cannot be calculated directly.
A fixed-point optimization procedure for finding n2 is given
in Appendix A. An almost identical procedure can be used
for the single sample z test.

A similar process can be followed for two-sample inde-
pendent sample tests. Sample sizes can be calculated for
Student’s t test (for equal variances), Welch’s t test (for un-
equal variances), and the two sample z test. A two-group
measure, such as Hedge’s g or Cohen’s d can be used to
calculate effect sizes (Rosenthal & Rubin, 1982). If sample
sizes are uneven, some constraints need to be placed on rel-

3 The exact bounds are not given here as there is a nonlinear depen-
dence between sample size and effect size. For scenarios 1 and 4, there
is an upper bound on effect size at which n2 goes to infinity. For sce-
narios 2 and 3, there is a lower bound on effect size at which n2 goes
to infinity.
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ative group sizes. Derivations for the two-sample tests are
included in Appendix B.

3.3 Inference for Correlation Test

Consider a situation where a correlation is being tested for
significance. The null hypothesis is Ho W � = 0, where ρ is
the population correlation. Standard alternate hypothesis are
Ha W � > 0 (or � < 0) for a one-tailed test and Ha W � ¤ 0
for a two tailed test. A population hypothesis is tested with
a Pearson sample correlation coefficient r. The correlation
r is essentially an effect size (Cohen, 1988), with small
(0.1 � r < 0.3), medium (0.3 � r < 0.5), and large
(r � 0.5) effect sizes defined.

There are several different tests for the significance of
correlations. The one most commonly used in meta-analysis
involves transforming the correlation r 2 Œ−1,1� into a z
score using the inverse hyperbolic tangent transformation
(Cox, 2008) and is given in (10).

´r1 = tanh−1 .r1/ =
1

2
ln

�
.1 + r1/

.1 − r1/

�
; (10)

where r1 is the correlation coefficient for the response
data. Now, this value is still essentially an effect size and
does not depend on the sample size n. A standard error

Table 3

Monte Carlo Experiment Factors

Factor and Factor Levels Description

Method
zSingleSample, tSingleSample,
zTwoSample, tStudentTwoSample,
tWelchTwoSample, zCorrelation

The method tested. Each of the methods described in the previous section was tested

nSample
25. 100, ...., 500

The sample size for the data, from 25 to 500 with increments of 25

Alpha
0.1, 0.05, 0.01

The alpha (α) Type I error of the statistical test

Distribution
Normal, Uniform, Poisson,
NExponential

The error distribution the data are sampled from. This tests the robustness of results to data that do not
necessarily conform to the assumptions of statistical tests. All distributions are scaled to give a mean
of 0 and a standard deviation of 1

EffectSize
Low(-ve), Medium(-ve), High(-ve),
Low(+ve), Medium(+ve), High(+ve)

The average effect size of the generated data. A higher effect size indicates a stronger likelihood of
significance. The effect sizes are the standard effect sizes defined by Cohen (1988, 1992), i.e., for mean
tests d = (0.2, 0.5, 0.8), and for correlations r = (0.1, 0.3, 0.5)

EffectSize2
Low, Medium, High

The WCRT file draw effect size in the opposite direction to the sample data effect size

of
p

1= .n − 3/ is defined by Fisher (1921), which can be
used to give the z statistic in (11).

´1 =
´r1

SE .´r1/
=

´r1p
1= .n − 3/

(11)

Given that the z test is a simple two-way directional test,
the four scenarios for finding the n2 values needed to change
a hypothesis test result are similar to the scenarios outlined
for the one sample t test in Table 2. The only changes are
that “z” replaces “t” for the test statistic and critical values,
and that the effect size defined for the nonresponse data is
a correlation coefficient r2, which can be transformed into
a z score zr2 using the transformation given in (10). The
z-scores for the response and hypothesized nonresponse
data can be combined (Field, 2001; Hedges & Vevea, 1998;
Higgins et al., 2019) using (12).

´rc =
.n1 − 3/ ´r1 + .n2 − 3/ ´r2

n1 + n2 − 6
; (12)

which has the standard error given in (13).

SE .´rc/ =

s
1

n1 + n2 − 6
(13)

For scenario 1, we wish to find the lowest n for which
´ � ´�, where ´� is the boundary value for significance
and define some small quantity ε, such that ´+" = ´�, with
" � 0, so that ´ = ´� − ".



194 STEPHEN L. FRANCE, FRANK G. ADAMS, V. MYLES LANDERS

´� − " =
´rc

SE .´rc/
=

´rcq
1

n1+n2−6

(14)

This equation can be rearranged to give n2.

n2 =

�
´� − "

´rc

�2

− n1 + 6 (15)

Now, n2 can be found in a similar manner to the single
sample hypothesis test. The other three scenarios can be
taken from Table 2 (with r replacing d in the final column).
A local search optimization procedure for finding n2 is given
in Appendix A.

4 Monte Carlo Simulations

To help validate the methods described in the previous sec-
tion, several Monte Carlo simulation experiments were run.
The methods outlined in this article are not “supervised” in
the traditional sense, in that they give an analytical measure
of resiliency rather than an ex-ante prediction of a depen-
dent variable. However, the methods can be evaluated in
a similar manner to evaluations of unsupervised analysis,
for example, cluster analysis. Here, the method assumptions
and the results generated by the method are tested on error-
perturbed input data, to see how the resilient the model is
to error. This approach has been widely used in dimension-
ality reduction (e.g., Akkucuk & Carroll, 2006; Chen &
Buja, 2009) and cluster analysis (e.g., Banfield & Raftery,
1993; Brusco et al., 2017; Milligan, 1981). For example,
in cluster analysis, one can generate items for clusters with
Gaussian error from the cluster centroids and then see how
well items are assigned to the correct clusters. We followed
this approach and generated a range of data distributions for
each of the tested WCRT methods, varying the factors of
the sample size, the error distribution, the test coefficient,
the sample data effect size, and the opposing WCRT (non-
respondent) effect size. The factors and factor levels in the
experimental design are summarized in Table 3.

Regardless of the statistical test, the general properties
of the WCRT methodology outlined in the previous section
should give estimates with the following causal relations
for significant statistical tests (in each case holding all other
variables constant).

– Property 1: As the sample size n increases, the WRCT
n should increase (as more evidence is required to reverse
the test result).

– Property 2: As the value of α increases, the WRCT n to
reverse the result should increase (as hypothesis test
boundary is closer to the center of the H0 distribution).

– Property 3: As the overall sample data effect size for
the sample increases, the WRCT n to reverse the result
should increase (as the sample effect is stronger).

– Property 4: As the file drawer WRCT (opposing) effect
size increases, the n to reverse the result should decrease
(as the items in the opposing sample are more strongly
opposing the test result).

In a full factorial design, for each combination of fac-
tor levels, 10 random samples were taken, giving a total of
259,200 experimental runs. For each solution, an effect size
was taken and then random error was added for each of the
items in the generated data. The random error was gener-
ated from the stated distribution (normal, uniform, Poisson,
or negative exponential) and scaled to give a mean of 0 and
standard deviation of 1 (as the error is relative to a stan-
dardized effect size).

As an initial test of experimental procedure and as a ma-
nipulation check, the proportion of significant tests was
summarized for each combination of test and effect size
(small, medium, and large). The resulting bar graph is given
in Fig. 1. As the proportion of significant results increases

Table 4

OLS Regression on Monte Carlo Simulation

95% C.I.

IV Coef. Std. Err. Upper Lower

Test

Singlet 2.9* 1.28 0.4 5.5

Singlez 2.9* 1.28 0.4 5.4

TwoStudentt –31.5*** 1.30 –34.1 –29.0

TwoWelcht –31.4*** 1.30 –34.0 –28.9

Twoz –30.7*** 1.30 –33.3 –28.2

Sample effect

Medium 208.2*** 0.95 206.3 210.0

Large 408.8*** 0.95 407.0 410.7

n (sample) 1.2*** 0.00 1.2 1.2

WCRT Effect

Medium –270.2*** 0.89 –271.9 –268.4

Large –343.5*** 0.89 –345.3 –341.8

Alpha

0.05 51.7*** 0.91 50.0 53.5

0.1 80.8*** 0.90 79.1 82.6

Intercept –123.4*** 1.64 –126.7 –120.2

Observations 225,635

R2 0.70

*p< 0.05, **p< 0.01, ***p< 0.001
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Fig. 1

The Proportion of Significant Results by Test, Effect Size, and Alpha (α)

as the hypothesis tests become less strict with higher α,
results are overlaid for the different values of α, with the
smallest values of α plotted at the front. As expected, for
every test, the proportion of significant results is monotone
increasing with the sample data effect size.

Further analyzing the significant test results (n =
225,635), summary graphs were produced to illustrate
the properties outlined in points 1–4. Fig. 2 gives the
WRCT n required to reverse significance given across
all combinations of sample data effect size and opposing
WRCT effect size. Each bar is for a WRCT file drawer
effect size (higher axis description) and three values of α.
As per Fig. 1, lower values of α are plotted at the front. The
bars are grouped by the sample data effect size (lower axis
description). Once can see that as alpha (α) increases, the
WRCT n increases, giving evidence for Property 2. As the
sample effect size increases, the WRCT n increases, giving
evidence for Property 3, and as the WCRT file drawer ef-
fect opposing effect size increases, the WRCT n decreases,
giving evidence for Property 4.

Fig. 3 gives the WRCT n required to reverse significance
given across all values of alpha (α) and all combinations of

data sample size. As with Fig. 2, as alpha (α) increases, the
WRCT n increases, giving evidence for Property 3. There is
a positive relationship between the data sample size n and
the WRCT n, giving evidence for Property 1. From the
previous analytic work, the relationship should be linear, as
the WRCT n is linearly related to the sample size n. There
is a small deviance from linearity due to the error added to
the data, but the overall relationship still strongly holds.

To further understand the effect of the experimental fac-
tors, an OLS regression was run with the WRCT n as the
dependent variable and the experimental factors as the in-
dependent variables. As the sample data effect could be
either positive or negative, this variable was split into the
direction (positive or negative) and the size of the effect.
A regression with main effects and a regression that also
included two factor interactions were run. The addition of
two-factor interactions only improved the model fit slightly,
so for the sake of parsimony the simpler main effect model
was reported. All variables apart from the direction and
error distribution were significant. These variables were re-
moved from the model. For the direction, this behavior is
expected as a negative data sample effect and a positive
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The File Drawer Number of Studies to Negate Significance Across Different Effect Sizes and Alpha (α) Values

WCRT effect size should give the same WCRT n as a po-
sitive data sample effect and a negative WCRT effect size
with the same magnitudes. The different error distributions
were tested to show the robustness of the WCRT procedure
with different types of error. However, these do not strongly
affect the performance. It may be that for larger sample
sizes the central limit theorem makes the actual error distri-
bution unimportant. The results are reported in Table 4. The
reference levels are “Small” for the sample data and WRCT
effect sizes, alpha (α = 0.01) for the significance level, and
the Correlation z test for the test. The overall R2 is 0.6989,
indicating a strong fit, through with some variability due to
the error added to the sample datasets.

In line with the model free evidence in the graphs, the
WRCT n increases as the sample size increases, as the
sample data effect size increases, and as the alpha increases.
This gives additional evidence for Properties 1 to 4. The sta-
tistical test factor is significant, but this only gives evidence
that the different statistical tests require different WRCT
n values to reverse significance relative to the other exper-
imental factors, which is to be expected. Overall, the tests

show that the WRCT procedure works as expected and is
robust to error variance in the sample data.

4.1 Simulation Experiment for Regression Data

This section demonstrates the use of the framework for re-
gression. A real world dataset was taken from Hernán &
Robins (2020), which contains cleaned data for the Na-
tional Health and Nutrition Examination Follow-up Study
(NHEFS). The data can be utilized for regression analy-
sis, where the purpose is to explain and predict a subject’s
cholesterol level from a range of demographic and health
indicators, including height, weight, blood pressure, gender,
age, income, smoking habits, alcohol consumption, and ex-
ercise levels. The utilized dataset in total had 12 predictors
and 1461 complete rows of data. Here, the fact that OLS
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The File Drawer Number of Studies to Negate Significance Across Different Sample Sizes and Alpha (α) Values

regression generates a correlation variable is exploited to
give a measure of robustness for OLS regression4.

It can be assumed that as more predictors are added to
an OLS regression model the R2 value and thus the corre-
lation (r) will increase. As with the previous experiment,
larger values of the (opposite) WRCT effect size will give
smaller WRCT n robustness values and larger values of the
Type I error (α) will give larger WRCT n robustness val-
ues. To test these properties, the model was built with each
possible combination of predictors. To simulate potential
sources of error variance, each dataset was sampled with
replacement in a similar manner to how bootstrapping is
used to measure error variance on survey data (e.g., Sit-
ter, 1992). In total, given the twelve regression predictors,
three potential values of the WRCT effect size (all r =

p
R2

are positive measures of effect size, so only negative small,
medium, and large opposing WRCT effects were used), and
three values of α, there were 212 � 3 � 3 = 36,864 exper-
imental conditions. Each experimental condition was run
with five replications. The resulting correlation and the op-

4 The WRCT (n) measure can be utilized as a measure of robustness.
However, the Fisher transformation (Fisher, 1921) assumes a bivari-
ate normal distribution, so for larger numbers of predictors this value
should be taken as a heuristic measure of robustness rather than as an
exact statistical value.

posing WRCT effect size were used to calculate the WCRT
n measure of robustness.

All experimental runs apart from runs with models with
no predictors and models with only income as a predictor
were significant. The significant results aggregated across
the number of predictors and the opposing WCRT effect
size (r2 = –0.1 (small), –0.3 (medium), –0.5 (large)) are
given in Fig. 4. Here, as expected, the WRCT n measure
of robustness increases on aggregate with the number of
predictors and decreases with the size of the opposing
WCRT effect size (with larger effect sizes plotted at the
front).

To further test the effect of the predictors, an OLS regres-
sion was run with the WCRT (n) as the dependent variable
and the predictor presence (0 or 1) for the regression predic-
tors, Type I error (α), and WCRT effect size as independent
variables. As expected (Property 4), and in line with Fig. 4,
the WRCT (n) is monotone decreasing with the WRCT ef-
fect size. In addition, as the value of α increases, making the
tests less strict, the value of WRCT (n) required to reverse
the tests also increases (Property 2). Every single one of
the presence variables is positive, which is in line with ex-
pectations, as each additional variable added has a positive
effect on the model fit (e.g., one can always set a variable
coefficient to 0 and get an identical fit to the model without
the variable). Overall, the R2 of the model is 0.8665, indi-
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cating a strong fit, but with some error variance due to the
bootstrap sampling (Table 5).

In summary, Monte Carlo experiments have been uti-
lized to test that the assumed properties (Properties 1–4)
of the WRCT (n) measure of robustness hold under situa-
tions where data are noisy, and they are robust to error from
different error distributions. In addition, the measures can
be used as a “heuristic” measure in regression contexts to
examine model robustness.

5 Empirical Example

To assess the efficacy of the proposed WCRT method
in a survey context, a simple survey was administered
to a sample curated through Qualtrics. The goal of the
survey was not to investigate any substantive empirical
point, but to apply WCRT methods to assess robustness
to participant nonresponse bias for a series of correlation
tests. As the retailing constructs and scales summarized
by Szymanski & Henard (2001) have been widely applied
and pose relatively simple questions, they were judged as

Table 5

OLS Regression on Monte Carlo Simulation

95% C.I.

IV Coef. Std. Err. Upper Lower

SystolicBP(P) 109.9*** 2.08 105.8 114.0

DiastolicBP(P) 24.0*** 2.07 20.0 28.1

Gender(P) 90.7*** 2.07 86.6 94.8

Age(P) 786.0*** 2.07 781.9 790.1

Income(P) 79.5*** 2.07 75.4 83.6

Ht(P) 85.1*** 2.07 81.1 89.2

Wt71(P) 237.6*** 2.07 233.5 241.6

Wt82(P) 95.6*** 2.07 91.5 99.7

SmokeIntensity(P) 19.5*** 2.07 15.4 23.6

SmokeYears(P) 355.1*** 2.07 359.2 359.2

AlcoholFreq(P) 66.0*** 2.07 62.0 70.1

Exercise(P) 30.4*** 2.07 26.4 34.5

WCRTEffectMedium –1924.4*** 2.54 –1929.4 –1919.4

WCRTEffectLarge –2367.5*** 2.54 –2372.5 –2362.6

Alpha0.05 183.2*** 2.54 178.2 188.2

Alpha0.1 279.6*** 2.54 274.6 284.6

Intercept 1833.5*** 4.29 1825.1 1842.0

Observations 183,512

R2 0.87

*p< 0.05, **p< 0.01, ***p< 0.001

liable to provide stable results, and unlikely to represent
confounding factors due to their complexity.

5.1 The Dataset

The survey includes five different multi-item measurement
scales, each of which relates to some measure of customer
satisfaction for a recent retail transaction. Each of the indi-
vidual items is measured using a seven-point Likert scale.
The full list of scales and items within these scales is given
in Table 6. Overall, there are five different scales, consisting
of 19 subitems. The first three scales deal with the actual
shopping experience being evaluated, the fourth scale ex-
amines how this experience impacts behavioral intent, and
the fifth is a general scale measuring retail/shopping enjoy-
ment. Thus, the first three scales should be strongly corre-
lated, while scale five may have some positive correlation
with the other scales (someone who has positive views of
retail shopping is more likely to select a positive shopping
experience), but the level of correlation should be lower.
Two of the items (item two on INTENT and item one on
ENJOY) were negative direction items and were reversed.
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The File Drawer Number of Studies to Negate Significance For Regression on Health Data Across Number of Predictors and
Alpha (α)

The data were collected via a Qualtrics panel. There
were n = 415 fully completed surveys out of a total of n =
463 surveys. In line with the focus on participant nonre-
sponse bias, participant responses with missing items were
removed rather than imputed using a missing data tech-
nique.

5.2 Exploratory Data Analysis

As a preface to analyzing the correlation tests using WCRT,
some analysis was performed on the consistency of the
rating scale and on the correlations. To examine the con-
sistency of the summated ratings scales, Cronbach’s alpha
(Cronbach, 1951), was calculated for each of the summated
rating scales. The values are EXP (0.96), SAT (0.99), PWM
(0.96), INTENT (0.78), and ENJOY (0.78). From past lit-
erature (e.g., Bland & Altman, 1997; Tavakol & Dennick,
2011), cut-offs for “good” to “excellent” values of alpha
range from 0.7–0.95, so these values are in the correct
range.

A summary matrix plot of the overall correlations be-
tween the values in the summated rating scales is given in
Fig. 5. Here, the diagonal values give histogram distribu-

tions of the summated values, the upper triangle of the ma-
trix contains the correlations between the summated values
(*** represents p < 0.001 for a statistical test of correlation),
and the lower triangle contains scatterplots, each overlaid
with a linear regression best fit line and a confidence circle
for the multivariate mean of the distribution.

5.3 Wave Analysis

A simple wave analysis was performed on the data. For this
experiment, respondents were taken from a panel. As noted
previously, there are n = 415 fully completed survey forms
out of n = 463. For a panel, it is difficult to estimate the
number of missing responses, but it is possible to estimate
the percentage of missing participants given reported per-
centages for previous similar studies in the literature. For
the purpose of this analysis, three scenarios were assumed,
one with 50% response, one with 25% response, and one
with 10% response.

The wave analysis approach described in Armstrong and
Overton (1977), considers two different waves of responses,
an early wave and a late wave, and then a “virtual” wave of
nonresponses. While the responses to the survey were not
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Table 6

Survey Scale Information

Information Description

Name Shopping Experience (EXP)

Prompt Thinking about this retail shopping experience, please rate your overall feelings about the shopping experience

Sub-items Unpleasant:pleasant
dislike very much:like very much
left me feeling bad:left me with a good feeling

Name Satisfaction (SAT)

Prompt My overall impression of this retail shopping experience is

Sub-items Bad:Good
Unfavorable:Favorable
Unsatisfactory:Satisfactory
Negative:Positive
Dislike:Liked

Name Positive Word of Mouth (PWOM)

Prompt Thinking about your shopping experience, please rate your agreement with the following statements

Sub-items (All strongly disagree:strongly agree)
I would say positive things about this retailer.
I would recommend this retailer to people I know.
I would encourage relatives and friends to do business with this retailer.

Name Behavioral Intentions (INTENT)

Prompt Thinking about your shopping experience, please rate your agreement with the following statements

Sub-items (All strongly disagree:strongly agree)
I expect to be coming to this retailer for a long time.
I do not expect to visit this retailer in the future.
I expect my relationship with this retailer to be enduring.
It is likely that I will visit this retailer in the future.

Name Shopping Enjoyment (ENJOY)

Prompt Please rate your agreement with the following statements

Sub-items (All strongly disagree:strongly agree)
I consider shopping a big hassle.
When traveling, I enjoy visiting new and interesting shops.
I enjoy browsing for things even if I cannot buy them yet.
I often visit shopping malls or markets just for something to do.

split into waves, for the purpose of this illustrative exam-
ple, it was assumed that the first 50% belong to the early
wave and the second 50% belong to the late wave. The
three response scenarios give the number of participant re-
sponses for the third wave as 415 (50% response), 1245
(25% response), and 3735 (10% response). Armstrong and
Overton (1977) give three methods for calculating values
for the third (nonresponse) wave. These are adapted into an
effect size context below.

1. Assume that the nonresponses have the same effect size
as the second wave.

2. Assume that the nonresponses have the same effect size
as the responses at the end of the second wave.

3. Assume a linear interpolation through the nonresponse
third wave.

For the measure of interest, let the effect sizes for waves
one and two respectively be φ1 and φ2. The number of item
values in the three waves are denoted n1, n2, and n3. Wave
analysis aims to give a prediction for φ3 in the nonresponse
wave. For method one, '3 = '2. Methods two and three
assume a linear relationship for the effect size over time.

5 To be consistent with the development of the WCRT method, the
calculations are given using group means rather than upper and lower
boundaries, but the calculations are equivalent.
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Fig. 5

Multi-Item Scale Correlations

From Armstrong and Overton (1977)5, for method two, φ3

is calculated as in (16).

'3 = '2 + .'2 − '1/
n2

.n1 + n2/
(16)

Here, a straight line is drawn between the midpoint of
group one and the midpoint of group two. The line is ex-
trapolated to the end of group two. For method three, the
line is extrapolated to the middle of group three, giving
(17).

'3 = '2 + .'2 − '1/
.n2 + n3/

.n1 + n2/
(17)

A wave analysis was performed for each combination
of the correlations given in Fig. 5 and the three different
nonresponse scenarios. Here, the correlation r is the effect
size. The first two wave analysis methods are independent
of the number of nonresponses n3, but the third is not, so
the results differ across the three nonresponse scenarios.

The results of the wave analysis are given in Table 7.
Results are given for each of the 10 possible correlations
between the summated rating scales. The first two columns
contain the values of the mean correlation values for waves

one and two. The means for the second wave are taken
as the M1 (method one) estimate of the third wave. The
next column contains the M2 (method two) estimates of
the correlations at the end of the second wave and the sub-
sequent columns contain the M3 (method three) estimates
for the three levels of participant response (50%, 25%, and
10%). For the moderate response scenarios (50%, 25%),
the correlations all stayed within bounds, but for the 10%
scenario, several values needed to be truncated at either
–1 or 1. This shows the difficulty of a linear interpolation
that extends well beyond the range of data. It is likely that
as n3 increases, any change in the dependent variable will
lessen. However, the values for 10% response provide use-
ful “extreme bounds”, which can be utilized by the WCRT
procedure.

5.4 WCRT Procedure

As previously shown in Fig. 5, all multi-item scale cor-
relations are strongly (p < 0.001) significant, with corre-
lations between scales related to the actual shopping ex-
perience (EXP, SAT, POW) over 0.8, correlations between
these scales and the future shopping intention (INTENT)
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Table 7

Wave Analysis Results

Correlation r1 M1: r2 M2: End wave 2 M3: 415 (50%) M3: 1245 (25%) M3: 3735 (10%)

EXP, SAT 0.93 0.96 0.97 1.00 1.00 1.00

EXP, PWOM 0.86 0.82 0.80 0.75 0.67 0.42

EXP, INTENT 0.71 0.52 0.42 0.23 –0.15 –1.00

EXP, ENJOY 0.31 0.22 0.18 0.09 –0.08 –0.61

SAT, PWOM 0.88 0.80 0.76 0.67 0.50 0.00

SAT, INTENT 0.74 0.50 0.38 0.14 –0.33 –1.00

SAT, ENJOY 0.29 0.20 0.16 0.08 –0.09 –0.58

PWOM, INTENT 0.81 0.63 0.53 0.34 –0.04 –1.00

PWOM, ENJOY 0.27 0.25 0.24 0.22 0.19 0.09

INTENT, ENJOY 0.26 0.21 0.18 0.13 0.02 –0.30

scale in the 0.6–0.7 range and the correlations between the
general shopping enjoyment measure and the other scales
in the 0.2–0.3 range.

For each correlation, the WCRT procedure was calcu-
lated for opposing effect sizes with increments of 0.01 rang-
ing from –0.99 to the maximum effect size with a finite
n (approximately 0) for alpha (α) values of 0.01, 0.05, and
0.1. Selected results are examined in Figs. 6 and 7 in what
we call “n-curves”, which are similar to the n-curves that
have been used to determine sample sizes (e.g., Trafimow,
2018) and the probability of replication (Killeen, 2005),
and the previously discussed p-curves for statistical power
(Simonsohn et al., 2014).

For contrast, curves are given for the highest correlation
(EXT and SAT), where r1 = 0.94, and for the lowest cor-
relation (INTENT and JOY), where r1 = 0.24. For each of
these correlations, curves are given for α = 0.05, though
any value of α can be chosen. The x-axis contains the r2

required to negate the significance of the significance test6.
In the case of correlations, due to the asymptotic behavior
of the significance test being a tradeoff between the overall
effect size and n, only negative r2 values give a finite n and
the graphs go off to infinity at approximately r2 = 0.

As the relationship between the value of r and n is
strongly exponential, it is difficult to plot n versus r on
a linear scale, so a logarithmic scale is used for n. This
makes it more difficult to read the values of n, but to make
up for this, values of n are explicitly given for negatives of
the standard effect sizes defined by Cohen (1988), giving
r = –0.1 (small), r = –0.3 (medium) and r = –0.5 (large)
effect sizes, along with r = –0.7 and r = –0.9.

6 Similar n-curves could be drawn where the aim is to find n to make
a non-significant test significant.

Looking at Fig. 6, which is for an α = 0.05 test for the
pair of scales with the strongest correlation (r1 = 0.94),
for a small negative effect (r2 = –0.1), n = 5670 would be
required to negate significance, while for a large negative
effect (r2 = –0.5), n = 1175 would be required to negate
significance. This would be very unlikely, given the large
negative effect. Even an almost “complete reversal” of the
correlation (r2 = –0.9) would require n = 454 in order to
negate significance.

The graph in Fig. 7 is for an α = 0.05 test for the lowest
correlation of r = 0.24 between INTENT and ENJOY, and
it shows much lower values of n. For α = 0.05, for a small
negative effect (r2 = –0.1), n = 427 would be required to
negate significance, while for a large negative effect (r2 =
–0.5), n = 103 would be required to negate significance.
The extreme r2 = –0.9 case would require n = 43 to negate
significance.

5.5 Combining WCRT with Wave Analysis

In any scenario where response times can be calculated,
wave analysis can provide estimates of sample statistics
for nonresponding participants, which can be converted to
effect sizes. These effect sizes can be used to help choose
a realistic range of effect sizes in the outlined WCRT proce-
dure. Accordingly, we propose a method combining wave
analysis results with WCRT to create a set of “warning”
metrics for results that may be called in to question by pos-
sible nonresponse bias. An outline of the method is given
below.

Assume a situation where a statistical test has been per-
formed with some level of Type I error α and there are two
possible results; either H0 is rejected in favor of HA or there
is not enough evidence to reject H0. The test will have some
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measure of effect size (e.g., Cohen’s d for a two-sample test
or the sample correlation r for a correlation test). There is
some number of nonresponses n3.

1. Calculate the three different wave analysis effect size val-
ues: M1: average of second wave, M2: end of second
wave, M3: extrapolation to mean of third (nonresponse)
wave.

2. For WCRT, calculate the effect size needed to reverse
the statistical test given the number of nonresponses n3.
This is the inverse procedure of finding n given an effect
size, i.e., for a correlation effect size r, if the calculation
of n from r is defined as the function f .r/ = n then
f −1 .n/ = r .

3. Record if each of the three effect sizes found by wave
analysis will reverse the result of the statistical test. For
example, for a positive correlation r that is statistically
significant, if the correlation predicted by wave analysis
for nonrespondents is less (of greater magnitude) than the
WCRT r2 value, then the wave analysis correlation value
will reverse the test and the result should be flagged.

The three wave analysis predictions give different lev-
els of future extrapolations. For M1, where the predicted
nonresponse effect size is the aggregate effect size for the
second wave, unless a statistical result is close to a bound-
ary, it is unlikely that a nonresponse effect size value equal
to the value for the second wave will change the result of
a statistical test. However, a linear extrapolation for M3 to
the middle of the nonresponse wave for large nonresponse
n is liable to change a test result and the extrapolation is
likely to be over-exaggerated, as it is unlikely that the trend
from the first wave to the second wave would continue lin-
early for a large nonresponse wave. Some damping is likely.
However, the M3 scenario can provide a good “worst-case”
scenario.

The combined method was applied to the previously dis-
cussed correlation example for all 10 correlations, two sig-
nificance levels (˛ = 0.05; 0.01/, and the previously dis-
cussed participant nonresponse scenarios (nonresponse n =
415, 1245, 3735). The results are given in Table 8, 9 and 10,
with each table containing one of the three nonresponse sce-
narios. Each table contains a row for each of the ten tested
correlations. There are columns for the sample correlation
value, the three wave analysis values, and the two WCRT
values for the tested values of the Type I error α. As all
correlations are significant and positive, the wave analysis
results are flagged/counted as reversing the result of the
statistical test if the correlations are less than the WCRT
values. These flagged correlations are marked with a star
(*) symbol.

In Table 8, no values are flagged and none of the wave
analysis scenarios will reverse the result of the statistical
test. In part, this is because all the test correlations are quite

“strong”. Even the correlations that include the ENJOY
measure (0.24 ≤ r ≤ 0.27), while less than the other corre-
lations, are strongly significant with a sample size of n =
415. As the nonresponse n3 increases from 415 to 3735, the
magnitude of the correlations found by the inverse WCRT
procedure decreases. This is intuitive, as given that statisti-
cal significance is a function of both effect size and sample
size, for a larger sample size, a smaller negative effect is
needed to reverse the results of a statistical test.

In Table 9, the extrapolated r3 for M3 goes outside of the
testing “flip” boundaries defined by WCRT for three corre-
lations, which increases to six correlations for the n3 = 3735
results given in Table 10. This includes all the “enjoy” cor-
relations except for the “PWOM, ENJOY” correlation, for
which there is only a very slight linear trend. Despite neg-
ative linear trends, the “EXP, PWOM” and “SAT, PWOM”
correlations are not flagged, as the correlations are high
relative to the negative linear trends.

6 Discussion

This study has presented a methodology and set of statistical
tools for analyzing nonresponse bias situations. A method-
ology based on the file draw problem and worst-case resist-
ance testing (WCRT) is given to help researchers quantify
and understand the “robustness” of results with respect to
nonresponse bias. Researchers can examine the number of
nonrespondents needed to reverse the results of a statisti-
cal test for a range of feasible effect sizes for the nonre-
sponse data. This relationship can be plotted using an “n-
curve”. The range of feasible effect sizes can be decided
using evidence from past research, guidance on standard
effect sizes, or the results of a wave analysis. Conversely,
researchers can find the effect size needed to reverse the
results of a statistical test for a given number of experimen-
tal nonresponses and then evaluate if these effect sizes are
feasible using the guidance described above.

The basic WCRT methodology was developed in this
paper as a method for analyzing robustness towards nonre-
sponse bias. However, the methodology is more generally
applicable to other scenarios. For any situation where there
is a statistical test and some idea of possible “negative ef-
fect sizes”, the WCRT methodology can be used to measure
robustness. As noted in the introduction, there is a strong
push to improve experimental rigor in the behavioral sci-
ences and in marketing. An added urgency was added to this
process by reports finding a low level of replicability in be-
havioral science studies (e.g., Open Science Collaboration,
2015; Stanley et al., 2018) and by high-profile behavioral
research scandals and retractions (e.g., Inman et al., 2018;
Stricker & Günther, 2019). In addition to the focus on im-
proving statistical rigor described earlier in the paper (e.g.,
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Fig. 6

n-Curve for EXP and SAT: α = 0.05

JCR, 2021; Harvey, 2017; Schwab et al., 2011; Wasserstein
& Lazar, 2016), there has been a move towards requiring
preregistration of experiments (Simmons et al., 2021), i.e.,
the process of researchers stating the experimental proce-
dure and expected results and storing this information ex-
ternally in a third-party repository, and to improved sharing
and availability of research data (Towse et al., 2021). In-
cluding the preregistration information along with a paper

Table 8

Combining Wave Analysis and Worst-case Resistance Testing for 50% Response (Nonresponse n3 = 415)

Correlation r r3 (M1) r3 (M2) r3 (M3) Wr3 α = 0.05 Wr3 α = 0.01

EXP, SAT 0.94 0.96 0.97 1.00 –0.93 –0.92

EXP, PWOM 0.84 0.82 0.80 0.75 –0.80 –0.78

EXP, INTENT 0.62 0.52 0.42 0.23 –0.54 –0.51

EXP, ENJOY 0.27 0.22 0.18 0.09 –0.16 –0.11

SAT, PWOM 0.84 0.80 0.76 0.67 –0.80 –0.79

SAT, INTENT 0.63 0.50 0.38 0.14 –0.55 –0.52

SAT, ENJOY 0.25 0.20 0.16 0.08 –0.14 –0.09

PWOM, INTENT 0.73 0.63 0.53 0.34 –0.67 –0.65

PWOM, ENJOY 0.26 0.25 0.24 0.22 –0.15 –0.10

INTENT, ENJOY 0.24 0.21 0.18 0.13 –0.13 –0.08

submission ensures that the experiment is not altered in an
ad-hoc manner to account for unexpected results.

The methods outlined in this paper can easily be incor-
porated into the behavioral science environment outlined
above. Even in a pure experimental setting, some type of
nonresponse bias may be present; for example, for a student
experiment, a certain number of students in a subject pool
could be notified of a study, with only a few participating.
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Fig. 7

n-Curve for INTENT and ENJOY: α = 0.05

Table 9

Combining Wave Analysis and Worst-Case Resistance Testing for 25% Response (Nonresponse n3 = 1245)

Correlation r r3 (M1) r3 (M2) r3 (M3) Wr3 α = 0.05 Wr3 α = 0.01

EXP, SAT 0.94 0.96 0.97 1.00 –0.48 –0.47

EXP, PWOM 0.84 0.82 0.80 0.67 –0.34 –0.32

EXP, INTENT 0.62 0.52 0.42 –0.15 –0.18 –0.16

EXP, ENJOY 0.27 0.22 0.18 –0.08 –0.02* –0.00*

SAT, PWOM 0.84 0.80 0.76 0.50 –0.34 –0.32

SAT, INTENT 0.63 0.50 0.38 –0.33 –0.19* –0.17*

SAT, ENJOY 0.25 0.20 0.16 –0.09 –0.03* 0.01*

PWOM, INTENT 0.73 0.63 0.53 –0.04 –0.25 –0.23

PWOM, ENJOY 0.26 0.25 0.24 0.19 –0.03 –0.01

INTENT, ENJOY 0.24 0.21 0.18 0.02 –0.03 0.00

When nonresponse bias is not an issue, WCRT can still be
used to help examine the robustness of the results. Gelman
and Loken (2013) noted that even with preregistration and
no p-hacking, researchers can still bend the rules, for exam-
ple, choosing the regression technique that gives the best
results or choosing whether to use a main effect or inter-
action effect to justify a hypothesis. Given continued pub-
lication bias towards significant results (e.g., Franco et al.

2014; Harrison et al. 2017), there will always be an incen-
tive to choose the research path to give the most significant
results, in what statisticians sometimes call “the garden of
forking paths”. Rules to increase experimental rigor, such as
preregistration, may prune some of these paths, but without
being overly restrictive, cannot prevent researchers finding
new paths. This is somewhat analogous to the situation of
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Table 10

Combining Wave Analysis and Worst-Case Resistance Testing for 10% Response (Nonresponse n3 = 3735)

Correlation r r3 (M1) r3 (M2) r3 (M3) Wr3 α = 0.05 Wr3 α = 0.01

EXP, SAT 0.94 0.96 0.97 1.00 –0.16 –0.15

EXP, PWOM 0.84 0.82 0.80 0.42 –0.11 –0.09

EXP, INTENT 0.62 0.52 0.42 –1.00 –0.05* –0.04*

EXP, ENJOY 0.27 0.22 0.18 –0.61 0.00* 0.01*

SAT, PWOM 0.84 0.80 0.76 0.00 –0.11 –0.09

SAT, INTENT 0.63 0.50 0.38 –1.00 –0.05* –0.04*

SAT, ENJOY 0.25 0.20 0.16 –0.58 0.01* 0.02*

PWOM, INTENT 0.73 0.63 0.53 –1.00 –0.07* –0.06*

PWOM, ENJOY 0.26 0.25 0.24 0.09 0.00 0.01

INTENT, ENJOY 0.24 0.21 0.18 –0.30 0.00* 0.01*

accountants finding new workarounds as rules on tax avoid-
ance are strengthened.

In the context outlined above, WCRT could be utilized
as a measure of robustness of results with respect to all
possible experimental errors and biases. A range of possi-
ble effect sizes for the nonresponse bias could be derived
and combined. Feasible nonresponse effect sizes could be
derived for nonresponses using wave analysis or using any
method for creating feasible bounds (for example, Manski
bounds), by collating effect sizes the past literature in the
area, or through a meta-analytic p-curve analysis (Simon-
sohn et al. 2014). In time, a set of “n” thresholds could be
developed to flag results with insufficient robustness to the
factors outlined above.

6.1 Limitations and Future Research

This paper develops WCRT methods for hypothesis tests
of means, correlations, and simple regression scenarios.
To be widely utilized, WCRT methods would need to be
developed for a wider range of statistical tests, such as
GLM (general linear models) and SEM (structural equa-
tion models), as these methods are the most widely used
methods in behavioral research. For example, the second
Monte Carlo experiment shows how WRCT methods can
be utilized to create a heuristic measure of robustness for
regression. However, exact statistical inference is limited by
the assumptions of the z transform (Fisher, 1921). In meta-
analysis regression, multiple groups for different studies are
often handled using multi-group fixed-effect or random-ef-
fects regression. There is scope to apply these methods (e.g.,
Borenstein et al. 2010; Hedges & Vevea, 1998) to model
WCRT response vs. nonresponse and to create a generalized
methodology for WCRT regression analysis.

The scenario outlined above is similar to the scenario
that has unfolded in the area of effect size and power cal-
culations, where over time, methods have been developed
for a wide range of statistical tests. For the WCRT meth-
ods described in this paper to be widely used, it would be
important to package them together into a single cohesive
software package, in a similar manner to G*Power (Faul
et al., 2007), which has become the de-facto standard soft-
ware package for power analysis.

In the modern internet-mediated environment, more sur-
veys are being conducted using online panels designed to
represent certain population characteristics and through co-
working/online hiring platforms, such as the Amazon Me-
chanical Turk (Kees et al., 2017). Determining nonresponse
in online environments is difficult, as the survey platform
recruitment procedure may be opaque. What exactly con-
stitutes nonresponse in a panel or online working platform?
If a set of respondents are notified about an opportunity,
then the number of nonresponses can be calculated only
if the number notified is reported by the platform. In a co-
working platform where respondents search through lists of
opportunities, calculating nonresponse may be difficult. If
views of an opportunity are recorded (e.g., through a scroll-
down list), then some measure of nonresponse of “aware”
respondents can be calculated, but determining how to set
a threshold for awareness would be difficult. There has been
some initial work on analyzing nonresponse for the Me-
chanical Turk for longitudinal studies (Daly & Nataraajan,
2015) and several studies have tried to quantify possible
nonresponse bias for online platforms (Boas et al., 2020;
Paolacci et al., 2010). However, there is strong scope for
a systematic analysis of nonresponse for online surveys.
Such analysis could include work from both information
systems and experimental standpoints, and could include
aspects such as data reporting, human-computer interaction,
and nonresponse behavior.
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The wave analysis method utilized in this paper is a sim-
ple linear extrapolation method. Linear extrapolation may
not be reliable outside of the range of the data. It is likely
that significant linear trends would probably “damp” out-
side of the range of the data, particularly in situations
where there are many nonrespondents. This is a reason
why damped trend forecasting methods that give conser-
vative forecasts are often successful (e.g., Armstrong et al.,
2015; Gardner, 2015). For the use of wave analysis in the
experimental section, this lack of conservatism is an ad-
vantage, as linear extrapolation is used to create worst case
bounds for correlations. However, given the advances in
forecasting over the 40 plus years since the introduction of
wave analysis (e.g., Makridakis et al., 2020), there is scope
to bring new methodology to bear on wave analysis and
develop methods to improve forecasts of nonresponse bias.

Open Practices Statement The dataset collated for this paper and the
code for the procedures developed in the paper have made available at
https://github.com/MDSOPT/WCRT.
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Babić Rosario, A., Sotgiu, F., De Valck, K., & Bijmolt, T.H.
(2016). The effect of electronic word of mouth on
sales: a meta-analytic review of platform, product,
and metric factors. Journal of Marketing Research,
53(3), 297–318.

Banfield, J.D., & Raftery, A.E. (1993). Model-based Gaus-
sian and non-Gaussian clustering. Biometrics, 49(3),
803–821.

Baroudi, J. J., & Orlikowski, W.J. (1989). The problem of
statistical power in MIS research. MIS Quarterly,
13(1), 87–106.

Beebe, T. J., Talley, N. J., Camilleri, M., Jenkins, S.M., An-
derson, K. J., & Locke III, G.R. (2011). Health in-
surance portability and accountability act (HIPAA)
authorization and survey nonresponse bias. Medical
Care, 49(4), 365–370.

Berg, N. (2005). Non-response bias. In K. Kempf-Leonard
(Ed.), Encyclopedia of social measurement (Vol. 2,
pp. 865–873). Academic Press.

Bland, J.M., & Altman, D.G. (1997). Statistics notes: Cron-
bach’s alpha. BMJ, 314(7080), 572.

Boas, T.C., Christenson, D.P., & Glick, D.M. (2020).
Recruiting large online samples in the United
States and India: Facebook, Mechanical Turk, and
Qualtrics. Political Science Research and Methods,
8(2), 232–250.

Borenstein, M., Hedges, L.V., Higgins, J.P., & Rothstein,
H.R. (2010). A basic introduction to fixed-effect and
random-effects models for meta-analysis. Research
Synthesis Methods, 1(2), 97–111.

Boyd Jr., H.W., & Westfall, R. (1965). Interviewer bias re-
visited. Journal of Marketing Research, 2(1), 58–63.

Brusco, M.J., Singh, R., Cradit, J.D., & Steinley, D.
(2017). Cluster analysis in empirical OM research:
survey and recommendations. International Journal
of Operations & Production Management, 37(3),
300–320.

Cashen, L.H., & Geiger, S.W. (2004). Statistical power and
the testing of null hypotheses: a review of contem-
porary management research and recommendations
for future studies. Organizational Research Meth-
ods, 7(2), 151–167.

Chandler, J., Rosenzweig, C., Moss, A. J., Robinson, J., &
Litman, L. (2019). Online panels in social science
research: expanding sampling methods beyond Me-
chanical Turk. Behavior Research Methods, 51(5),
2022–2038.

Chen, L., & Buja, A. (2009). Local multidimensional scal-
ing for nonlinear dimension reduction, graph draw-
ing, and proximity analysis. Journal of the American
Statistical Association, 104(485), 209–219.

Chesney, D.L., & Obrecht, N.A. (2012). Statistical judg-
ments are influenced by the implied likelihood that
samples represent the same population. Memory &
Cognition, 40(3), 420–433.

Coe, R. (2002). It’s the effect size, stupid: what effect
size is and why it is important. In Annual Confer-
ence of the British Educational Research Association
(pp. 1–18). British Educational Research Associa-
tion.

Cohen, J. (1988). Statistical power analysis for the behav-
ioral sciences (2nd edn.). Lawrence Erlbaum.

Cohen, J. (1992). A power primer. Psychological Bulletin,
112(1), 155–159.

Collier, J.E., & Bienstock, C.C. (2007). An analysis of how
nonresponse error is assessed in academic marketing
research. Marketing Theory, 7(2), 163–183.

Cook, C., Heath, F., & Thompson, R.L. (2000). A meta-
analysis of response rates in web-or internet-based

https://github.com/MDSOPT/WCRT


208 STEPHEN L. FRANCE, FRANK G. ADAMS, V. MYLES LANDERS

surveys. Educational and Psychological Measure-
ment, 60(6), 821–836.

Cox, N. J. (2008). Speaking Stata: Correlation with con-
fidence, or Fisher’s z revisited. The Stata Journal,
8(3), 413–439.

Cronbach, L. J. (1951). Coefficient alpha and the internal
structure of tests. Psychometrika, 16(3), 297–334.

Daikeler, J., Bošnjak, M., & Lozar Manfreda, K. (2020).
Web versus other survey modes: an updated and
extended meta-analysis comparing response rates.
Journal of Survey Statistics and Methodology, 8(3),
513–539.

Daly, T.M., & Nataraajan, R. (2015). Swapping bricks for
clicks: crowdsourcing longitudinal data on Ama-
zon turk. Journal of Business Research, 68(12),
2603–2609.

Daniel, W.W., Schott, B., Atkins, F.C., & Davis, A. (1982).
An adjustment for nonresponse in sample surveys.
Educational and Psychological Measurement, 42(1),
57–67.

Deming, W.E. (1953). On a probability mechanism to attain
an economic balance between the resultant error of
response and the bias of nonresponse. Journal of the
American Statistical Association, 48(264), 743–772.

Diamantopoulos, A., & Winklhofer, H.M. (2001). Index
construction with formative indicators: an alterna-
tive to scale development. Journal of Marketing Re-
search, 38(2), 269–277.

Faul, F., Erdfelder, E., Lang, A.G., & Buchner, A. (2007).
G* Power 3: A flexible statistical power analysis
program for the social, behavioral, and biomedi-
cal sciences. Behavior Research Methods, 39(2),
175–191.

Field, A.P. (2001). Meta-analysis of correlation coeffi-
cients: A Monte Carlo comparison of fixed- and
random-effects methods. Psychological Methods,
6(2), 161–180.

Fisher, R.A. (1921). On the “probable error” of a coefficient
of correlation deduced from a small sample. Metron,
1, 13–32.

France, S.L., Adams, F.G., & Landers, V.M. (2024a).
Dataset for worst case resistance testing: a non-
response bias solution for today’s survey research
realities. Ann Arbor: Inter-university Consortium for
Political and Social Research [distributor]. https://
doi.org/10.3886/E203261V2.

France, S.L., Adams, F., & Landers, M. (2024b). Software
for worst case resistance testing: nonresponse bias
solution for today’s survey research realities. https://
github.com/MDSOPT/WCRT

Franco, A., Malhotra, N., & Simonovits, G. (2014). Publi-
cation bias in the social sciences: unlocking the file
drawer. Science, 345(6203), 1502–1505.

Gardner, E.S. (2015). Conservative forecasting with the
damped trend. Journal of Business Research, 68(8),
1739–1741.

Gelman, A., & Loken, E. (2013). The garden of forking
paths: Why multiple comparisons can be a problem,
even when there is no “fishing expedition” or “p-
hacking” and the research hypothesis was posited
ahead of time. https://stat.columbia.edu/~gelman/
research/unpublished/forking.pdf

Gill, J. (1999). The insignificance of null hypothesis signif-
icance testing. Political Research Quarterly, 52(3),
647–674.

Groves, R.M. (2006). Nonresponse rates and nonresponse
bias in household surveys. Public Opinion Quar-
terly, 70(5), 646–675.

Groves, R.M., & Peytcheva, E. (2008). The impact of non-
response rates on nonresponse bias: a meta-analysis.
Public Opinion Quarterly, 72(2), 167–189.

Halbesleben, J.R.B., & Whitman, M.V. (2013). Evaluating
survey quality in health services research: a decision
framework for assessing nonresponse bias. Health
Services Research, 48(3), 913–930.

Harrison, J.S., Banks, G.C., Pollack, J.M., O’Boyle, E.H.,
& Short, J. (2017). Publication bias in strategic ma-
nagement research. Journal of Management, 43(2),
400–425.

Hartman, B.W., Fuqua, D.R., & Jenkins, S. J. (1986). The
problems of and remedies for nonresponse bias in
educational surveys. The Journal of Experimental
Education, 54(2), 85–90.

Harvey, C.R. (2017). Presidential address: the scientific
outlook in financial economics. The Journal of Fi-
nance, 72(4), 1399–1440.

Hedges, L.V., & Vevea, J.L. (1998). Fixed- and random-ef-
fects models in meta-analysis. Psychological Meth-
ods, 3(4), 486.

Hemphill, J.F. (2003). Interpreting the magnitudes of cor-
relation coefficients. American Psychologist, 58(1),
78–79.

Hernán, M.A., & Robins, J.M. (2020). Causal inference.
Chapman & Hall/CRC. https://www.hsph.harvard.
edu/miguel-hernan/causal-inference-book/

Higgins, J.P., Thomas, J., Chandler, J., Cumpston, M.,
Li, T., Page, M.J., & Welch, V.A. (Eds.). (2019).
Cochrane handbook for systematic reviews of inter-
ventions. John Wiley & Sons.

Horowitz, J.L., & Manski, C.F. (1998). Censoring of out-
comes and regressors due to survey nonresponse:
identification and estimation using weights and im-
putations. Journal of Econometrics, 84(1), 37–58.

Hubbard, R., & Armstrong, J.S. (2006). Why we don’t re-
ally know what statistical significance means: impli-

https://doi.org/10.3886/E203261V2
https://doi.org/10.3886/E203261V2
https://github.com/MDSOPT/WCRT
https://github.com/MDSOPT/WCRT
https://stat.columbia.edu/~gelman/research/unpublished/forking.pdf
https://stat.columbia.edu/~gelman/research/unpublished/forking.pdf
https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/


WORST CASE RESISTANCE TESTING: A NONRESPONSE BIAS SOLUTION FOR... 209

cations for educators. Journal of Marketing Educa-
tion, 28(2), 114–120.

Hunter, J.E. (1997). Needed: a ban on the significance test.
Psychological Science, 8(1), 3–7.

Inman, J. J., Campbell, M.C., Kirmani, A., & Price, L.L.
(2018). Our vision for the Journal of Consumer Re-
search: it’s all about the consumer. Journal of Con-
sumer Research, 44(5), 955–959.

JCR (2021). Journal of Consumer Research: Research
Ethics. https://consumerresearcher.com/research-
ethics. Accessed 02.06.

Kanuk, L., & Berenson, C. (1975). Mail surveys and re-
sponse rates: a literature review. Journal of Market-
ing Research, 12(4), 440–453.

Kees, J., Berry, C., Burton, S., & Sheehan, K. (2017). An
analysis of data quality: professional panels, student
subject pools, and Amazon’s Mechanical Turk. Jour-
nal of Advertising, 46(1), 141–155.

Kelley, K., & Preacher, K. J. (2012). On effect size. Psy-
chological Methods, 17(2), 137–152.

Killeen, P.R. (2005). An alternative to null-hypothesis
significance tests. Psychological Science, 16(5),
345–353.

Lambert, D.M., & Harrington, T.C. (1990). Measuring non-
response bias in customer service mail surveys. Jour-
nal of Business Logistics, 11(2), 5–25.

Lee, S. (2006). Propensity score adjustment as a weighting
scheme for volunteer panel web surveys. Journal of
Official Statistics, 22(2), 329.

Leventhal, L., & Huynh, C.L. (1996). Directional decisions
for two-tailed tests: Power, error rates, and sample
size. Psychological Methods, 1(3), 278.

MacDonald, S.E., Newburn-Cook, C.V., Schopflocher, D.,
& Richter, S. (2009). Addressing nonresponse bias
in postal surveys. Public Health Nursing, 26(1),
95–105.

Makridakis, S., Hyndman, R. J., & Petropoulos, F. (2020).
Forecasting in social settings: the state of the art.
International Journal of Forecasting, 36(1), 15–28.

Manski, C.F. (2016). Credible interval estimates for offi-
cial statistics with survey nonresponse. Journal of
Econometrics, 191(2), 293–301.

Mende, M., Scott, M.L., van Doorn, J., Grewal, D., &
Shanks, I. (2019). Service robots rising: how hu-
manoid robots influence service experiences and
elicit compensatory consumer responses. Journal of
Marketing Research, 56(4), 535–556.

Milligan, G.W. (1981). A Monte Carlo study of thirty in-
ternal criterion measures for cluster analysis. Psy-
chometrika, 46, 187–199.

Mohr, J., & Spekman, R. (1994). Characteristics of partner-
ship success: partnership attributes, communication

behavior, and conflict resolution techniques. Strate-
gic Management Journal, 15(2), 135–152.

Newman, D.A. (2009). Missing data techniques and low
response rates. In I.C.E. Lance & R.J. Vandenberg
(Eds.), Statistical and methodological myths and Ur-
ban legends: doctrine, verity and fable in the organi-
zational and social sciences (pp. 7–36). Routledge.

Olson, K. (2006). Survey participation, nonresponse bias,
measurement error bias, and total bias. Public Opin-
ion Quarterly, 70(5), 737–758.

Open Science Collaboration (2015). Estimating the re-
producibility of psychological science. Science,
349(6251), aac4716-1–aac4716-8.

Paolacci, G., Chandler, J., & Ipeirotis, P.G. (2010). Running
experiments on Amazon Mechanical Turk. Judgment
and Decision Making, 5(5), 411–419.

Pavlou, P.A. (2003). Consumer acceptance of electronic
commerce: integrating trust and risk with the tech-
nology acceptance model. International Journal of
Electronic Commerce, 7(3), 101–134.

Peer, E., Brandimarte, L., Samat, S., & Acquisti, A. (2017).
Beyond the Turk: alternative platforms for crowd-
sourcing behavioral research. Journal of Experimen-
tal Social Psychology, 70, 153–163.

Qualtrics (2020). Online samples. https://www.qualtrics.
com/research-services/online-sample/. Accessed
04.12.

Rogelberg, S.G., & Stanton, J.M. (2007). Introduction:
understanding and dealing with organizational sur-
vey nonresponse. Organizational Research Methods,
10(2), 195–209.

Rogelberg, S.G., Luong, A., Sederburg, M.E., & Cristol,
D.S. (2000). Employee attitude surveys: examining
the attitudes of noncompliant employees. Journal of
Applied Psychology, 85(2), 284–293.

Rogelberg, S.G., Conway, J.M., Sederburg, M.E.,
Spitzmüller, C., Aziz, S., & Knight, W.E. (2003).
Profiling active and passive nonrespondents to an or-
ganizational survey. Journal of Applied Psychology,
88(6), 1104.

Rosenberg, M.S. (2005). The file-drawer problem revis-
ited: a general weighted method for calculating fail-
safe numbers in meta-analysis. Evolution, 59(2),
464–468.

Rosenthal, R. (1979). The file drawer problem and toler-
ance for null results. Psychological Bulletin, 86(3),
638–641.

Rosenthal, R., & Rubin, D.B. (1982). Comparing effect
sizes of independent studies. Psychological Bulletin,
92(2), 500–504.

Roth, P.L. (1994). Missing data: a conceptual review for
applied psychologists. Personnel Psychology, 47(3),
537–560.

https://consumerresearcher.com/research-ethics
https://consumerresearcher.com/research-ethics
https://www.qualtrics.com/research-services/online-sample/
https://www.qualtrics.com/research-services/online-sample/


210 STEPHEN L. FRANCE, FRANK G. ADAMS, V. MYLES LANDERS

Rotnitzky, A., Robins, J.M., & Scharfstein, D.O. (1998).
Semiparametric regression for repeated outcomes
with nonignorable nonresponse. Journal of the
American Statistical Association, 93(444), 1321–1339.

Sawyer, A.G., & Ball, A.D. (1981). Statistical power and
effect size in marketing research. Journal of Market-
ing Research, 18(3), 275–290.

Scharfstein, D.O., & Irizarry, R.A. (2003). Generalized ad-
ditive selection models for the analysis of studies
with potentially nonignorable missing outcome data.
Biometrics, 59(3), 601–613.

Schneider, J.W. (2015). Null hypothesis significance tests.
A mix-up of two different theories: the basis for
widespread confusion and numerous misinterpreta-
tions. Scientometrics, 102(1), 411–432.

Schonlau, M., Van Soest, A., Kapteyn, A., & Couper, M.
(2009). Selection bias in web surveys and the use
of propensity scores. Sociological Methods & Re-
search, 37(3), 291–318.

Schwab, A., Abrahamson, E., Starbuck, W.H., & Fidler, F.
(2011). Researchers should make thoughtful assess-
ments instead of null-hypothesis significance tests.
Organization Science, 22(4), 1105–1120.

Sevilla, J., & Townsend, C. (2016). The space-to-product
ratio effect: How interstitial space influences prod-
uct aesthetic appeal, store perceptions, and product
preference. Journal of Marketing Research, 53(5),
665–681.

Simmons, J.P., Nelson, L.D., & Simonsohn, U. (2011).
False-positive psychology: undisclosed flexibility in
data collection and analysis allows presenting any-
thing as significant. Psychological Science, 22(11),
1359–1366.

Simmons, J.P., Nelson, L.D., & Simonsohn, U. (2021).
Pre-registration: why and how. Journal of Consumer
Psychology, 31(1), 151–162.

Simonsohn, U., Nelson, L.D., & Simmons, J.P. (2014).
P-curve: a key to the file-drawer. Journal of Experi-
mental Psychology: General, 143(2), 534.

Sirdeshmukh, D., Singh, J., & Sabol, B. (2002). Consumer
trust, value, and loyalty in relational exchanges.
Journal of Marketing, 66(1), 15–37.

Sitter, R.R. (1992). Comparing three bootstrap methods for
survey data. Canadian Journal of Statistics, 20(2),
135–154.

Skafida, V., Morrison, F., & Devaney, J. (2022). Answer re-
fused: exploring how item non-response on domestic
abuse questions in a social survey affects analysis.
Survey Research Methods, 16(2), 227–240.

Sosdian, C.P., & Sharp, L.M. (1980). Nonresponse in mail
surveys: access failure or respondent resistance. The
Public Opinion Quarterly, 44(3), 396–402.

Stanley, T.D., Carter, E.C., & Doucouliagos, H. (2018).
What meta-analyses reveal about the replicability
of psychological research. Psychological Bulletin,
144(12), 1325–1346.

Stricker, J., & Günther, A. (2019). Scientific misconduct
in psychology. Zeitschrift Für Psychologie, 227(1),
53–63.

Szymanski, D.M., & Henard, D.H. (2001). Customer sat-
isfaction: a meta-analysis of the empirical evidence.
Journal of the Academy of Marketing Science, 29(1),
16–35.

Tavakol, M., & Dennick, R. (2011). Making sense of Cron-
bach’s alpha. International Journal of Medical Edu-
cation, 2, 53–55.

Towse, J.N., Ellis, D.A., & Towse, A.S. (2021). Open-
ing Pandora’s Box: peeking inside Psychology’s
data sharing practices, and seven recommendations
for change. Behavior Research Methods, 53(4),
1455–1468.

Trafimow, D. (2017). Why it is problematic to calculate
probabilities of findings given range null hypotheses.
Open Journal of Statistics, 7(3), 483–499.

Trafimow, D. (2018). Confidence intervals, precision and
confounding. New Ideas in Psychology, 50, 48–53.

Valentine, K.D., Buchanan, E.M., Scofield, J.E., & Beau-
champ, M.T. (2019). Beyond p values: utilizing
multiple methods to evaluate evidence. Behav-
iormetrika, 46, 121–144.

Wasserstein, R.L., & Lazar, N.A. (2016). The ASA state-
ment on p-values: context, process, and purpose. The
American Statistician, 70(2), 129–133.

Wetzel, M., & Hünteler, B. (2022). The blind spot: study-
ing the association between survey nonresponse and
adherence to COVID-19 governmental regulations
in a population-based German web-survey. Survey
Research Methods, 16(3), 267–281.

Woolston, C. (2015). Psychology journal bans P values.
Nature News, 519(7541), 9–9.


	Worst Case Resistance Testing: A Nonresponse Bias Solution for Today’s Survey Research Realities
	Introduction
	Background
	Covariate Methods
	Wave Analysis
	Resampling
	Meta-Analysis and the File Drawer Problem

	Methodology
	The General Model
	Inference for Single Sample t test
	Inference for Correlation Test

	Monte Carlo Simulations
	Simulation Experiment for Regression Data

	Empirical Example
	The Dataset
	Exploratory Data Analysis
	Wave Analysis
	WCRT Procedure
	Combining WCRT with Wave Analysis

	Discussion
	Limitations and Future Research

	Supplementary Information
	References


