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This paper studies the quality of estimates from multiple imputation for the case of social survey data that
combines planned missing data with missing data from conventional item nonresponse by survey partici-
pants. To this end, the paper uses a Monte Carlo simulation study on real data from the German Internet
Panel. In this data, missingness is simulated based on item nonresponse with different mechanisms and
proportions of item nonresponse as well as different proportions of planned missing data. Our results show
that item nonresponse can jeopardize the quality of estimates after multiple imputation especially when the
total amount of missing data from both sources is high or when there is a considerable proportion of item
nonresponse that is missing not at random. Therefore, from an imputation perspective, survey designers
should incorporate their expectations about item nonresponse on each variable when designing surveys with
planned missing data.
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1 Introduction

Survey designs using planned missingness are recently re-
ceiving a lot of attention in social survey research. This
is marked by a growing body of research, particularly fo-
cusing on how to design the planned missingness patterns
in such surveys (e.g., Adigüzel and Wedel 2008; Axenfeld
et al. 2022a; Bahrami et al. 2014; Imbriano and Raghu-
nathan 2020; Thomas et al. 2006). Increasingly, designs
with planned missingness are also being applied in large-
scale social surveys, such as the European Values Study
2017 (Luijkx et al. 2021) or the PISA 2012 context ques-
tionnaire (OECD 2014:48–58). Examples of planned miss-
ingness designs are multiple matrix sampling (Shoemaker
1973; Munger and Loyd 1988), two-method measurement
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designs (Graham et al. 2006), and the X-form design (Gra-
ham et al. 1996) or (similarly) the split questionnaire design
(SQD; Raghunathan and Grizzle 1995).

The SQD entails leaving out items for each respondent
based on a random procedure. This usually serves to shorten
questionnaires for individual respondents, considering that
lengthy questionnaires can lead to reduced response rates,
high breakoff, and increased measurement error (Galesic
and Bosnjak 2009; Peytchev and Peytcheva 2017). This
especially applies to self-administered online surveys (Cal-
legaro et al. 2015; de Leeuw 2008), which increasingly tend
to compete with traditional face-to-face surveys.

The resulting planned missing data (PMD) is usually
considered missing completely at random (MCAR). Yet, as
all cases and most variables would be incomplete, sim-
ple pairwise deletion may often result in insufficient net
sample sizes. Thus, as proposed by Raghunathan and Griz-
zle (1995), missing data from SQDs may need to be im-
puted.
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Meanwhile, additional sources of missing data are typi-
cally present as well in SQD surveys. In particular, item
nonresponse (INR) by survey participants is a common
issue.1 Unlike unit nonresponse, INR has been found to
be little responsive to variations in survey length (Galesic
and Bosnjak 2009). Thus, we may expect that INR con-
stitutes a similar challenge to SQD and conventional sur-
veys alike. This also includes the potential for nonresponse
bias, which would require appropriate treatment (see, for
example, Durrant 2009; Frick and Grabka 2005; Rässler
and Riphahn 2006) through statistical techniques such as
multiple imputation (MI; Rubin 1987; van Buuren 2018).
Yet, INR is often not considered explicitly in research on
imputing SQD survey data.

A realistic scenario of imputing SQD survey data has to
take different types of missingness into account: PMD by
the design and INR by the participants. These two types
of missingness combined may cause an adverse scenario
for the imputation: First, both types of missingness may in
combination sum up to a very large overall proportion of
missing data. On the one hand, this is because a consider-
able reduction in questionnaire length requires an equivalent
amount of PMD. On the other hand, INR can unexpectedly
cause considerable amounts of missingness because par-
ticipants’ response behaviour is not under the control of
the survey designer. Second, INR by participants may oc-
cur non-randomly, potentially causing nonresponse bias. In
consequence, imputation models need to account for a po-
tentially heterogeneous, non-random missingness mechan-
ism for a potentially very large amount of missing data.
This is important also because the resulting low case num-
bers available for the imputation model might hamper its
capacity to account for the variables relevant for the re-
sponse mechanism. Consequently, both types of missing-
ness combined in a survey might adversely affect estimates
after imputing the data. All this implies that future imple-
mentations of SQDs in social surveys may depend crucially
on appropriate research telling if and under which condi-
tions accurate estimates can be obtained. Existing research
on imputing SQD survey data does not provide such infer-
ence.

We contribute to this research gap by investigating how
the simultaneous occurrence of PMD and INR in social
surveys affects estimates after imputation. In doing so, we
seek to determine to what extent SQDs might still constitute
a useful tool for social surveys when additional INR is
factored in. We also examine if the imputation is able to
deal with bias introduced by INR in such a situation.

1 Note that our definition of INR in the following does not include
planned missingness, i.e. we restrict the definition to cases where par-
ticipants fail to deliver a response to a question assigned to them.

In this paper, we use a Monte Carlo simulation study
based on real social survey data. We vary the proportion
of PMD, the proportion of INR, and the mechanism pro-
ducing the INR. We investigate the accuracy of univariate
frequency and bivariate correlation estimates after imputa-
tion in the different scenarios.

2 Theory

Assume we have a survey with 1,2; :::; i; :::; n respondents
and 1,2; :::; j; :::; k variables yielding an n � k data matrix
X with observations on a variable j identified by the vec-
tor Exj =

˚
x1j ; x2j ; :::; xij ; :::; xnj

�
. Some values in X are

missing, with Z being the missingness indicator matrix of
the same dimensionality as X identifying missing observa-
tions by 1 and available observations by 0.

2.1 Missingness mechanisms

Missing data can have different effects on the analysis
of survey data depending on the missingness mechanism.
There are three types of missingness mechanisms (Rubin
1976; Little and Rubin 2020): missing completely at ran-
dom (MCAR), missing at random (MAR), and missing not
at random (MNAR).

In the MCAR condition all observations have the same
probability of being missing independent of any observed
or relevant unobserved data. Consequently, the missingness
does not introduce bias to analyses of the data. Hence, such
data can in principle be analysed using only the complete
cases. However, this strategy may yield small case numbers
if there is a relevant share of missing data. Thus, MCAR
may not directly introduce bias, but it can pose challenges
through the consequential loss of cases for the analysis.
This may result in larger standard errors or potentially even
render the estimation unfeasible due to insufficient pairwise
observations.

If the missing data are MAR, the missingness Z may
depend on any observed data X jZ = 0 but not on the miss-
ing data X jZ = 1. In this situation, dropping incomplete
cases from the analysis may result in biased estimates. Yet,
we may still obtain unbiased and approximately efficient
estimates through appropriate methods such as MI (Rubin
1987), which model the missingness mechanism for Exj
based on the information in the other variables, X:j .

Under MNAR, by contrast, Z depends on the missing
data X jZ = 1 itself or other unobserved parameters even
after conditioning on X jZ = 0. This applies especially if
the missing data in a variable j depends on Exj , i.e., the con-
cerned variable itself. In this situation, conventional impu-
tation procedures relying only on conditioning on X jZ = 0



THE PERFORMANCE OF MULTIPLE IMPUTATION IN SOCIAL SURVEYS WITH... 139

are invalid (van Buuren 2018). It obviously is not possible
to condition on X jZ = 1 either, since this information is
missing. This can be resolved through specialized MNAR
imputation procedures that introduce external information
on the selection into Z = 1 to the imputation model. For
instance, imputed values can be shifted upwards or down-
wards to match a known distribution (pattern-mixture mod-
els; Glynn et al. 1986) or prespecified response weights can
be used (selection models; Heckman 1976; for a detailed
discussion of both methods, see Little 2009). Another ap-
proach by Carpenter et al. (2007) proposes weighting the
multiple estimates for a parameter produced by MI in or-
der to correct for a MNAR mechanism. However, for social
survey data such external information is often not available.
Therefore, research practice often relies on more pragmatic
approaches. When the MAR assumption is questionable, it
is often suggested to use imputation procedures for MAR
mechanisms but include as much information predictive of
the missingness as possible into the imputation model to
reduce bias in estimates (Collins et al. 2001; van Buuren
2018, p. 165). Consequently, our study assumes that no
external information on the missing data is available.

2.2 Planned missing data (PMD)

Our study supposes that missing data in X stems from two
sources: INR by participants and PMD from an SQD.

PMD emerge by intentionally administering only parts
of the complete questionnaire to each respondent (in the
following described by the PMD indicator matrix Zψ (iden-
tifying planned-missing data by 1 and data not planned
to be missing by 0) with PMD on a variable j identified
by É j = f´ 1j ; ´ 2j ; :::; ´ ij ; :::; ´ nj g). The SQD, specifically,
proceeds by allocating all items to modules. One of these
modules may be a so-called core module, which is assigned
to all respondents. Of the remaining modules (subsequently
called split modules), a subset of two or more modules is
assigned randomly to each respondent. In consequence, re-
spondents receive only the items from the modules assigned
to them. Due to the random assignment, the PMD are usu-
ally MCAR.

SQDs may yield large amounts of missing data for each
respondent and on all variables excluding the core. This is
because a meaningful reduction in questionnaire length pre-
supposes a large amount of questions remaining unasked:
Reducing the number of items presented to each respondent
by 50%, for example, requires overall 50% PMD. This also
leaves all cases and all split-module variables incompletely
observed. As a result, analysis strategies relying only on the
complete cases may end up with an insufficient number of
cases or no cases at all. In consequence, Raghunathan and

Grizzle (1995) propose imputing PMD to obtain analysable
data from SQDs.

2.3 Item nonresponse (INR)

INR in surveys occurs when a sample unit participates
in the survey but does not answer a specific item. In the
following, we let the INR indicator matrix Zω (identify-
ing data missing through INR by 1 and data not missing
through INR by 0) denote data missing through INR, with
É!j = f´!1j ; ´!2j ; :::; ´!ij ; :::; ´!nj g identifying the INR on a va-

riable j. In presence of PMD, ´!ij is defined only if ´ ij = 0,

leaving ´!ij missing whenever ´ ij = 1.
There can be various reasons for INR: Respondents may

not understand the question, not know or be sure about the
correct response, lack motivation to form an opinion, forget
to respond, refuse to answer a sensitive question, or their re-
sponse may get lost due to an error during data collection or
processing (Bech and Kristensen 2009; Berinsky 2008; de
Leeuw et al. 2003; Montagni et al. 2019; Shoemaker et al.
2002). Correspondingly, various missingness mechanisms
generating INR are worth considering.

MCAR is a particularly strong assumption which may be
realistic for INR only in specific exceptions. For example,
data losses at coding or data processing could result in
MCAR. Usually, however, social survey research considers
the MCAR assumption untenable (de Leeuw et al. 2003;
Durrant 2009).

MAR often appears as a more realistic assumption since
it allows the INR to depend on respondent characteristics:
INR generally occurs more often among respondents that
are older (Bech and Kristensen 2009; Blumenberg et al.
2018; Callens and Loosveldt 2018; Elliott et al. 2005;
Klein et al. 2011; Meitinger and Johnson 2020; Messer
et al. 2012), less educated (Blumenberg et al. 2018; Cal-
lens and Loosveldt 2018; Meitinger and Johnson 2020;
Messer et al. 2012), belong to a (particularly ethnic) minor-
ity group (Elliott et al. 2005; Klein et al. 2011; Meitinger
and Johnson 2020) or are not that interested in the survey
topic (Callens and Loosveldt 2018; Kmetty and Stefkovics
2021). INR rates can also differ considerably between ge-
ographic regions (Callens and Loosveldt 2018; Bech and
Kristensen 2009). Yet, the role of respondent characteristics
for INR often varies between different questions and sur-
veys: Some surveys report higher INR among women than
men (Bech and Kristensen 2009; Callens and Loosveldt
2018; Elliott et al. 2005; Klein et al. 2011; Meitinger
and Johnson 2020; Washington Community Survey, see
Messer et al. 2012), while others experience no differences
(Lewiston and Clarkston Quality of Life Survey and Wa-
shington Economic Survey, see Messer et al. 2012). Some
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surveys show a negative association between income and
INR (Klein et al. 2011), while others show no clear associ-
ation, especially in online surveys (Messer et al. 2012).
There may be additional, potentially unknown variables
that are associated with the INR on a variable. However,
the MAR assumption is reasonable only if one is confident
that all variables relevant for the nonresponse mechanism
are available in the observed data.

INR can also result from a MNAR mechanism. This may
occur when respondents deem their potential answer sensi-
tive or socially undesirable (Copas and Farewell 1998; de
Leeuw et al. 2003; Rässler and Riphahn 2006; Tourangeau
and Yan 2007). For example, respondents with high income
tend to refuse reporting their income (see, for example,
Rässler and Riphahn 2006; Yan et al. 2010).

2.4 Imputation

Imputation in general refers to the approach of replacing
missing values X j.Z = 1/ with non-missing values from
an imputation model. This allows for applying standard
complete-data analysis methods on the completed data.

MI (Rubin 1987; van Buuren 2018) is one of the cur-
rent state-of-the-art procedures for imputation. It aims to
both preserve relations in the data and ensure variability.
To impute univariate missing data in a variable j using MI,
for each missing value a number of m (multiple) imputa-
tions are drawn based on an imputation model. This im-
putation model estimates the distribution of Exj conditional
on other variables in X−j using a pre-specified imputation
method. Drawing m imputations from the conditional dis-
tribution yields m imputed datasets and m varying imputed
values for each missing value. These multiple datasets are
then analysed separately and the resulting estimates pooled
into combined estimates according to Rubin’s rules (Rubin
1987; see also van Buuren 2018:145–147).

For multivariate missing data, a common solution is MI
by fully conditional specification (FCS; van Buuren et al.
2006). This approach relies on looping through different
imputation models that impute missing data in each variable
separately. For each variable to be imputed, this involves
specifying an imputation method and the relevant predictor
variables.

The general procedure of FCS is as follows: We ini-
tially replace all missing values by starting values randomly
drawn from the marginal distributions of the variables to be
imputed. Then we impute the first variable, Ex1, based on
the observed data and initial starting values of the predic-
tor variables, replacing the initial starting values in Ex1 by
the new imputed ones. We proceed by imputing Ex2 using
the observed and imputed values in Ex1 (provided that Ex1

is in the predictor set) and the observed and initial start-

ing values in the remaining predictor variables, replacing
the initial starting values in Ex2 by new imputed ones. This
continues until all variables in X are imputed. Subsequently,
we repeat this procedure with the previously imputed val-
ues instead of the initial starting values: Again, we begin
with imputing Ex1, Ex2 up to Exk and steadily replace the
old imputations by new ones. This looping procedure is re-
peated for a small (prespecified) number of iterations for
convergence, after which the final imputations are drawn.
To create m multiple imputations, this entire procedure is
repeated m times.

When both PMD and INR appear in a survey, the impu-
tation task might be affected adversely. As described above,
SQD surveys tend to generate PMD already on a large scale.
In practice, this could lead to enormous proportions of miss-
ing data in total, since the amount of INR is not under the
researchers’ deliberate control. This is important because
it means the imputation model may need to rely on little
observed data. Especially for the imputation of INR this is
far from ideal since we would prefer to have as much infor-
mation on the missing data and its mechanism as possible.
Furthermore, more missing data also means a larger impact
of imputed values on the estimation, suggesting greater po-
tential for bias from a poor imputation model.

As noted above, an additional challenge may be that
PMD and INR may stem from different missingness mech-
anisms (MCAR and potentially not MCAR). In this con-
text, one might want to account for the different nature
of both types of missingness. This would mean to impute
a variable j conditional on É!j or É j (for example, by
imputing both types of missingness separately). However,
in our view this is not meaningful. First, separate imputa-
tion models for INR and PMD would likely have to rely on
the same observed data X j.Z = 0/ that neither experienced
planned missingness nor INR, as we only have observations
on xi,j when ´!ij = ´ ij = 0. Moreover, being affected by INR
(É!j = 1), the remaining available data Exj j.Éj = 0/ may
not be subject to a randomness comparable to the PMD
anymore without conditioning on the variables determining
the INR. Thus, an attempt to impute Exj j.É j = 1/ sepa-
rate from Exj j.É!j = 1/ cannot legitimately be considered
MCAR. Finally, even if these challenges were overcome,
imputation models conditioning on É!j or É j would likely
imply considerably more model parameters to be estimated
or (in case of separate models) considerably smaller case
numbers. This might be difficult considering we have lim-
ited case numbers available but potentially many predictor
variables to consider. Therefore, for each variable to be im-
puted we build one imputation model imputing all missing
values together based on Z without conditioning on Zψ or
Zω.

Thus, we may face a complex missing-data problem
with (a) potentially very large proportions of missing data
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and (b) a potentially complex, heterogeneous missingness
mechanism. This complicated missingness mechanism
needs to be represented in one single imputation model per
variable. This model needs to include all variables predict-
ing the INR despite a potential lack of available cases to
support such an extensive model. Thus, the question is how
well the imputation can reproduce relevant data structures
in spite of these challenges.

3 Data and Method

To examine the impact of INR and PMD on estimates after
imputation, we apply a Monte Carlo (MC) simulation study
using real social survey data.2 To allow for a realistic sim-
ulation of INR, we first investigate how frequently INR
occurs and identify its determinants in the survey dataset
that subsequently serves as population data for the simula-
tion study. In each simulation run we draw a random sample
from this population dataset and use the information from
the preliminary analysis to simulate INR using a procedure
similar to Enderle et al. (2013). We also simulate PMD
from an SQD with random modules (see Axenfeld et al.
2022a). Thus, each simulation run involves stochastically
generating both PMD and INR. Through this repeated pro-
cedure, we can measure robustly to what extent estimates
from our data would be MC biased depending on different
PMD and INR scenarios.

3.1 Data

The population dataset for this study stems from the Ger-
man Internet Panel (GIP; Blom, Gathmann and Krieger
2015; Cornesse et al. 2022), an online panel survey of the
German general population. We use items from waves 37
and 38 (Blom et al. 2019a, b) primarily on sociodemo-
graphic characteristics, political opinions, organization
membership and the Big-Five personality traits. Thereby,
we obtain a dataset with 61 variables (see also Axenfeld
et al. 2022a, b) that are all categorical, mostly ordinal or
binary.3

2 All analyses in this paper are carried out in R (R Core Team 2021)
using the following packages (if not cited elsewhere): DescTools (Sig-
norell et al. 2020), doMPI (Weston 2017), dplyr (Wickham et al. 2021),
foreach (Microsoft and Weston 2020), ggplot2 (Wickham 2016), glm-
net (Friedman et al. 2010), gridExtra (Auguie 2017), haven (Wickham
and Miller 2019), MASS (Venables and Ripley 2002), and Rmpi (Yu
2002). The R code is available as supplementary material to this article
for replication purposes.
3 This is the same dataset as used in Axenfeld et al. (2022a) and Ax-
enfeld et al. (2022b).

In the MC study, all missing data need to be simu-
lated stochastically. Thus, we need an initially fully ob-
served dataset. To this end, we exclude all unit nonrespon-
dents from the data, reducing the number of cases to 4061.
Furthermore, we complement some further missing values
with data from waves 1 and 13 (Blom et al. 2016a, b). Fi-
nally, we impute the remaining INR using stochastic single
imputation by predictive mean matching, a procedure pre-
serving the variance and relationships in the imputed data
(Little and Rubin 2020, pp. 76–80).

Beyond that, we combine rare events in variables (i.e.,
categories with < 100 cases) into broader categories. This
is necessary because in some scenarios, observed case num-
bers in each simulation run correspond to only 16% of the
numbers in the population.

3.2 MC simulation procedure

In this study, for each parameter specification, the following
tasks are repeated over 1007 simulation runs:

1. draw a simple random sample of 2000 respondents from
the GIP population data

2. simulate PMD, Zψ

3. simulate missing data by INR, Zω

4. complete all the missing data using MI
5. obtain estimates with the completed (imputed and ob-

served) data

Using this procedure, we manipulate (a) the proportion
of PMD, (b) the proportion of INR, and (c) the missingness
mechanism of the INR. The following paragraphs expand
on steps (2) through (5) of the simulation procedure.

3.2.1 Simulating PMD

We simulate PMD according to an SQD. In doing so, all
items are allocated to modules. 11 sociodemographic items
constitute a core module, which is assigned to all respon-
dents. In each simulation run, the remaining 50 items are
randomly distributed to five split modules of each 10 items.
Each respondent receives a random subset of these five split
modules. Accordingly, all the PMD are MCAR.

We manipulate the proportion of PMD by varying how
many split modules are assigned to each respondent: either
two, three, four, or all five split modules. This results in
either 60%, 40%, 20%, or no PMD in the split modules,
while the core module remains completely observed.
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3.2.2 Simulating INR

We simulate INR based on the real INR in the GIP. A pre-
liminary analysis shows that overall, 5% of the GIP data
are missing due to INR (excluding the sociodemographic
items, which are almost completely observed). INR propen-
sities vary heavily by item, ranging from 1 to 19%. Further-
more, to determine how INR propensities vary by survey
participant, we estimate elastic-net logistic regression mod-
els (Zou and Hastie 2005) of the variables’ INR indicators
on all other variables in the dataset. This provides us with
estimated nonresponse propensities specific for each obser-
vation in the population data. More detailed information on
the preliminary analysis can be found in Appendix A.

These nonresponse propensities are used for simulating
INR: We draw values from a uniform distribution U(0;1)
and set a value missing if its nonresponse propensity is
larger than the value drawn from U(0;1) (see Enderle et al.
2013).

We implement four scenarios with different proportions
of INR: one with INR approximately as frequent as in the
GIP (overall proportion of INR in the split modules: 5%),
and three with INR two times (10%), three times (15%),
or four times (20%) as frequent as in the GIP. The so-
ciodemographic core module and further six variables in the
split modules remain completely observed, as they show no
noteworthy INR. As in the real data, the proportions of INR
vary considerably by variable with a minimum of 0% and
a maximum of 19% (considering the scenario with overall
5% INR).

Hence, the total proportion of missing data in the simu-
lation study depends on the combination of INR and PMD.
To illustrate this, Table 1 depicts the combined overall pro-
portion of missing data from both simulation steps for the
various scenarios. Accordingly, our simulation scenarios
cover overall proportions of missing data ranging from 0 to
68%. This table again highlights why INR and PMD cannot
clearly be separated in the imputation: 60% PMD and 20%
INR, for instance, do not result in 80 but 68% missing data.

Table 1

Overall proportion (in %) of missing data in split mod-
ules by simulation scenario

Proportion of INR (in %) Proportion of PMD (in %)

– 0 20 40 60

0 0 20 40 60

5 5 24 43 62

10 10 28 46 64

15 15 32 49 66

20 20 36 52 68

Hence, there is a 12% overlap of observations that would
be missing both by design and nonresponse.

We also implement different potential nonresponse
mechanisms (MCAR, MAR, and MNAR) through adapting
the nonresponse propensities.

Under MCAR, INR occurs purely by random chance.
Thus, each variable j has nonresponse propensities equal to
the proportion of INR on variable j (not varying between
respondents). For larger proportions of INR, the propensi-
ties are multiplied by 2, 3, or 4. In principle, this procedure
can lead to nonresponse propensities larger than 1. How-
ever, since all variables in the GIP dataset have proportions
of INR smaller than 25%, this is not the case here.

Under MAR, the nonresponse in a variable j depends on
data in other variables in X:j . Thus, for a MAR scenario
with INR as frequent as in the GIP, we use the nonresponse
propensities estimated in the preliminary analysis using lo-
gistic regression models. For the scenarios with more INR,
we manipulate the intercepts of these models increasing
them such that the resulting propensities turn out two, three,
or four times larger on average.

Yet, the MAR mechanism in our data might be too mod-
est to differ substantially from an MCAR scenario. This is
why we also consider an amplified MAR mechanism. In
these scenarios, we multiply the regression coefficients of
the logistic models by 2 and subsequently adjust the in-
tercepts such that the proportion of INR on each variable
remains the same as in the GIP-like MAR scenarios.

Under MNAR, we assume that INR on variable j depends
only on variable j itself. For this, we set up the following
MNAR model

p
�
´!ij = 1

�
= e

�
j
0 +�

j
1 xij

1+e�
j
0 +�

j
1 xij

(1)

where �j0 is the intercept and �j1 is the regression coefficient
of Exj determining the INR in a variable j. In doing so,
�
j

0 and �j1 are specified so that the mean and the standard
deviation of the nonresponse propensities are approximately
the same as under the (GIP-like) MAR scenario. For the
scenarios with more INR, the intercept �j0 is adjusted as
described in the MAR scenario.

In consequence, we end up with 4 + 4 � 4 � 4 = 68
simulation scenarios:

– four scenarios with varying prevalence of PMD (0, 20,
40, 60% PMD) without INR, plus

– four scenarios with varying prevalence of INR (5, 10, 15,
20%), times

– four missingness mechanisms for INR (MCAR, GIP-like
MAR, amplified MAR, MNAR), times

– four scenarios with varying prevalence of PMD (0, 20,
40, 60%).
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3.2.3 Imputation

The missing data are imputed using the mice and miceadds
packages (van Buuren and Groothuis-Oudshoorn 2011;
Robitzsch and Grund 2021) with 20 imputations drawn
after 10 iterations. In doing so, we use predictive mean
matching with dimensionality reduction of the predictor
space through a partial-least squares regression (Robitzsch
et al. 2016). We opt for this method because it can deal
with a sample size of 2000 without dropping some of the
many potentially relevant predictor variables from impu-
tation models. Correspondingly, this approach has shown
to perform comparatively well with the data at hand com-
pared to alternative techniques, such as logistic regression
models and classification and regression trees (Axenfeld
et al. 2022b).

3.2.4 Estimation

To examine the imputation’s ability to preserve distributions
and relations in the data with the various scenarios, in each
simulation run and for each scenario we calculate two types
of MI estimates:

– Univariate frequencies for all 285 categories of all
44 variables with INR

– Bivariate Spearman correlations between all 88 pairs of
variables that have a correlation of 0.2 or stronger in the
original population data and feature INR on at least one
of the two variables.

For this purpose, these measures are calculated sepa-
rately in each of the 20 imputed datasets and subsequently
pooled according to Rubin’s rules.

In order to evaluate the accuracy of a frequency or cor-
relation estimate, we calculate its percentage MC bias. This
entails the following operation:

%BiasMC
�
b�

�
= 100 � 1

S

PS
s=1

�
b�s − �

�
=� , (2)

where s refers to one of 1,2; :::; S simulation runs, b�s is
a pooled MI estimate in simulation run s, and θ is the
true population benchmark for this estimate. This yields
the average percentage difference between estimated and
true parameter.

4 Results

4.1 Univariate frequencies

Fig. 1 displays the percentage MC biases averaged over
all simulation runs for each univariate frequency estimate
(displayed on the x axis) under the different INR and PMD
scenarios. Each of the displayed data points refers to the
average bias of one specific category of a variable. To sim-
plify the analysis, boxplots are drawn over the average bi-
ases. For each mechanism, Fig. 1 shows several of these
plots referring to the percentage biases obtained with dif-
ferent proportions of INR and PMD. In addition, the exact
numbers for the percentage biases discussed below are dis-
played in an appendix (Table B.1).

Note that, mathematically, all percentage biases for uni-
variate frequencies have a lower limit at –100% (because
frequencies cannot be negative) but upper limits often ex-
ceeding +100%, depending on the size of the frequency
(1=θ– 1). Thus, the phenomenon that Fig. 1 tends to depict
more pronounced percentage biases in the positive than in
the negative results from their calculation and represents no
finding in itself.

The first boxplot in Fig. 1 depicts percentage MC bi-
ases when no missing data at all occurs (and consequently,
no data are imputed). Correspondingly, all biases are ap-
proximately zero. The following three boxplots show the
percentage MC biases for 20, 40, and 60% PMD (still with-
out INR). We can observe biases increasing with increasing
shares of PMD, even without INR: The central 50% of bi-
ases (that is, 25% of biases are smaller and another 25%
are larger) still concentrate at about 0% with 20% PMD,
range from –1% to +2% with 40% PMD, and from –1% to
+4% with 60% PMD.

The plots beneath show the results for 5, 10, 15, and 20%
INR that is MCAR, again separately for 0, 20, 40, and 60%
PMD. Each of these INR scenarios replicates the finding
that percentage MC biases increase with more PMD. Simi-
larly, it also shows that biases increase with the proportion
of INR despite the MCAR mechanism. With 60% PMD,
for example, the central 50% of biases range from –1% to
+4% when there is no INR, from –1% to +5% with 5% INR,
from –2% to +6% with 10% INR, from –2% to +8% with
15% INR, and from –2% to +9% with 20% INR. In com-
parison to the scenarios without INR, we also observe that
percentage biases for a few categories take extreme values.
This is because the prevalence of INR varies heavily be-
tween variables. For example, in the most extreme scenario
(60% PMD and 20% INR), three extreme outliers with per-
centage biases of each more than 70% stand out. These
refer to categories at the tails of the variables CE38256 and
CE38260, which have the highest proportions of INR (in
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Fig. 1

Average percentage Monte Carlo biases of univariate frequency estimates for 285 categories of 44 variables, by response
mechanism and proportions of item nonresponse and planned missing data
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the scenario with 20% INR and 60% PMD 68% of cases
are unobserved).

The subsequent plots show the results for INR that is
MAR and as frequent as in the GIP or according to the
amplified mechanism. The general patterns observed before
recur in both scenarios: Percentage MC biases increase with
larger proportions of both PMD and INR. Yet, INR appears
to cause somewhat larger biases under MAR than under
MCAR, especially with the amplified MAR mechanism. In
the 20% INR scenario with no PMD, for instance, the cen-
tral 50% of biases range from –1% to +1% for the GIP-
like MAR mechanism and from –2% to +2% for the ampli-
fied MAR mechanism while concentrating at about 0% for
the MCAR mechanism. Interestingly, the presence of PMD
(although in general yielding increased biases) seems to at-
tenuate the effect of the INR mechanism to some extent: In
the most extreme scenario with 60% PMD and 20% INR,
the central 50% of percentage biases range from –2% to
+9% under both MCAR and GIP-like MAR, and from –3%
to +9% under amplified MAR. Hence, under 60% PMD
and 20% INR the amplified MAR mechanism increases the
range of the central 50% of biases by only 1 percentage
point4 compared to MCAR, as opposed to 3 percentage
points under 0% PMD and 20% INR.

For INR that is MNAR (displayed in the bottom of
Fig. 1), we observe a different pattern. The percentage MC
biases generally are much larger than under MCAR or MAR
(note that the scale of the x axis for MNAR differs from
the rest because otherwise, many biases would fall out of
display range). For example, the central 50% of biases with
40% PMD and 20% INR range from –26% to +14% under
MNAR, as opposed to –3% to +5% under amplified MAR,
–2% to +5% under GIP-like MAR, and –1% to +4% under
MCAR. In consequence, we observe some extreme cases
with larger proportions of INR (15 and 20%), with some
frequencies being biased upwards by more than ˙100%.
This indicates that some categories of variables are not ob-
served at all throughout the simulation due to the MNAR
mechanism.

Due to the large effect of the INR under MNAR, the pro-
portion of PMD affects the accuracy of estimates less than
under the other mechanisms. With 10% INR, for example,
the central 50% of percentage MC biases range from –10%
to +6% both when there is no PMD or with 20% PMD,
from –10% to +7% with 40% PMD, and from –8% to +9%
with 60% PMD.

4 For better readability, the percentage values were rounded to whole
numbers. However, percentage points are calculated using the exact,
unrounded percentages. Thus, due to the rounding, percentage points
may not always equate differences between the percentage values pre-
sented in this paper.

4.2 Bivariate correlations

Fig. 2 shows the results for the average percentage MC
biases of bivariate Spearman correlations that are larger
than 0.2 in the population data. In doing so, it follows the
same structure as Fig. 1. Here, each data point refers to
the Monte Carlo bias of the correlation of one variable
pair. Unlike Fig. 1, 2 also covers values below –100%, as
correlations can be both positive and negative. Again, exact
numbers for the percentage biases are also displayed in the
appendix (Table B.2).

As for the univariate frequencies, we can observe per-
centage MC biases increase with increasing proportions of
PMD, with a clear tendency towards underestimating rela-
tionships between variables. This effect is especially severe
for the scenario with the highest share of PMD: Consider-
ing the scenarios without INR, the central 50% of biases
range from –2% to 0% with 20% PMD, from –5% to 0%
with 40% PMD, and from –18% to –12% with 60% PMD.
Thus, the results are slightly different for frequencies and
correlations: Given large proportions of PMD, almost all
correlations are considerably biased downwards, while at
least some frequencies still have percentage biases close to
zero (see Fig. 1).

Again, increasing proportions of INR also yield increas-
ing percentage MC biases, even under MCAR. For each of
the INR mechanisms, the largest biases emerge when the
proportions of both PMD and INR is high. For example,
with 60% PMD and 20% INR that is MCAR, the central
50% of biases range from –48% to –35%, as opposed to
from –18 to –12% with 60% PMD but no INR. This means
that biases are roughly doubled in size despite the total pro-
portion of missing data increases only from 60 to 68% (see
Table 1).

We also observe that MC biases under MAR are sim-
ilar to those under MCAR, with only minimal tendency
towards increasing percentage MC biases when the INR is
MAR (GIP-like or amplified, respectively) as compared to
MCAR. However, the differences are much less pronounced
as with the frequency estimates. With 20% INR and 40%
PMD, for example, the central 50% of biases range from
–21% to –8% under amplified MAR and from –23% to
–8% under the GIP-like MAR, as opposed to –22% to –8%
under MCAR.

For INR that is MNAR, we again observe some tendency
towards larger percentage MC biases compared to both the
MCAR and MAR scenarios. With 20% INR and no PMD,
for example, the central 50% of biases range from –6% to
+2% under MNAR, as opposed to –6% to 0% under ampli-
fied MAR, –5% to 0% under GIP-like MAR, and –4% to 0%
under MCAR. However, this effect is less pronounced and
less clear than with the frequency estimates. There also tend
to be more MC biases in the area around zero than under the
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Fig. 2

Average percentage Monte Carlo biases of bivariate Spearman correlation estimates for 88 variable pairs correlated by 0.2
or more in the population data, by response mechanism and proportions of item nonresponse and planned missing data

MAR scenarios. This suggests that in this simulation study,
MNAR affects some correlations considerably while leav-
ing others largely intact. Apart from that, we again observe
some extreme biases exceeding –100% with 15 or 20% INR
that is MNAR, implying that the direction of these relation-
ships reverses systematically due to the INR. These extreme

biases occur primarily in the correlation of the variables
BG38001 and BG38002, which have the strongest variabil-
ity in nonresponse propensities throughout all variables due
to their good nonresponse-model fit in the preliminary anal-
ysis.



THE PERFORMANCE OF MULTIPLE IMPUTATION IN SOCIAL SURVEYS WITH... 147

Compared to the results on univariate frequencies, the
proportion of PMD exhibits a larger effect on the accuracy
of correlations under MNAR. With 20% INR that is MNAR,
for example, the central 50% of percentage MC biases range
from –6% to +2% when there is no PMD, from –11% to
–1% with 20% PMD, from –31% to –6% with 40% PMD,
and from –55% to –33% with 60% PMD.

5 Summary

In this paper, we have examined the accuracy of univari-
ate frequency and bivariate Spearman correlation estimates
after imputation in data with two sources of missing data:
planned missingness from an SQD and INR by survey par-
ticipants. In doing so, we have manipulated both the propor-
tions of PMD and INR as well as the mechanism causing
the INR. Several major findings stand out:

First, the combined presence of INR and PMD in a so-
cial survey can affect the estimation adversely. A major
reason for this is that both types of missing data combined
increase the total proportion of missing data, challenging
the imputation: In our simulation study, large proportions
of missing data led to large Monte Carlo biases even if the
INR is MCAR. In particular, rampant increases in Monte
Carlo biases emerged when the combined proportion of
missing data from both sources exceeded about 40%. Per-
haps, this is caused by a lack of pairwise observations avail-
able for the imputation model under large amounts of miss-
ingness: Whereas 40% PMD in two variables in different
split modules would mean 36% of cases being pairwise ob-
served (given 0% nonresponse), 60% PMD would result
in only 16% pairwise observed cases. Under all examined
nonresponse mechanisms, many frequency estimates (yet
not necessarily all of them) turn out considerably overes-
timated or underestimated when the proportion of missing
data is high. Meanwhile, correlation estimates appear espe-
cially severely affected by large amounts of missing data,
being almost consistently shifted downwards with only few
exceptions having Monte Carlo biases close to zero.

Second, under the conditions of our simulation study,
MAR caused only slightly larger Monte Carlo biases than
MCAR. The effects of INR under MCAR and MAR even
tended to converge the more PMD was introduced. Thus, in
our simulation study differences between MCAR and MAR
appear only as a minor factor affecting the quality of MI
estimates, especially compared to the overall proportion of
missing data.

Third, under MNAR we observe different effects. In
our simulation study, univariate frequency estimates un-
der MNAR were affected much more by the proportion of
INR than by the overall proportion of missing data. Thus,
the amount of PMD had hardly an effect on univariate

frequency estimates. This is presumably because the im-
putation could not deal adequately with this nonresponse
mechanism. For correlations, though, the effect of MNAR
over MAR and MCAR was rather small, and the overall
amount of missing data also had a considerable impact on
the quality of estimates. We could imagine that in the real
world this may especially depend on the specific data con-
text, considering that real-world MNAR mechanisms might
sometimes affect correlations more directly than in this sim-
ulation study. Yet, despite the result that both MNAR non-
response and large amounts of PMD may cause estimation
problems, the combination of both effects does not seem to
cause any further damage beyond (at worst) adding up.

Fourth, in all scenarios the estimates for a few categories
or correlations were affected substantially more by INR
than most others. These outliers appear because, as our
preliminary analysis of real INR in the GIP data showed,
INR varies greatly between items both in its prevalence and
dependence on other variables in the data.

6 Discussion

This study has certain limitations but may also allow some
important conclusions for future research. Both aspects de-
serve broader discussion here.

The most important limitation is that the study’s findings
rely on a simulation based on specific social survey data.
Therefore, their external validity may depend on how simi-
lar real data-collection scenarios would be to our simulation
setup. Through relying on real social survey data and the
INR observed in this dataset, we attempted to create a re-
alistic environment. We modelled INR separately for each
item based on the other variables in the dataset using lin-
ear additive effects. However, INR in the real world could
work differently. For example, INR could follow non-lin-
ear mechanisms (see, for example, Collins et al. 2001) or
be the result of interaction effects. In particular, the absence
of interaction effects might be responsible for the weaker
impact of the modelled nonresponse mechanism on corre-
lations compared to univariate frequencies.

Furthermore, the variables in our dataset were discrete.
In continuous variables, by contrast, single outliers could
have considerable leverage on correlation estimates. There-
fore, MNAR mechanisms in continuous variables might
potentially affect correlation estimates more severely than
found in this study. Moreover, we treated INR as a single
uniform missing-data source. Yet, in real surveys there are
different subtypes of INR (e.g., refusals, data collection
errors, etc.) that might behave differently regarding their
response mechanism (see, for example, Shoemaker et al.
2002). Apart from all that, response mechanisms could also
behave differently in surveys on different substantive top-
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ics. Therefore, this study should be replicated with different
data in the future.

In addition, our study focuses on INR as one of sev-
eral manifestations of missing data that commonly occur
in social surveys. Other important sources of missing data,
such as unit nonresponse, were out of scope. However, we
encourage future research on how these other missing-data
sources in surveys interact with the imputation of PMD.

A final limitation is that we examined the accuracy of
univariate and bivariate but not multivariate estimates. Yet,
for substantive researchers the performance of multivariate
models under different planned missingness scenarios may
also be highly relevant. Thus, future research should address
this issue as well.

Our findings may also guide future research in several
other ways. First of all, they allow some direct conclusions
for survey design. In particular, survey designers are rec-
ommended to carefully evaluate how much PMD is neces-
sary and not introduce more than that, considering that the
quality of estimates tends to plummet when the proportion
of missing data becomes too large. This is especially the
case for items that can be expected to produce considerable
amounts of INR. In such items, to allow for an appropri-
ate imputation one may consider reducing the proportion of
PMD or allocating them to the core module.

Similarly, it seems particularly important in SQD surveys
to keep INR at a low level. For example, this is especially
relevant considering the way modules are constructed. For
instance, earlier research shows that items of one topic
should be allocated to different split-questionnaire forms
rather than all to the same in order to support the impu-
tation (Axenfeld et al. 2022a; Imbriano and Raghunathan
2020; Raghunathan and Grizzle 1995). It is still an open
empirical question how (and if so, when) this would af-
fect INR rates or response quality in general compared to
procedures allocating items of one topic to the same ques-
tionnaire form. Therefore, future research should investigate
this issue, such that INR can be taken into account when
designing split questionnaires.

Interactions between SQDs and the participants’ re-
sponse behaviour may also play a role in evaluating the
costs and benefits of an SQD for a specific survey. By
reducing respondent burden in terms of questionnaire
length, SQDs are supposed to decrease unit nonresponse,
breakoff, and measurement error (Galesic and Bosnjak
2009; Peytchev and Peytcheva 2017) at the cost of addi-
tional planned missingness (Graham et al. 1996; Raghu-
nathan and Grizzle 1995; Peytchev and Peytcheva 2017).
This notion highlights key empirical questions for survey
researchers considering to implement an SQD in a survey:
How much PMD is needed to obviate a given amount of
unit nonresponse, breakoff, or measurement error? Is the
averted nonresponse considered MNAR, or is it MCAR or

MAR? For example, on the one hand, if introducing a lim-
ited amount of PMD can prevent a considerable amount
of unit nonresponse that is MNAR, the benefits of the
SQD may outweigh its costs. On the other hand, if large
amounts of PMD can inhibit relatively little nonresponse
that can also be expected to be MAR, the opposite may be
the case. To allow reasonable claims about the expectable
usefulness of an SQD for a specific survey, however, our
study would need to be replicated with a broad variety of
different survey datasets first. Furthermore, experimental
research would be needed to investigate if and how differ-
ent strategies to design split questionnaires affect response
behaviour. First evidence on this domain shows differences
in respondents’ evaluation of split questionnaires with more
versus less frequent switches between topics (Adigüzel and
Wedel 2008). Despite the need for more research, this
simulation study may provide a first piece of evidence to
help researchers assess to what extent an SQD might make
sense for a given survey.
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