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with observed score equating
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Many surveys ask respondents about manifest quantities, such as income, age, weight, or their
height. Surveys often either use open-ended questions, where respondents report the quantity
directly as an integer value (e.g., “56”), or closed-ended quantity questions where respondents
select from a set of discrete interval response options (e.g., “51 to 100”). Quantity data gath-
ered with different response schemes thus becomes hard to compare or to harmonize to be
used in integrative analyses. We compare two approaches to harmonizing quantity question
data. Firstly, the widely used middle of category (MOC) interpolation. Secondly, Observed
Score Equating in a Random Groups Design (OSE-RG). OSE-RG is originally an approach
to harmonize measures for latent constructs. However, the equipercentile OSE-RG algorithm
lends itself well to quantity questions. To test the performance of both algorithms, we gathered
experimental data (N = 3484) on the number of books possessed as an example quantity, where
we varied the quantity-question response scheme. We show that OSE-RG often outperforms
or at least matches MOC when harmonizing closed-ended questions towards an open-ended
format, or when harmonizing different closed-ended response formats amongst each other.
Notably, OSE-RG is also less susceptible to response biases induced by different close-ended
interval response schemes.
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1 Introduction

Survey questions about manifest, objective quantities are a
staple of many survey programs: Income and age, number of
people living in a household, or participants’ physical char-
acteristics such as height or weight. Such quantity questions
appear very straightforward. After all, their object of inter-
est is something concrete and observable unlike subjective
questions about attitudes or values for example. Nonetheless,
capturing reliable and valid numerical estimates of quantities
in surveys is a complex endeavor that has engendered many
different question designs. The goal is usually to balance dif-
ferent desirable features of quantity questions, such as facili-
tating accurate memory recall, reducing socially desirable re-
sponding, or reducing respondent burden (Tourangeau et al.,
2000). In our paper, we want to tackle the challenge of how
to harmonize data on the same quantity that were measured
with differently designed questions. Specifically, we address
comparability and harmonization between quantity questions
with open-ended numeric response format as well as sev-
eral versions of closed-ended close-ended quantity questions
with different numeric intervals as discrete response options.

Contact information: Ranjit K. Singh PLEASE PROVIDE
POSTAL ADDRESS OF CORRESPONDING AUTHOR (E-mail:
ranjit.singh@gesis.org)

Harmonization of existing data from different surveys
(i.e., ex-post harmonization) is becoming more and more
popular, because it allows us to answer research questions
that were harder or impossible to answer with the sepa-
rate data sources individually (Dubrow & Tomescu-Dubrow,
2016). For example, harmonized datasets allow us to syn-
thesize longer time-series, to increase our sample sizes, or
to fill gaps in regional or conceptual coverage. Several past
and ongoing harmonization projects in the social sciences
document the need for ex-post harmonization (Durand et al.,
2021; May et al., 2021; Schulz et al., 2022; Slomczynski &
Tomescu-Dubrow, 2018).

Researchers looking to compare or combine data from in-
struments measuring quantities encounter two types of chal-
lenges. The first challenge is different information content.
It occurs when asking respondents about quantities with dis-
crete, interval response options. Imagine a response option
“30 to 50”. Which quantity best represents respondents who
choose this response option? And how can we relate this
response option to an overlapping but not identical response
option in another question (e.g., “20 to 40”)? This challenge
of different information content is especially pronounced in
the highest response interval, which is usually open towards
infinity (e.g., “100 or more”). The second challenge are re-
sponse biases. It is well established that responses to quantity
questions are sensitive to biases such as socially desirable re-
sponding, but also biases induced by different response for-
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mats. In other words, we cannot be certain that respondents’
true quantities always fall within the verbatim boundaries de-
fined by the response options.

A prominent method to harmonize close-ended quantity
questions is the middle of category (MOC) interpolation
(Von Hippel et al., 2016). MOC uses the mid-point of a re-
sponse option as the most representative value for the respon-
dents choosing a given response option. However, harmoniz-
ing quantity questions with MOC comes with challenges if a
response option is open-ended (e.g. “more than 500 €”) and
fails to consider response biases in the harmonization pro-
cess. In this paper we suggest an alternative method: Ob-
served score equating in a random groups design (OSE-RG).
OSE-RG is a psychometric method used to align measure-
ment units across different instruments measuring the same
latent construct (Kolen & Brennan, 2014). While well estab-
lished in psychometric educational testing, applying OSE-
RG to latent concepts in the social sciences is a recent de-
velopment (Singh, 2022). In this paper we now argue and
empirically demonstrate that OSE-RG can also be applied
to harmonizing manifest quantities. Apart from a validation
of OSE-RG as a method to harmonize quantity questions,
we also demonstrate that OSE-RG has a crucial advantage
over MOC. While MOC treats response options labels ver-
batim, OSE-RG takes the empirical distribution into account
as well. This means it can mitigate response biases between
different instrument versions. Apart from that, if its precon-
ditions are met, OSE-RG also requires less effort to perform
than MOC.

In the following, we will first establish the background
of our study, describing the types of quantity questions we
will harmonize and discuss the harmonization challenges
posed by the different question types. Second, we discuss
two approaches to harmonizing quantity questions: The con-
ventional MOC interpolation and the proposed OSE-RG ap-
proach. Third, we will present our research design and meth-
ods to validate OSE-RG and compare its results to the MOC
approach. In the results section we will, fourth, present the
empirical results of our validation experiment. Finally, the
discussion will lay out the implications for harmonization
practitioners seeking to make existing survey data on quanti-
ties more comparable.

2 Background

2.1 Quantity questions

In our paper, we define quantity questions as survey in-
struments which measure a manifest quantity by asking re-
spondents directly about that quantity. Examples are ques-
tions about age, income, number of children in the house-
hold, bodyweight, or height. Quantity questions have two
crucial components that may vary across instruments. Firstly,
the question text, which instructs respondents on which

quantity to report. Secondly, the response format, with which
respondents can indicate their quantity response. In our pa-
per, we focus on differences in such response formats while
assuming that the question text is the same across the in-
struments. We will investigate two response formats: Open-
ended quantity questions and close-ended quantity questions.
Open-ended quantity questions give the respondents the op-
portunity to directly report their numerical response. In
close-ended quantity questions numeric ranges (e.g., 0–20,
21–50, etc.. . . ) are presented as discrete response categories
or “bins”.

2.2 Comparable measurement units

The many possible ways to construct an interval response
format pose a crucial challenge if we want to harmonize
questions for the same quantity. At its core, this challenge is
about establishing comparable units of measurement. Mani-
fest quantities usually have clear units associated with them:
Income measured in units of the local currency, age mea-
sured in years, or children measured in integer numbers.
However, by measurement units we mean the relationship
between measurement values (i.e., scores) in our data and
the true quantities they are supposed to represent. And those
measured values are fundamentally distinct from true quan-
tities.

Challenge one: Different information content

Different measurement instruments retain a different
amount of information about the measured quantity. Close-
ended quantity questions only retain the information in
which interval respondents fall (e.g., 31 to 50), but discard
respondents’ intra-interval position (e.g., 34). This informa-
tion loss poses a hurdle for two common cases in harmo-
nization. The first case is harmonizing a close-ended quan-
tity question with an open-ended quantity question. Here we
can either aggregate the open-ended quantities into the inter-
val format, or we can interpolate continuous values for each
interval. Aggregating open-ended responses into categories
is easy but introduces massive information loss. Interpolat-
ing interval quantity categories might thus be preferable but
poses the challenge that we need to estimate the expected true
quantity for respondents who chose a certain interval. If we
had access to the true quantities of respondents who chose an
interval, this would be the average quantity of respondents in
an interval. However, since the true quantities are unknown,
we need to rely on assumptions on the intra-interval distri-
bution to estimate the expected quantity (Von Hippel et al.,
2016).

The second case is harmonizing two close-ended quantity
questions which have different interval response formats. We
thus cannot easily harmonize responses of intervals from dif-
ferent questions where the interval ranges overlap, but are not
identical (e.g., 21 to 40 versus 31 to 50). Since intra-interval
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information has been discarded, we cannot easily determine
which portion of respondents falls into the intersection, and
which do not. Again, we need to rely on assumptions on the
intra-interval distribution to estimate the expected quantity
(Von Hippel et al., 2016).

Challenge two: response bias

The second comparability problem arises from response
biases. It is tempting to assume that respondents reliably
choose the objectively correct response option. However, it is
well established that responses can by systematically biased
(Tourangeau et al., 2000). Respondents may intentionally
choose to misreport their true quantity, but even if they intend
to answer truthfully their responses may be subject to un-
conscious response biases (Tourangeau et al., 2000). There
are many different biases established in the literature. As a
well-known example, consider socially desirable responding
(Paulhus, 2002). For example, respondents often underreport
their weight (Polivy et al., 2014) and overreport their physi-
cal activity level (Rzewnicki et al., 2003). The key issue here
is that response bias means we cannot trust that a respondents
true quantity falls into the interval boundaries of their chosen
response option.

In our paper, we focus on another response bias: Respon-
dents sensitivity to close-ended quantity questions interval
boundaries (Schwarz et al., 1985). Questions with response
boundaries that emphasize higher quantities can cause re-
spondents to overreport quantities on average. Vice versa, re-
sponse boundaries that emphasize lower quantities can cause
respondents underreport quantities. This specific response
bias was chosen for two reasons. First, it can be manipulated
experimentally, which allows us to introduce the bias in a
controlled manner into our study. Second, in an experimental
design it can be empirically demonstrated.

Establishing comparability

To our mind, the harmonization of quantity questions
has three goals: (1) Retaining as much information of the
source instruments as possible. (2) Avoiding introducing bias
through an inadequate harmonization procedure. (3) Reduce
differences between questions that are the result of response
biases.

First, retaining information means that we should avoid
discarding information by unnecessary aggregation or per-
forming irreversible (i.e., asymmetrical) transformations. In
other words, differences in information content should ide-
ally not be solved by reducing the information content of the
more finely grained instrument in favor of the more granular
instrument. For this reason, approaches such as the lossy
aggregation that we briefly discuss in the next section, are
suboptimal.

The second and third issue are, in fact, two aspects of the
same harmonization issue. In a perfect harmonization, we

would like to establish the same relationship between true
quantities and measured quantities across the harmonized in-
struments. As a basic intuition, this would mean that after
perfect harmonization, people with a certain true quantity
would be represented by the same value across different in-
struments. However, this ideal is unobtainable because we
do not have access to the true quantities of our respondents.
This means we cannot compare each respondent’s response
to their true quantity. It also means that the intra-interval in-
formation discarded by interval response formats cannot be
easily regained.

Instead, we can borrow an idea from observed score equat-
ing. If we apply two instruments to the same population of
respondents, we want harmonization to ensure that measure-
ments (i.e., scores) with both instruments to have the same
distribution shape. More formally, assume that we applied
instruments X and Y to random samples of the same popu-
lation. What we want is some harmonization function that
transforms scores of instrument X towards scores of instru-
ment Y: hY (x). After this transformation, the cumulative dis-
tribution of the transformed scores of X, G∗(hY (x)), should
be identical with the cumulative distribution of the scores of
Y , G(y) (Kolen & Brennan, 2014).

G∗
(
hY (x)

)
= G(y) (1)

This observed score equity property might seem abstract
at first, but it has very desirable properties (Kolen & Bren-
nan, 2014). If such a harmonization function exists, it would
mean that we would get quantity measurements with the
same mean, standard deviation, skewness, and percentiles
for the same population across different instruments. Dif-
ferences in measurement units and systematic bias have been
aligned. In other words: Measurements are not necessarily
free of systematic bias, but biases are at least aligned so that
there is no differential bias depending on the instrument used.

3 Harmonization approaches

What are potential solutions for the problems discussed
above? We will discuss the MOC approach as a conventional
method to harmonize quantity questions and present OSE-
RG as a novel approach. It should be noted that there is an-
other common way to harmonize quantity questions that we
term lossy aggregation: Aggregating response options to a
lowest common denominator between two quantity questions
(Esteve & Sobek, 2003; Rolland et al., 2015). If instrument A
has the response options 0 to 10, 11 to 20, . . . and instrument
B has the response options 0 to 20, . . . , the first two response
options of instrument A could be combined to cover the same
interval. However, this approach irreversibly discards infor-
mation in the process and is only viable if there are matching
inner boundaries and passes response biases into the harmo-
nized dataset. Projects using this approach thus often provide
the discarded information in separate variables or as separate
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code digits (Esteve & Sobek, 2003). In the following we will
instead focus on MOC and OSE-RG.

3.1 Middle-of-category interpolation (MOC)

An important conventional approach is the middle-of-
category interpolation (MOC). As the name implies, MOC
focuses on interpolation. Specifically, it aims to assign each
response interval a single, continuous quantity value that
best represents the average true quantity of respondents who
chose this interval (Von Hippel et al., 2016). Unfortunately,
we do not have access to the true quantities. Instead, MOC
makes certain assumptions (Von Hippel et al., 2016):

1. Respondents with a certain true quantity τ choose, on
average, an interval (or “bin”) B with upper and lower bound-
aries [lB, uB] so that lB≤τ≤uB. In other words, respondents
answer truthfully and unbiased.

2. Respondents’ true quantities in each interval are uni-
formly distributed as U[lB,uB] if uB,∞.

3. Respondent’s true quantities in an interval [lB, uB], if
uB = ∞ are distributed according to a function that has to be
defined based on domain knowledge of the measured quan-
tity.

Assumption two is why it is called the middle of category
interpolation. The average response lies in the middle of the
two category boundaries, because this is where the expected
value of the assumedly uniformly distributed quantities lies.
An income category “501€ to 1000€”, for example, would
be replaced with the value “750.50€”.

x[lB,uB] = E
(
U[lB,uB]

)
=

1
2

(lB + uB) (2)

Assumption three, however, remains a challenge. The
middle of a category bounded on one side by infinity is infin-
ity. Instead, practitioners must make assumptions about the
shape of the cumulative distribution of the true quantity in
the surveyed population (Von Hippel et al., 2016). Based on
that assumed distribution shape, we can infer a most repre-
sentative value for the highest interval. Often, a Pareto distri-
bution is used for this purpose (Von Hippel et al., 2016). The
specifics of this process will be demonstrated in the meth-
ods section, where we describe the MOC interpolation in the
context of our empirical example. In summary, MOC is a
plausible approach for harmonization if the assumptions are
met. However, assumption one and three are easily violated
in an empirical setting.

Assumption one can be violated by response biases which
can cause respondents to choose a response interval which
does not encompass their true quantity. For example, if
we combine data from close-ended quantity questions over-
estimating the quantity with data from close-ended quan-
tity questions underestimating quantities, then we bake these
spurious differences as methodological artifacts into our
MOC harmonized data. Assumption three is violated if the

true distribution of quantities does not follow the assumed
distribution type or if the parameters differ. We require do-
main specific knowledge to choose an adequate distribution
type and to fine-tune plausible parameters. This adds quali-
fied manual work, increases researchers’ degrees of freedom,
and makes the approach hard to generalize across different
quantities or populations.

3.2 A novel approach: Observed score equating in a
random groups design (OSE-RG)

As we have seen, there is a need for a new approach to
harmonizing quantity data. First and foremost, the new ap-
proach should be able to address response bias. Furthermore,
it would be ideal to have an approach that works across dif-
ferent quantities with little manual work and few researcher
degrees of freedom. OSE-RG is a promising candidate that
fulfills those criteria. OSE-RG is an ex-post harmoniza-
tion method with a long tradition in psychometrics, specif-
ically the harmonization of educational attainment measure-
ments (Kolen & Brennan, 2014). However, OSE-RG is novel
in the context of harmonizing survey quantity questions in
two ways. First, equating in general is only recently be-
ing applied to single-item survey instruments (Singh, 2022),
and second, equating is conventionally used to harmonize
measurement instruments for latent constructs, not manifest
quantities. However, the mechanisms that allow us to harmo-
nize the unobservable (i.e., latent constructs) may also serve
us well in harmonizing the unobserved (i.e., true manifest
quantities). In the following, we describe OSE-RGs logic
and make the case that it can be used to harmonize quantity
questions. However, please note that none of the following
formulas are applied by hand. Mature software and pack-
ages, such as the equate package for R, conveniently auto-
mate this process (Albano, 2016).

OSE-RG aims to align the (cumulative) score distributions
of two instruments X and Y for the same population. The key
idea is already implied by the qualifier “for the same popula-
tion”: OSE-RG uses the random groups design, in which we
collect data for both instruments in samples randomly drawn
from the same population (Kolen & Brennan, 2014). This is
equivalent to a split ballot experiment often used in survey
methods research. Through this experimental design, we en-
sure that there are no systematic differences in the true quan-
tity distribution in both samples. However, the measured re-
sponses, the observed scores, will have different distribution
shapes.

In some harmonization projects, the data already has the
suitable format. However, if this is not the case, we can use
different instances where the respective quantity question de-
signs were used. Singh (2022) provides a proof of principle
for using external data for performing OSE-RG: Either non-
probabilistic experimental data in an online access panel to
perform OSE-RG or two probabilistic samples of the adult
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German population from different survey programs.
If suitable data is found, OSE-RG then simply transforms

scores of X so that the response distributions align in shape
(Kolen & Brennan, 2014, p. 11):

G∗
(
eqY (x)

)
= G(y) (3)

Formula (3) is the same as formula (1), with the only differ-
ence that the specific harmonization function eqY (x) is put
in place of the general, placeholder harmonization function
hY (x). Here the bias correcting aspect of OSE-RG comes
into play. Aligning the distribution shapes aligns bias, as the
distribution shapes of observed scores are the product of both
the true quantity distribution but also response bias. The re-
sulting harmonized data is no longer differently biased across
instruments.

OSE-RG intuition

While there are different algorithms to align distribu-
tion shapes, we focus on the equipercentile algorithm.
Equipercentile equating is well suited to harmonizing non-
normally distributed scores—such as quantities usually are.
In equipercentile equating, we create two functions: (1) A
percentile function P(x) which transforms responses of in-
strument X into linearly interpolated percentile ranks. (2)
An inverted percentile function Q−1(P∗), which transforms
percentile ranks P∗ into their corresponding responses in in-
strument Y . Then we can express the equipercentile equating
function harmonizing responses of X towards the format of
instrument Y as (Kolen & Brennan, 2014, p. 36):

eY (x) = Q−1(P(x)
)

(4)

Where x are scores of instrument X, which are equated to-
wards the scale of instrument Y via an equipercentile equat-
ing function eY (x). In the following we will show how to use
OSE-RG in three common use-cases. This sequence of use-
cases also serves to build up the full set of formulas of the
equipercentile equating algorithm step by step.

Use-case 1: Harmonization of two open-ended quantity
questions

Let us consider this algorithm by harmonizing two open-
ended quantity questions X and Y , where X is suscepti-
ble to overreported quantities through socially desirable re-
sponding, while Y is not. For continuous quantities x in an
open-ended question, the percentile function P(x) is nothing
else than the cumulative frequency function 100 ·

(
F(x)

)
.

Note that relative frequencies are bounded between 0 and 1,
whereas percentiles are bounded between 0 and 100. The
algorithm would first transform each reported quantity in X
into a corresponding percentile rank. A reported quantity of
“15” in instrument x would become P(15) = 100 ·

(
F(15)

)
=

33 meaning that 33% of respondents reported a quantity of 15

or lower on instrument X. Then we would transform this per-
centile rank P∗ = 33 into the corresponding reported quantity
in instrument Y . In other words, we would look for a quantity
in y with a percentile rank of 33, using Q−1(33). Empirically,
we might find that the response “12” has a percentile rank in
instrument Y . We would thus transform a “15” in X into a
“12” in Y . Since the true quantity distribution is the same in
both experimental samples, we have mitigated the different
levels of social desirability bias of X and Y by aligning the
percentiles.

Use-case 2: Harmonization of a close-ended quantity ques-
tion towards an open-ended quantity question

However, the main challenge that we want to address in
this paper is harmonizing close-ended quantity questions,
both towards open-ended questions as well as other close-
ended quantity questions. And here we face a problem: What
is the percentile rank of an interval “30 to 45”? Such an in-
terval covers a range of quantities and thus also a range of
quantity percentile ranks. To solve this, equipercentile OSE-
RG uses linear interpolation. Specifically, it assumes that the
percentile ranks for a given response interval are uniformly
distributed. Please note that going forward, the formulas as-
sume that we represent the response options with integer val-
ues starting with 0. For a given response interval, denoted
by an integer score x∈N0, the percentile can be calculated
using the relative frequency of a score f () and the cumula-
tive relative frequency of a score F(). Formally, f () is the
discrete density function for X = x and for our purposes it
represents the proportion of respondents who chose a specific
score x. F() is the discrete cumulative distribution function,
which represents the proportion of respondents who chose a
specific score x or a lower score. Then we can calculate an
interpolated percentile score using formula 5(adapted from
Kolen & Brennan, 2014, p. 42).

P(x) = 100
(
F(x − 1) +

1
2

f (x)
)

for x∈N0 (5)

Imagine an interval “30 to 45”, which happens to be the
third response option in an instrument X. Thus x = 2, be-
cause scores start at zero. We can then calculate how many
respondent percent chose a lower response option than “30 to
45” as the cumulative frequency of the second response op-
tion, F(x − 1). Then we add half the percent of respondents
who chose the option “30 to 45”, 1

2 f (x). In other words,
the response option “30 to 45” covers a percentile interval of[
100 · F(x − 1), 100 · F(x)

]
and we choose the middle of that

interval, because we assume that percentiles are uniformly
distributed in each interval. In other words, we applied a
middle-of-percentiles interpolation. As a side note: The
actual formula is more complicated, because equipercentile
equating can also work with non-integer scores. However,
this added layer of complexity is not necessary here.
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Use-case 3: Harmonization between two different close-
ended quantity questions

The percentile function P() in equation 5 allows us to har-
monize close-ended quantity questions towards open -ended
quantity questions. However, if we want to use OSE-RG
to harmonize one close-ended quantity question to another
close-ended quantity question, we also require a new inverted
percentile rank function. Specifically, we need an inverted
percentile function Q−1() that can take arbitrary percentile
ranks and find a corresponding linearly interpolated, “con-
tinuized” response in instrument Y (Kolen & Brennan, 2014).
This is necessary, because the interpolated percentiles for the
responses in X will not perfectly match the percentiles of the
responses of Y .

In Figure 1, the process is explained visually. On the
left side, we see the same process as before: A percentile
function P() transforming a score of instrument x into its
corresponding, interpolated percentile rank of P(1) = 53.
On the right side, we see the new, interpolated inverted per-
centile function Q−1(). With it, we complete the equiper-
centile equating process by transforming the percentiles of
scores in instrument X into their linearly interpolated equiv-
alent scores in instrument Y . A percentile rank of 53, for
example, is transformed into a score in instrument Y of
Q−1(53) = 1.8. The whole process of equipercentile equating
thus is: eqY (1) = Q−1(P(1)

)
= 1.8. Also note how in our

example, instrument X has four interval response options,
while Y has five. OSE-RG can not only harmonize across
instruments with different interval boundaries but also across
instruments with a different number of intervals.

Analytically, the inverted percentile function Q−1() in
equipercentile equating looks like this (Kolen & Brennan,
2014, p. 43):

Q−1(P∗) =
P∗

100 − F(y∗U − 1)
f (y∗U)

+ (y∗U − 0.5) (6)

First, we need to find y∗U , which is the smallest response
option with a cumulative frequency F(y) larger than the per-
centile P∗. This is nothing else than the integer response op-
tion that is closes to the interpolated response that we will
get as a result (e.g., if the result will be a score between
1.5 and 2.5, then y∗U is 2). The formula seems daunting,
but the logic is very straightforward. If y∗U is a response
option in instrument Y , then it covers percentiles in an in-
terval

[
100·F(y∗U − 1), 100·F(y∗U)

]
. Thus, a percentile rank

of 100 · F(y∗U − 1) corresponds to y∗U − 0.5 and a percentile
rank of 100

(
F(y∗U)

)
corresponds to y∗U + 0.5. This allows us

to transform percentiles which do not directly match a spe-
cific response option in Y into decimal response scores. A
response score of Q−1(P∗) = 1.5 would mean that the per-
centile falls halfway between the percentiles of the second
(1) and third (2) response option. Remember, in the formula,
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Figure 1

Equipercentile OSE-RG from one close-ended quantity ques-
tion to another. The figure illustrates on the left how
scores of instrument X are transformed into interpolated
percentiles with P(X) and then how those interpolated per-
centiles are transformed into equated scores of instrument Y
with Q−1(P(X)

)
. The solid lines visualize the transformation

relationship between percentiles and scores. The dots on that
line are the relative frequencies of scores 0, 1, 2 etc. The
dots are placed at the 0.5 boundary between scores, since
the relative frequency of a response option shows the high-
est percentile where respondents still most likely choose that
option: in other words the upper bound of a response option
and not its middle.

scores start at zero, which means 0 is the fist, 1 the second,
and 2 the third response option. Lastly, please note that the
equating process is perfectly symmetrical (Kolen & Brennan,
2014). Transforming scores of X into the format of Y is an
arbitrary choice. We could just as easily transform scores of
Y into the format of X.

3.3 Study design

To validate OSE-RG and show its advantages compared
to MOC, we designed a survey experiment. In an online
access panel, we presented the same quantity question to
respondents, but we randomly varied the response formats.
Specifically, we presented respondents with a total of four
response formats: an open-ended response format, or one of
three different interval response formats. The three interval
quantity response formats were designed so as to induce re-
sponse bias. One interval format emphasized low quantities,
one medium quantities, and one high quantities. This setup
already allows us to demonstrate response bias by compar-
ing the low, medium, and high interval quantity responses
amongst each other as well as to the open-ended responses.

As a quantity to measure, we chose the number of (print
and electronic) books respondents possessed. The number of
books is not very sensitive, which avoids drop-out. We also
wanted to focus on the close-ended quantity question induced
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response bias and not a global socially desirable responding
bias. The number of books is also easily understood but not
trivial to recall or estimate. This ensures conceptual compa-
rability, while leaving room for bias in estimation.

We will first demonstrate response bias to illustrate why
a new approach is necessary. Then we will apply OSE-RG
to harmonize the three close-ended quantity question vari-
ants (low, medium, high) towards the open-ended quantity
question format as a proof of principle. Here, we will also
compare the OSE-RG solutions to the one MOC provides.
Specifically, we aim to show that MOC retains the full re-
sponse bias, whereas OSE-RG mitigates such differences in
bias. Lastly, we will use OSE-RG to transform the low,
medium, and high interval quantity not towards the open-
ended format, but instead into each other. And again, we
compare OSE-RGs performance with that of MOC.

4 Methods

4.1 Participants and procedure

We conducted an online experiment with a nonprobabil-
ity sample recruited via the commercial online access panel
of the respondi AG (Respondi AG, 2022). To ensure demo-
graphic variability we used quotas for sex and age. Please
note that respondents choosing the intersex response option
“divers” were added to the female quota. This is because we
knew from earlier access panel samples that there would be
a negligible number of cases (in this study, three).

To ensure the robustness of our findings derived from a
nonprobability sample, we repeated each of the analyses in
the results section for different subgroups. Regarding sex,
we split the sample into male versus female (discarding the
three intersex respondents). Regarding age, we split the sam-
ple into three age segments: Younger than 30, 30 to 59, and
60 or older. Regarding educational attainment, we split the
sample into respondents with or without higher education
entrance qualification (i.e., with or without “Fachabitur or
Abitur”). Lastly, we split the sample into respondents from
the old or new federal states (formerly West- and East Ger-
many). In the results section, we only report analyses for
the full sample, since the same pattern of results was found
in all subgroups. Of course, the number of books reported
differs between subpopulations, but the relative performance
of the harmonization approaches is the same. We provide the
subgroup analyses as an electronic supplement.

A total of 3497 respondents participated in the experi-
ment. However, since 13 respondents failed to answer the
quantity question, analyses are based on a sample of N =
3484. Of these respondents in our analysis, 49% reported
their sex as female, 51% as male, and three individual re-
spondents reported their sex to be “divers” (i.e., intersex in
the terminology of the German statistics office). The mean
age was 45 years with a standard deviation of 15. Ages

Table 1

Percentiles of responses to the open-ended quantity
question.

Percentile

1th 5th 25th 50th 75th 95th 99th

Books 0 2 30 80 200 1000 2565

ranged from 18 to 87. The sample was highly educated with
54% of respondents reporting some form of higher education
entrance qualification.

Respondents first read the study introduction, including
information about what data we gather and to which purpose.
After giving informed consent, respondents answered demo-
graphic questions about sex, age, education, and which fed-
eral state they live in. Then, respondents answered a question
for another experiment. Specifically, they were asked about
being annoyed by advertisements. Then, respondents were
randomly assigned to one of our quantity question versions.
The online questionnaire continued with other studies, but
we omit describing them because they had no impact on our
experiment. Respondents had completed our experiment af-
ter a median time of 97 seconds with an IQR of 65.

4.2 Quantity questions

We asked respondents about how many books they pos-
sess: “How many books do you possess? We mean both
print books and e-books. Books which you share with other
people in your household are also included.”

Open-ended quantity question

In the open-ended quantity question condition, respon-
dents could answer the question with a text input field: “I
possess [____] books.” The resulting answers exhibited a
long tail of infrequently reported, very high quantities (Table
1). The maximum reported quantity was 6666 (further anal-
ysis of the open-ended response options results can be found
in the appendix). In the results section, we will thus compare
untrimmed and trimmed analyses. Where applicable, we also
explore the median instead of the mean. However, please
note that there is no sure way of knowing which responses
are unrealistic. Some respondents may indeed possess very
many e-books.

Close-ended quantity questions

In the three close-ended quantity question conditions, re-
spondents had four discrete response options to choose from.
Responses started with the highest interval and ended with
the lowest. For example, on the medium quantity condition,
the options were in order: “more than 100”, “51 to 100”, “26
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Figure 2

Boundaries of the close-ended quantity questions

Table 2

Distribution of respondents reporting to own 50
books or less by close-ended quantity question
asked.

Percentage of respondents
Question with ≤ 50 books

Low quantity 45
Medium quantity 41
High quantity 33
Open question 44

to 50”, and “25 or fewer”. Response options were presented
in a vertical layout. Please note that for ease of interpretation,
we have inverted the scores in all following analyses so that
1 represents the lowest quantity interval and 4 the highest. In
Figure 2, we see the interval boundaries of the three interval
quantity conditions at a glance.

Please note that all three conditions intentionally share 50
books as one of their interval boundaries. This allows us to
demonstrate response bias in an intuitive fashion by compar-
ing the portion of respondents who report owning 50 books
or fewer in each condition. Table 2 shows the results includ-
ing a comparison with the open-ended quantity question in
the last row.

We immediately see a striking bias between the close-
ended quantity questions. In the low quantity condition, 11
percentage points more respondents claim to own 50 books
or less compared to the high quantity condition. The medium
quantity condition, meanwhile, is in between. This differ-
ence in percentages must be the result of bias, because re-
spondents were randomly assigned to each condition. Thus,
the true portion of respondents with 50 books or fewer should
not vary between conditions. To quantify the bias analyt-
ically, we calculated Spearman’s rank correlation between
the ordinal close-ended quantity question conditions (low,
medium, high) and a binary variable with 0 representing 50
or fewer reported books and 1 representing more than 50 re-
ported books. The result, ρSpearman = 0.32; p < 0.001, shows
a medium sized effect of the response scale on the number
of reported books. This finding supports our claim that we

cannot interpret the numerical boundaries defined by the re-
sponse option labels verbatim.

4.3 Harmonization procedures

MOC

To perform MOC interpolation, we applied the formulas
reported by Von Hippel et al. (2016). Each interval B (as in
“bin”) has a lower bound lB, an upper bound uB, and is pop-
ulated by nB respondents who chose interval B. The bounds
are verbatim interpretations of the response option labels.
For a given bound, we can calculate its MOC interpolated
value as:

MOC(B) =

 1
2 (lB + uB) if uB,∞

lB
α
α−1 if uB = ∞

(7)

In the latter case, uB = ∞, we have to assume a distribu-
tion shape for the true quantities. We chose a Pareto distribu-
tion, since its cumulative distribution shape fits the empirical
distribution of the open-ended quantity question well. While
the formula is straightforward, it requires us to estimate a
parameter α̂. This is conventionally done by using the last
two bins, i.e., B and B − 1.

α̂ =
ln(nB−1 + nB) − ln(nB)

ln(lB) − ln(lB−1)
(8)

However, the formula often results in unsuitable α esti-
mates with α≤1. This leads to nonsensical MOC results.
An α of one results in undefined values, and α lower than
one result in negative quantities. If we apply the formula to
our empirical example, we do indeed get such unsuitable α
estimations of 0.47, 0.66, and 0.76 for the low, medium, and
high quantity interval conditions. Thus, we follow the advice
of Von Hippel et al. (2016) and use a plausible α of 2. This
would mean that the highest category is interpolated with a
value twice as high as its lower bound. A response option
“50 or more” would be interpolated with 100, for example.

In Figure 3 we illustrated a point that Von Hippel et al.
(2016) also stress: The parameter α and its estimation is cru-
cial for MOC. As values of α approach 1 from above, the esti-
mated quantities for the highest interval rise very quickly. In
the area of α = 2, the value we have chosen, the relationship
between parameter and estimator is less volatile.

Equipercentile OSE-RG

OSE-RG was performed using the equate package (Al-
bano, 2016). We chose the equipercentile equating algo-
rithm, since it is well suited for non-normal distributed
scores. This is crucial for quantities, with their distributions
being compressed on one side by a lower bound of zero and
stretched on the other side in a long tail towards rare but very
high quantities. Note that the equate package uses the same
formulas from Kolen and Brennan (2014), which we summa-
rized in the theory section.
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Figure 3

Effect of choosing different values of α when estimating the midpoint of the highest
response interval using the pareto distribution.

Statistical software

All data transformations and analyses were conducted in
R (R Core Team, 2021)using RStudio (RStudio Team, 2021).
All original datasets were in SPSS format and read into R us-
ing haven (Wickham & Miller, 2021). The tidyverse package
collection (Wickham, 2017) was used for data transformation
and data visualization. Additional packages used for data
manipulation and visualization are broom (Robinson et al.,
2023), knitr (Xie, 2021), viridis (Garnier et al., 2021), Cairo
(Urbanek & Horner, 2021), ggrepel (Slowikowski, 2021) and
kableExtra (Zhu, 2021). Equating was conducted with the
equate package (Albano, 2016).

5 Results

We will first compare the results of OSE-RG and MOC
when harmonizing close-ended quantity questions towards
an open-ended format and evaluate its harmonization perfor-
mance. Then, we will harmonize different close-ended quan-
tity questions amongst each other and evaluate the harmo-
nization performance of OSE-RH and MOC.

5.1 Harmonizing the close-ended quantity question to-
wards the open-ended quantity question

Next, we harmonized the three close-ended quantity
question versions towards the open-ended question format.

Specifically, we interpolated the close-ended quantity ques-
tions with MOC (α = 2) and equated the close-ended quan-
tity questions towards the open-ended question. Figure 4
shows the results graphically.

Each panel shows the harmonized values for one of the
three close-ended quantity question versions: blue plus for
MOC and orange X for OSE-RG. Please note that the y-axes
have different scales. The solid line in green, meanwhile,
are the mean of the open-ended responses in each interval.
For an interval [51, ∞], this means selecting all respon-
dents in the open-ended quantity question condition with at
least 51 books and then calculating the mean. However, the
mean for the open-ended question is susceptible to the in-
fluence of outliers. Thus, the dashed green line shows the
average open-ended quantity response after trimming the top
five percentiles. Lastly, the dotted green line shows the me-
dian open-ended question within each interval. It becomes
clear that both the MOC approach and the OSE-RG approach
work similarly well for the lower three intervals of all three
close-ended quantity questions. Here it also does not matter
whether we aggregate open responses within each interval
with the mean, the trimmed mean, or the median. However,
the solutions deviate considerably for the highest intervals,
which are open to infinity. Both MOC and OSE-RG tend
to underestimate the mean open-ended quantity in the high-
est intervals. This underestimation is reduced but persists
when we trim the mean. When we aggregate open-ended re-
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Figure 4

Harmonized number of books at each response option of the close-ended quantity
questions.

sponses with the median, however, OSE-RG shows an almost
perfect fit. This is unsurprising, because both equipercentile
equating and the median are percentile based methods. If
we compare MOC and OSE-RG, we see that OSE-RG per-
forms better than MOC in two out of three conditions (low
and medium quantity) when estimating the highest interval
across all three approaches to aggregating the open-ended
responses.

Evaluating harmonization performance

However, what does that mean for the overall quality of
our harmonization efforts? To approach this question, we
calculated the mean number of books estimated by MOC and
OSE-RG for each close-ended quantity question condition.
This means we replaced the close-ended response scores
with their OSE-RG and MOC equivalent quantities. Then
we calculated separate arithmetic means of those estimated
quantities for each approach in each condition. We then cal-
culated the difference of this estimated value to the average
quantity measured with the open-ended question. In Figure
5, we see the results in two panels. The transparent trendlines
behind these data points serve to illustrate the broader rela-
tionship across conditions. For better interpretability, we re-
port this difference as a deviation from the open-ended ques-

tion mean in percent. The upper panels show the results for
untrimmed quantities. In the panel below, we again trimmed
responses by removing the top five percentiles. It is impor-
tant to note, that we did not just trim the open-ended ques-
tions, but also the close-ended quantity questions for a fair
comparison.

The Figure illustrates several important points. First, de-
pending on the approach used, the interval response format
and whether or not data was trimmed, deviations can be very
substantial. Harmonizing quantity questions is very sensi-
tive to methodological choices. Second, trimming the data
reduces the differences considerably. This is unsurprising,
given the very long tailed open-ended quantity distribution.
Third, OSE-RG approximated the open-ended quantity ques-
tion mean more closely than MOC, except for the high quan-
tity condition in the untrimmed data. Fourth, the overall
trend-lines illustrate that the estimated mean quantities vary
far more across close-ended quantity question conditions af-
ter MOC interpolation than after OSE-RG equating. This is
consistent with the idea that OSE-RG is less susceptible to
different close-ended quantity question formats than MOC.
However, please recall figure 4 that clearly showed that all
differences are most likely due to the highest intervals only.
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Comparing the approximated mean number of books measured by the close-ended
quantity questions with the mean number of books in the open-ended quantity ques-
tion. The difference to the mean is presented in percent of the mean of the open-
quantity question. A lower absolute value represents a better harmonization. The
analysis is shown with untrimmed data and with data where the top 5% of the data
are trimmed.

6 Harmonizing interval to close-ended quantity
questions

Next, we harmonize two close-ended quantity questions
with each other. Specifically, we will harmonize the low
quantity and high quantity versions towards the medium
quantity version. Harmonizing close-ended quantity ques-
tions with each other using OSE-RG can be easily done.
However, we need to consider the data structure to under-
stand the OSE-RG outcome. In datasets, the different inter-
val categories are represented as integer scores. For example,
in the medium quantity interval condition, [0, 25] is a “1”,
[26, 50] is a “2”, [51, 100] is a “3” and [101,∞) is a “4” in
the dataset. If we harmonize one such close-ended quantity
question towards the format of another close-ended quantity
question, the result becomes interpretable in the format of the
chosen reference instrument. This means the output are dec-
imal equivalents in the format of the integer scores of the ref-
erence instrument. If we apply OSE-RG to then harmonize
the low and high quantity condition responses towards the
medium quantity question, we receive the following trans-
formed values listed in Table 3.

The implications of these transformations become clear
if we plot them. Figure 6 shows the intervals and their rel-
ative positions to each other after OSE-RG harmonization.
Each box represents a response interval in one of the three
close-ended quantity question conditions. In the middle, the
medium quantity intervals, correspond exactly to the integer
scores one to four, because it is the target scale. Left and
right, we have the high and low quantity conditions. Note

Table 3

Numerical equivalents obtained by OSE-RG when harmoniz-
ing the low and high quantity question into the format of the
medium quantity question.

Original OSE-RG towards
Condition Interval score medium quantity

low quantity [0, 10] 1 0.75
[11, 25] 2 1.33
[26, 50] 3 2.19
[51,∞] 4 3.77

high quantity [0, 50] 1 1.29
[51, 100] 2 2.67
[101, 250] 3 3.62
[251,∞] 4 4.21

how OSE-RG assigns different scores to the same verba-
tim interval [51, 100] in the high quantity condition and the
medium quantity condition. This is no mistake, but instead
a correction for the percentile differences introduced by re-
sponse bias.

We compared how well OSE-RG aligns the average quan-
tity as compared to MOC. All three conditions represent ran-
dom samples of the same population. Thus, after harmoniza-
tion, we would expect no mean difference at all, since the
mean true quantity should also be identical across conditions.
Specifically, we transformed the data in all three conditions,
twice. Once with OSE-RG and once with MOC. The we cal-
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Numerical equivalents obtained by OSE-RG when harmo-
nizing the low and high quantity question into the format of
the medium quantity question. The medium quantity values
are untransformed because the medium quantity instrument
serves as the equating reference. The intervals in the boxes
show the associated labels.

culated the mean and standard deviation for every condition
with both approaches. Please note that the MOC results have
to be interpreted in number of books, whereas the OSE-RG
results have to be interpreted in the numerical score format
of the medium quantity reference instrument. To compare
harmonization success across these two diverse outcome for-
mats, we calculate the standardized mean distance Cohen’s d
of the harmonized low and high conditions from the medium
quantity condition. Since Cohen’s d is standardized by the
standard deviation of the medium quantity question, it is
comparable across different units. Note that we use the stan-
dard deviation of the medium quantity reference instrument
to standardize mean differences. Table 4 lists the results.

Note how OSE-RG has aligned both mean and standard
deviation almost perfectly, whereas MOC results in distribu-
tion parameters that vary strongly across conditions. Note
that after MOC interpolation, the low quantity condition
underestimates the mean quantity by d = −0.44 and the
high quantity condition overestimates the mean quantity by
d = 0.91. OSE-RG, in contrast, has a negligible mean bias.
Please also note that the choice of reference instrument did
not change the outcome. If we choose the low quantity con-
dition as our reference, the d mean biases in OSE-RG are
0.00, 0.01, and 0.04 for the low, medium, and high condi-
tions respectively. If we chose the high quantity condition,
the d mean biases in OSE-RG are 0.00, 0.00, and 0.00 for
the low, medium, and high conditions respectively.

7 Discussion

We showed that Observed Score Equating in a Random
Groups Design (OSE-RG) can be used to harmonize mea-
surements of the same quantity but with different response
formats. This includes harmonizing discrete close-ended
quantity questions towards an open-ended quantity question
format as well as harmonizing close-ended quantity ques-
tions amongst each other. We compared this novel approach
to MOC which is commonly used. We found that one of the
advantages of OSE-RG is that it can mitigate response bias
differences between different response formats. We tested
this using four response formats: An open-ended response
format, and three interval response formats emphasizing low,
medium, and high quantities respectively.

Our analyses show that both MOC and OSE-RG do ap-
proximate the open-ended question format. However, the
approximation is only robust for response options with a fi-
nite upper bound. The last interval response options which
are open towards infinity are challenging to estimate. OSE-
RG performed better here than MOC. However, this also de-
pends on the parameters chosen for the MOC distribution. It
should be noted that both approaches underestimate the mean
response to the open-ended question format. However, this
is mainly due to a long tail of very high quantities reported
in the open-ended question. If we truncate data by the top
five percentiles, the harmonization becomes far better. And
if we calculate the median, OSE-RG is an almost perfect fit.
The analyses also demonstrated that OSE-RG was less influ-
enced by the interval response format then MOC. This pat-
tern emerged both when harmonizing close-ended quantity
questions towards an open-ended format and when harmo-
nizing different close-ended quantity questions amongst each
other.

Note that the paper focuses on evaluating OSE-RG, not
MOC. Thus, our examples were designed to draw out poten-
tial advantages of OSE-RG. This should not be taken to im-
ply that MOC or interpolation techniques in general should
be avoided. The main issue with MOC is the choice of dis-
tribution and parameters for estimating the highest response
interval, which is open towards infinity. However, in many
use cases, the distribution shape and its parameters can be
estimated by drawing upon external data sources. Consider
harmonizing a common quantity variable, such as income,
in surveys with random samples of the adult population of
a country. In such cases, we might supply distribution pa-
rameters based on official statistics for that country. And
lastly, the response biases introduced by different response
interval formats only occurs if the survey presented a close-
ended quantity question to respondents. However, many in-
stances of categorical quantity data are the result of data pro-
ducers or archives synthetically binning responses from an
open-ended format into a categorical interval scheme. This
is often done to protect respondents’ anonymity, for example.



HARMONIZING DATA FROM OPEN-ENDED AND CLOSED-ENDED QUANTITY QUESTIONS WITH OBSERVED SCORE EQUATING 189

Table 4

Comparing the results of OSE-RG and MOC harmonization when harmonizing into the
format of the medium quantity question.

Medium quantity reference

Approach Condition Meana Std. Dev. Mean Std. Dev. Diff.

OSE-RG low quantity 2.79 1.16 2.76 1.17 0.03
high quantity 2.76 1.16 2.76 1.17 0.00

MOC low quantity 67.07 39.84 102.53 80.21 −0.44
high quantity 175.32 183.02 102.53 80.21 0.91

a In the case of OSE-RG the target format is the score level (1-4), in the case of MOC it is
the number of books given by the MOC harmonization.

In such cases, different interval formats do not introduce re-
sponse bias. However, other biases such as socially desirable
responding can still be an issue.

OSE-RG, meanwhile proved to be a harmonization ap-
proach at least on par with the more traditional MOC. In fact,
OSE-RG may be less sensitive to interval response formats
than MOC. Although, we stress that differences between the
MOC and OSE-RG solutions only arose in the last response
categories, which were intervals open to infinity. In projects
where the preconditions of OSE-RG can be met (especially
the random groups design), applying OSE-RG is easier than
MOC and introduces fewer researcher degrees of freedom.
After all, we neither have to choose a distribution type nor
tune its parameters. Instead, the percentile-based approach
of equipercentile OSE-RG can approximate any cumulative
distribution shape.

Harmonization with OSE-RG has a straightforward work-
flow:

1. Obtain random samples of the same population for each
differently designed quantity question (for example via split-
ballot experiments, or via existing probability-based survey
samples of the same population in the same timeframe).

2. Define one question as the target question (i.e., the ref-
erence format) and the other(s) as the source question(s).

3. Transform values of the source question(s) in such a
way that the interpolated percentile ranks match across ques-
tions.

4. Derive a recoding table, which lists the original inte-
ger codes of the source question(s) and the corresponding
transformed decimal equivalents in the format of the target
question.

5. Apply that recoding table to recode source question
values in the current dataset or other instances where the
question(s) have been applied. (OSE-RG harmonizes instru-
ments, and not just the current dataset, meaning that the RG
data to perform OSE-RG does not have to be identical to the
datasets we want to harmonize.)

Step three to five can be automated with software (e.g.

the R package equate (Albano, 2016)). The only remaining
entry hurdle of OSE-RG is the random groups design. We
need samples of both instrument variations drawn randomly
from the same population. This seemly restricts OSE-RG
to a small number of use cases, where the data we want
to harmonize happens to adhere to the random groups de-
sign. However, the actual restriction is less severe. OSE-
RG makes a distinction between the equating sample and the
harmonization samples. After all, OSE-RG was conceived to
harmonize two instruments once (using an equating sample)
and then to apply this harmonization result in many other
instances where those two instruments were used. Thus, we
only need some dataset that adheres to the random groups
design. This dataset need not be identical to the data we
want to harmonize for our research. Thus, could collect af-
fordable equating data in a non-probability setting through
experimental variation (as we did). Alternatively, even if our
data of interest does not adhere to the random groups design,
it is quite possible that the instruments were used elsewhere.
Often, instrument designs are taken over from large-scale
survey programs. If those instrument source surveys sam-
ple the same population, we can use their data to equate our
instruments. This might mean using data from two national
surveys, or to use the national subsamples of international
surveys.

If data in a random groups design cannot be obtained with
any of the described approaches, then you might consider
equating approaches that attempt synthesize a common pop-
ulation by taking other variables into account as covariates.
The idea is that if we have access to covariates explaining
the systematic differences between the groups in the source
datasets for both instruments, then we can use the covari-
ates to relate the two instruments to each other (Bränberg &
Wiberg, 2011). These newly emerging approachers are dis-
cussed under the term non-equivalent groups with covariates
(NEC) design in the recent literature. There exist R packages
which can accommodate NEC designs (González & Wiberg,
2017). However, NEC approaches depend on having access
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to relevant covariates (Bränberg & Wiberg, 2011) and intro-
duces new assumptions. Specifically, NEC assumes that the
conditional response distribution given the covariates is the
same in both populations (Wiberg & Bränberg, 2015). In
other words, the covariates have to relate similarly to the in-
struments of interest in both populations. This might pre-
clude the use of NEC in cross-national settings, for example.

7.1 Limitations and future research

We made a first attempt to use OSE-RG as a harmo-
nization approach for manifest quantities, and our proof-of-
principle study was successful in this regard. However, our
findings cannot yet be generalized across all quantities, quan-
tity question designs, and populations. Future research is
certainly necessary to explore the possibility space and en-
sure robustness. As a concrete next step, it might be fruitful
to apply OSE-RG alongside MOC to quantity variables in
existing survey programs which use probability-based sam-
ples. Ideally, this would involve quantities for which detailed
population information exists. Applying OSE-RG in prob-
abilistic data and for quantities where external distribution
information exists also allows us to move beyond mere lin-
ear interpolation within each interval. With a known pop-
ulation distribution, we could instead use this distribution
shape to transform intervals into percentiles and percentiles
back into interpolated interval scores. A related point is to
explore interval quantity schemes with more finely grained
response options. It may well me that MOC performs more
robustly when the intervals, and especially the last category,
get narrower. Lastly, we should extend OSE-RG to quantity
questions using vague, subjective quantifiers, such as “some-
times” or “often”. Here, OSE-RG might be of particular im-
portance because subjective quantifiers preclude the use of
MOC.
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