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Panel surveys provide particularly rich data for implementing adaptive or responsive survey
designs. Paradata and survey data as well as interviewer observations from all previous waves
can be utilized to predict fieldwork outcomes in an ongoing wave. This manuscript contributes
to the literature on how to best make use of these data in an adaptive design framework ap-
plying machine learning algorithms. In a first step, different models were trained based on past
panel waves. In a second step, we assess which model best predicts fieldwork outcomes of the
following wave. Finally, we apply the superior model to predict response propensities and base
case prioritizations of households at risk of attrition on these predictions. An experimental
design allows us to evaluate the effect of these prioritizations on response rates and on non-
response bias. Increasing prepaid respondent incentives from 10 to 20 euros substantially de-
creases attrition of low propensity cases in personal as well as telephone interviews and thereby
helps reduce nonresponse bias in important target variables of the panel survey.
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1 Introduction

Adaptive (Schouten et al., 2017; Wagner, 2008) and re-
sponsive (Groves & Heeringa, 2006) survey designs have be-
come a standard practice during the last decades in order to
achieve more balanced fieldwork outcomes in surveys and re-
duce bias and the variance of nonresponse weights (Peytchev
et al., 2020; Wagner, 2008). While exact definitions vary, at
the core of such designs, we find the use of auxiliary data
to design informed interventions with the goal to affect data
collection costs, data quality or both (compare Chun et al.,
2017).

Adaptive or responsive designs aim at maximizing re-
sponse rates and minimizing bias by specifically target-
ing those with a lower response probability while keeping
the cost for intervention at a reasonable level (Groves &
Heeringa, 2006; Tourangeau et al., 2017; Wagner, 2008).
The success of responsive design strategies depends on the
targeted groups’ favorable reaction to a given intervention
(Groves & Heeringa, 2006) as well as the availability of data
including paradata such as contact information, interviewer
observations or information on target variables on the sam-
pling frame (Couper & Wagner, 2012; Schouten et al., 2013).

Contact information: Mark Trappmann, Institute for Employ-
ment Research (IAB), Regensburger Str. 104, 90478 Nürnberg,
Germany (E-mail: mark.trappmann@iab.de).

Adaptive and responsive designs have focused on various
mechanisms in the survey administration process to increase
response rates and decrease bias focusing either on the re-
spondent or interviewer and changing various aspects of the
survey design like respondent incentives (McGonagle et al.,
2022), question order (Early et al., 2017), survey mode (Ca-
linescu & Schouten, 2015; Coffey et al., 2020) or interviewer
payment (Bergmann & Scherpenzeel, 2020).

As panel attrition is increasing in panel studies around
the world (Williams & Brick, 2018), the potential useful-
ness of adaptive designs in the context of panel surveys is
increasing. Fortunately, panel surveys provide particularly
rich data for implementing adaptive or responsive survey de-
signs (Lynn, 2017; Plewis & Shlomo, 2017). Not only are
data from the current wave fieldwork available, but paradata
and survey data as well as interviewer observations from all
previous waves can be utilized to predict fieldwork outcomes
in an ongoing wave. Their early availability furthermore,
allows for careful planning and modelling of predicted re-
sponse propensity in advance1. In the recent past, this has
been applied to target advance letters (Lynn, 2016), predict
optimal mode (Carpenter, Burton, et al., 2018; Kaminska &

1Lynn rather prefers to use the term “targeted design” if varia-
tion of treatment is between subgroups (identified by such models)
and not over time within a given wave of fieldwork as is the case
in most adaptive and responsive designs. However, one might ar-
gue that such designs are adaptive in the sense that who gets which
treatment can vary across panel waves
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Lynn, 2017), or optimize timing of contact attempts (Kreuter
& Müller, 2015) in a panel survey context.

Another development in the past decades is the use of ma-
chine learning algorithms in survey methodology (Buskirk,
2018; Buskirk et al., 2018; Kern et al., 2019). Previous
work reveals that machine learning might be particularly use-
ful in the context of predicting fieldwork outcomes and re-
sponse propensities (Kern et al., 2019; Kern et al., 2021; Liu,
2020). While statistical methods commonly used for pre-
dicting (non)participation are usually limited to small vari-
able sets and ignore complex patterns of interaction, machine
learning algorithms are able to overcome these limitations
(Zinn & Gnambs, 2022). Although there is a growing body
of literature using these predictions (i.e. in weighting ad-
justments see Lee et al. (2010), overview in Toth and Phipps
(2014)), there has been surprisingly little application to adap-
tive survey designs.

In a panel context Earp et al. (2012), have used response
propensity predictions based on regression trees to allocate
nonresponse followup funds. Early et al. (2017) use learning
algorithms to order questions in an online survey in a way
that maximizes survey completion.

In this article, we combine the two developments: We
use machine learning algorithms in order to select panel
households for prioritization in the 14th wave (2020) of the
German panel study “Labour Market and Social Security”
(PASS). The PASS panel survey (Trappmann et al., 2015) is a
sequential mixed-mode survey of the general population that
oversamples welfare benefit recipients. An adaptive survey
design has until now mainly been implemented for refresh-
ment samples (Trappmann et al., 2015).

In order to select households for prioritization, we first use
data (survey data, paradata, interviewer observations) from
wave 4 to 12 of the panel to train different machine learn-
ing models. In a next step we use the parameters from this
training to predict wave 13 nonresponse. The quality of this
prediction can be assessed and the superior model is used
to finally predict wave 14 nonresponse based on data from
waves 4-13.

These predictions inform an adaptive design experimen-
tally implemented in wave 14. An experimental design al-
lows us to investigate whether case prioritization of low
propensity households in the form of targeted increased re-
spondent incentives decreases attrition rates in these groups
and reduces bias in target variables of the survey.

In the following section, we first give an overview of the
PASS panel study and the variables selected to train sev-
eral machine learning algorithms and finally predict response
propensities (section 2.1). We then explain our approach
how to evaluate performance (section 2.2) and then briefly
introduce the different machine learning algorithms and their
tuning parameters (section 2.3). Then we compare the al-
gorithms on performance statistics from a test dataset (sec-

tion 2.4). Based on these, we pick the optimal algorithm and
describe its results (section 2.5). In the results section, we
first describe the implementation of our adaptive design ex-
periment (section 3.1), then we show effects of the adaptive
design on panel retention rates by survey mode (section 3.2),
before we finally simulate whether bias in target variables
was reduced by the adaptive design (section 3.3). Finally, we
summarize our results and discuss limitations and avenues
for future research (section 4).

2 Data and Methods

2.1 Data

We implemented our experimental design in the 14th wave
(2020) of the German panel study “Labour Market and Social
Security” (PASS2, Bähr et al., 2019; Trappmann et al., 2019).
PASS is a representative large-scale household panel survey
and one of the major German data sources for research on
the labour market, unemployment and poverty dynamics. Es-
tablished by the Institute for Employment Research in 2007,
annual surveys with about 15.000 persons in about 10.000
households are conducted in co-operation with the fieldwork
agency infas.

PASS uses a dual-frame sampling design, which combines
a sample of Germany’s residential population with an over-
sampling of households with Unemployment Benefit II re-
ceipt. Initially a household interview is carried out with the
heads of all selected households. Subsequently, all mem-
bers of the household aged 15 or over are interviewed. PASS
uses a sequential mixed-mode design of computer-assisted
face-to-face interviewing (CAPI) and computer-assisted tele-
phone interviewing (CATI) in order to maximize response
under cost-restrictions and we implemented different experi-
mental designs in both groups (see chapter 4.1 for a detailed
description of the adaptive designs). However, Wave 14
fieldwork, starting in February 2020, was severely affected
by the Covid-19 pandemic. From mid-March on, CAPI in-
terviews were stopped and respondents shifted to CATI (also
see chapter 4.1 for the consequences on our experimental de-
sign strategy).

For the adaptive design, we draw on both, household as
well as individual information. Our unit of analysis is the
head of the household, who is first interviewed on various
household-level information. After completing the house-
hold interview, the head of the household is interviewed
by a person questionnaire which covers a large range of
individual-level information. Our experimental design uses

2Data access to the Scientific Use File (SUF) is provided by
the Research Data Centre (FDZ) of the German Federal Employ-
ment Agency (BA) at the IAB. Additional files not included in the
Scientific Use File like pre-release versions of the data or contact
form data (used for the predictions of outcomes) can be accessed
for replication purposes
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wave 4 to wave 12 for training and validation purposes of
the machine learning algorithms, wave 13 for testing the per-
formance of the different prediction models and wave 14
for the actual experiment and case prioritisation (see figure
1 and chapter 2.2 for a detailed description of the experi-
ment). We use information from the previous waves3 to pre-
dict the probability of dropout/re-participation in the follow-
ing wave.4 Thus, we restrict our analysis to panel cases that
already participated in at least one previous wave.

Selecting appropriate machine learning algorithms that
can handle a large number of variables as well as a large
number of observations allows us to include a large set of
variables in the training and prediction models.

To further improve the data handling, we partially coarsen
the variables. We also extract aggregated information on
missings, for example the total number of variables with
missing values and information on missing values at vari-
ables with a relative high proportion of missing values (more
than 0.5%).

We restrict our set of information on variables that were
consistently asked from wave 4 to wave 13 in the household
or person interviews. From the household interview we use
for example the size and composition of the household, the
household income and whether there are debts or residential
property as well as deprivation and welfare benefit receipt.
On the individual level we use sociodemographic like age
and sex as well as other personal information such as educa-
tion, number of friends, migration background and interview
language, health and satisfaction indicators and employment
status.

However, in order to select households for prioritization,
we do not rely on survey data only, we also use various para-
data from other data sources. First, we enrich the survey data
with contact data from the previous wave. We include the to-
tal number of contact attempts and an indicator for whether
an interview could be conducted.

Second, we use data of a survey answered by the inter-
viewers, which is conducted after a person interview on in-
terviewers’ assessments of how interested respondents have
been during the interview, how reliable the answers were, and
whether respondents had troubles understanding the ques-
tions.

As a third source of paradata we match the interview du-
ration of all previous interviews by using time stamps. All
additional data sources have been linked to the survey data
via household or personal identifier.

We end up with a final number of 74 variables to poten-
tially use as predictors in the prediction models (see Table
A1 in the appendix).

2.2 Machine learning algorithms: Training and valida-
tion approach

Machine learning algorithms can be classified as super-
vised or unsupervised. Supervised learning uses data where
the outcome to building a machine learning model is known,
while at unsupervised learning there is no supervised out-
come. Machine learning algorithms can handle classification
and regression problems, the former having discrete values
(e.g. binary variable) as outcome and the latter real numbers
(James et al., 2023, p. 15). In our study we use supervised
learning for a classification problem.

To train and evaluate machine learning models the existing
data is separated into sets of different use. The training set is
used for learning by fitting the parameters of the model. The
validation set is used to tune the parameters and the test set
is used only to assess the performance of the fully-specified
model. Then the fully-specified model can be applied to new
data to predict the unknown outcome.

In our study, we explore different machine learning algo-
rithms to predict the likelihood of not participating in the next
wave of PASS. Our final goal is to predict the likelihood of
participating for the panel cases in the gross sample of wave
14 of PASS and identify the half with the lowest probability.
Therefore, we use wave 4 to 12 data to train and validate the
models and test the accuracy of the predictions of the several
models at previously unseen test data of wave 13. The model
with the best performance on the wave 13 data is applied to
wave 14 data where the outcome is yet unknown.

To evaluate how useful these algorithms are for the task at
hand we use the results of a single (main effect only) logis-
tic regression as a reference model. This procedure is com-
monly used to estimate the probability of dropouts in sur-
veys (Lepkowski, 2002). To add a variable selection in ad-
vance we also perform an elastic net logit regression (eNet).
Here, other machine learning algorithms can offer advan-
tages because larger sets of variables can be considered and
models and interactions between the variables do not have
to be defined in advance, but are taken into account in a
data-driven manner. We apply various machine learning al-
gorithms: classification trees (CART), k-nearest-neighbour
(kNN), random forest (RF) and gradient boosting machine
(GBM) as well as eXtreme gradient boosting (XGB). The
models are developed using information collected in previ-
ous waves (see section 2.1).

3We always use the information from the previous wave, except
for two variables: 1) Total number of waves participated in, and 2)
proportion of waves participated in since panel entry. Both variables
are aggregated over all past waves.

4We define our outcome variable as follows: All cases with the
AAPOR final disposition code of 1.1. (complete interview) for the
household interview are considered as participation (coded as 0),
all other final disposition codes are considered as non-participation
(coded as 1).
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Figure 1

Timeline for training, testing and application

Before building the models, several preparations steps
need to be done. All missings due to item nonresponse5 are
imputed by a single imputation using multivariate imputation
via chained equations (MICE). In a pre-processing step the
independent variables used in the prediction models are cen-
tered and scaled to improve modelling performance. Since
our outcome (dropout in PASS) is not equally distributed
(81% retention rate), we have to find a way to deal with
this imbalanced data. Due to a disparity in the frequencies
of the observed classes in the data, the models can become
biased towards the majority class prediction (Kuhn & John-
son, 2013, p. 419). There are multiple approaches to ad-
dress class imbalances. One common technique is to sub-
sample the training data, either through up or down sampling
(C. Chen & Breiman, 2004). While the former oversam-
ples the minority class by creating duplicate obser- vations,
the latter undersamples the majority class by removing data
points. Neither of the two approaches is fundamentally bet-
ter in correcting class imbalance. However, since additional
data points are generated during upsampling, this method can
result in longer computing times. Since we train multiple
prediction models we decided to use downsampling.

For each algorithm, in a first step hyperparameters are
tuned within the training data using k-fold cross validation
to improve the estimated performance of the model. One of
the most commonly used resampling methods is k-fold cross-

validation. Here, training data is split randomly in k-folds. In
an iteration process over all k-folds in every iteration k − 1
folds are used to fit the model and the left-out fold to evaluate
the model (Hastie et al., 2009, p. 241). Since different splits
of the data can result in different results we use 3 repeated
10-fold cross-validations. In the tuning step a grid of hyper-
parameter settings is used, where all possible combinations
of the hyperparameter are tried. The best model is chosen
by evaluating which constellation of tuning parameter maxi-
mizes the cross-validated ROC AUC (area under the receiver
operating characteristic curve). Finally, the performance of
the final model is evaluated on the test data.

2.3 Brief introduction to the machine learning algo-
rithms

The following section gives a brief introduction to the ma-
chine learning algorithms we use in our study.

Elastic net logistic regression

In regularization methods, model coefficients are penal-
ized by an additional shrinkage term. This can be used for
specific goals like automatic variable selection or to enhance

5The maximum proportion of item nonresponse is below 5%
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the prediction accuracy of a model. One of the most com-
mon regularization methods is the LASSO, which penalizes
the sum of absolute values of the coefficients. The higher
the penalization term lambda is, the more the coefficients are
shrunk toward zero. In this method some of the coefficients
can become absolute zero and hence the number of relevant
independent variables in the model can be reduced. In con-
trast, the Ridge regression penalizes the sum of the squared
coefficients. Here, the coefficients are also shrunk toward
zero, but never actually become absolute zero. The elastic net
is a more general regularization method which uses a convex
combination of the LASSO and the ridge regularization that
is steered by the parameter alpha (Hastie et al., 2009, p. 661).
Indeed, both methods are included as special cases. If alpha
is equal to 1 the regularization is equivalent to the LASSO
and if alpha is equal to 0 the regularization is equivalent to
the Ridge regression. We obtained the parameters lambda
and alpha by using cross-validation with a final lambda of
0.02 and an alpha of 0.4.

k-nearest neighbours

The k-nearest neighbours (kNN) algorithm is a non-
parametric supervised machine learning algorithm that can
be used to solve both classification and regression problems
(James et al., 2023, p. 39). The algorithm assumes that sim-
ilar data points are close to each other and is tuned by the
parameter k only. This parameter defines how many neigh-
bours are considered to predict the probability of an object.
A massive advantage of this algorithm is its simplicity. It is
not necessary to build a model, nor to tune other parameters
or to make additional assumptions. As a down side, the algo-
rithm is sensitive to the local structure of the data. Although
this simple method is easy to implement, it works well on
many problems. After 3 repeated 10-folds cross-validation
the optimum value for k in our setting was estimated to be
260.

Classification Tree

Classification and regression trees (CART) can be used for
supervised learning to solve either classification or regres-
sion problems (Krzywinski & Altman, 2017; Hastie et al.,
2009, p. 305). A tree recursively divides the feature space
(the set of values of all predictors) into regions (nodes) by
searching for the best split to form the most homogenous
(pure) subregions with respect to the outcome. For classi-
fications trees with categorical outcome node purity can be
measured with the Gini index. Large trees tend to overfit
the training data which could lead to poor performance when
they are applied to new test data. Three common ways to
control the size of trees are the minimum number of observa-
tions per terminal node, the complexity parameter and prun-
ing. The complexity parameter sets the minimum improve-
ment in the model needed at each node. Trees are a powerful

tool to discover meaningful interactions between predictors
even with different scale level. Even if trees are not among
the most successful learners, they are very popular because
they are very intuitive and easy to interpret. Single trees
are the basis for many more advance learning algorithms,
like random forest and gradient tree boosting. These ensem-
ble techniques combine multiple trees which could result in
much better predictions. We decided to tune the complex-
ity parameter cp via cross-validation and ended up with an
optimum value of 0.0012.

Random Forest

Random forest is a tree-based ensemble method to resolve
the overfitting problem of a single tree (Breiman, 2001). En-
semble methods combine simple models into very powerful
models. Other ensemble methods are e.g. boosting or bag-
ging. In random forest, multiple trees (mostly hundreds or
thousands) are grown using different bootstrap samples of
the training data and the results of all trees are combined to
classify objects. To improve the performance of the learner
the correlation among the trees is decreased by only using a
random subset of the predictors at each split. As a downside,
interpretation of multiple trees is hard to impossible (Hastie
et al., 2009, p. 587). To tune the model commonly the num-
ber of grown trees, number of variables randomly sampled as
candidates at each split and the minimal node size are varied.
After tuning the optimum values for 500 grown trees are 10
variables of each split and a minimum of 100 observations
per node.

Boosting

Boosting is an ensemble method that can be applied to
many machine learning methods. In boosting models are
built sequentially by using the information from the previous
models (Berk, 2006). Here, we use two boosting methods:
Gradient Boosting Machine (Friedman, 2001) and eXtreme
Gradient Boosting (T. Chen & Guestrin, 2016). Similar to
random forest both methods base on single trees. In contrast
to random forest, the trees in boosting are not independent
of each other, but build on each other. A central parameter
is the shrinkage parameter lambda which controls at which
rate boosting learns. Beside this, the tree complexity and the
number of boosting iterations can be tuned in both methods.
We also use other algorithm specific tuning parameters.6

Table A2 in the appendix gives an overview of the ma-
chine learning algorithms used and their tuning parameters.

6While in Gradient Boosting Machine we also use the minimum
node size as a tuning parameter, in eXtreme Gradient Boosting we
additionally use the minimum loss reduction, the subsample ratio
of columns, the minimum sum of instance weight and subsample
percentage.
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2.4 Model evaluation

To evaluate the performance of the prediction models on
the test data of wave 13 we use the ROC AUC score. This
statistic looks at the trade-off between the true positive rate
and the false positive rate. This is equivalent to calculating
the rank correlation between predictions and targets. This is
advantageous when a good ranking of predictions is of high
importance. All performance statistics are displayed in Table
1.

When we compare the results of the several models the
main effects logistic regression model serves as the baseline
benchmark. Here, the ROC AUC score is 0.6836, the elastic
net logistic model ROC AUC score is 0.6837. The CART
model has the lowest value, followed by the kNN model. In
comparison to the complex ensemble techniques, the logistic
model performs quite well. The random forest model has the
highest ROC AUC score with 0.6863, followed by the GBM
model.

We also use the balanced accuracy rate (percentage of cor-
rectly classified objects in both classes with equal balanced
weight), the sensitivity rate (true positive rate: the rate of
correctly classified non-respondents) and the specificity rate
(true negative rate: the rate of correctly classified respon-
dents). To calculate these statistics a threshold at which value
of the predicted probability an object is treated as a respon-
dent respectively as a non-respondent has to be chosen. An
optimal threshold with respect to balance between false posi-
tive and true positive rates can be computed.7 Finally, for the
threshold at the median we use the precision (positive pre-
dictive value: number of true positives divided by the total
number of positive predictions). This measure can be used
as an indication of the rate at which incentives are targeted
efficiently.

Regarding the performance statistics at the optimal thresh-
old we prefer models with a good balance at all indicators
rather than those with only high sensitivity or specificity. So,
our main focus is on the balanced accuracy. For all of the
statistics, the higher the numbers, the better the model pre-
dicts the outcomes. At the optimal threshold for the logistic
regression model the balanced accuracy rate is 0.6403, the
sensitivity rate is 0.5347 and the specificity rate is 0.7459.
The accuracy of the model is mostly gained by its high speci-
ficity. Since we are interested in correctly identifying the
non-respondents, this model is not optimal for our purposes.
For the elastic net logistic model the balanced accuracy rate
is 0.6417, the sensitivity rate is 0.6506 and the specificity rate
is 0.6328. Again, the CART and kNN models perform worst,
even so they have a better sensitivity rate than the logistic
regression model. Comparing the three ensemble methods,
GBM has the highest specificity rate (0.6650), XGB the high-
est sensitivity rate (0.6751) and random forest the highest
balanced accuracy (0.6454).

Beside the performance metrics at the optimal threshold,

due to our study specific design to give additional incentives
to the panel cases in the lower half of the participating prob-
ability and our goal to correctly identify the half with the
lowest participation probability, we want to know how many
of the observed non-respondents of wave 13 are assigned to
the low propensity cases. Therefore, we also calculate the
rates with threshold at the median value (which creates equal
sized groups of predicted respondents and non-respondents).
Here, we are interested mostly in the rate of correctly iden-
tified non-respondents (sensitivity rate). A higher number
indicates a better prediction model for our purposes. For the
median value, we also show the precision.

Looking at the performance statistics at the threshold at
the median, we are mostly interested in the sensitivity rate,
since this matches the design of the experiment. For the
logistic model, balanced accuracy rate is 0.6284, sensitivity
rate is 0.7081 and specificity rate is 0.5487. For the elastic
net logistic model, balanced accuracy rate is 0.6253, sensi-
tivity rate is 0.7030 and specificity rate is 0.5475. The XGB
model has the highest balanced accuracy (0.6352) and the
highest sensitivity rate (0.7191). The random forest model
performs similar with a balanced accuracy of 0.6341 and a
sensitivity rate of 0.7174. The models with the highest are
the XGB (0.2726) and the random forest (0.2720).

2.5 Choosing the final model

After comparing the performance statistics of all models
on the test data we have to choose one model to work with
in the following steps. Even if there is not a clear winner in
all aspects, looking at the difference statistics with slightly
better performance in ROC AUC and the balanced accuracy
at the optimal threshold and with similar values at the thresh-
old at median, we decided to use the random forest prediction
model. We rebuild the random forest model with all data of
wave 4 to 13 using the selected tuning parameters to estimate
the participation likelihood of the panel cases in the gross
sample of wave 14.

In random forest it is possible to get the variable impor-
tance of the predictors in use (Hastie et al., 2009, p. 539)
and partial dependence plots (Hastie et al., 2009, p. 369)
to further investigate the results (see Figures A1 and A2 in
the appendix). Applying the random forest model with the
final parameters to the test data the number of contact at-
tempts in the previous wave has the biggest impact. With
more contact attempts in the previous wave higher predicted
probabilities of attrition (PPA) occur. Additionally, the age
of the respondent as well as the duration of the last household
and person interview and the number of previous waves are

7This can be shown in ROC curve plots. In this type of plot the
optimal threshold would be a value on the curve that is closest to
the top-left of the plot with the maximum sum of true-positive and
false-negative values.
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Table 1

Performance statistics in test data

At optimal threshold At threshold at median

Balanced Balanced
ROC accuracy Sensitivity Specificity accuracy Sensitivity Specificity
AUC rate rate rate rate rate rate Precision

Logit 0.6836 0.6403 0.5347 0.7459 0.6284 0.7081 0.5487 0.2684
eNet 0.6837 0.6417 0.6506 0.6328 0.6253 0.7030 0.5475 0.2665
kNN 0.6545 0.6142 0.5981 0.6302 0.6040 0.6658 0.5421 0.2591
CART 0.6413 0.6210 0.6277 0.6142 0.6128 0.6684 0.5572 0.2609
RF 0.6863 0.6454 0.6430 0.6478 0.6341 0.7174 0.5509 0.2720
GBM 0.6833 0.6422 0.6193 0.6650 0.6315 0.7132 0.5499 0.2704
XGB 0.6819 0.6400 0.6751 0.6049 0.6352 0.7191 0.5512 0.2726

important. Higher ages and higher numbers of participated
waves occur with lower PPA while longer durations occur
with higher PPA. Furthermore, variables on the financial and
material situation have a high importance. Higher household
net incomes as well as higher household savings and higher
satisfaction with housing occur with lower PPA. For material
deprivation, we see a u-shaped relationship with the PPA.
Interviewer characteristics like age and experience of the in-
terviewer also have an impact. While the PPA stay relatively
constant over the age till about 60 years, at this point the PPA
increase strongly. Anyway, the PPA decrease with higher ex-
perience of an interviewer. Additionally, the PPA decrease
with higher number of friends and higher satisfaction with
health. Finally, the relationship between the social integra-
tion and the PAA is u-shaped.

3 Results

3.1 Implementation of the adaptive design experiments

Based on the models described above, we implemented
an experimental design in wave 14 (in the year 2020) of
PASS fieldwork. Only households that had responded in
the previous wave (no temporary dropouts, no refreshment
cases) were subject to the experiment. We randomized sep-
arately for addresses initially issued to face-to-face (CAPI)
and to telephone (CATI) mode. Randomization—like re-
sponse propensity estimation—was performed at the level of
households.

First, the panel sample was divided in half at the median
of the predicted response propensities. We denote the upper
50% of the predicted response propensities as “high propen-
sity” and the bottom half as “low propensity” cases. Since,
on average, CAPI cases have a somewhat higher response
propensity, this leads to an unequal distribution of the two
categories across modes: 1421 out of 2306 (62%) CATI cases
were in the low propensity group compared to 1845 out of
4287 (43%) CAPI cases.

All previous wave respondents in high propensity house-
holds in both modes received the general prepaid respondent
incentive of 10 euros per person mailed in advance and inter-
viewers received their usual payment for these cases.

For low propensity cases assigned to CATI mode, the ex-
perimental design was straightforward and consisted of only
two groups. Those 50% (710 cases) who were randomized to
receiving no preferential treatment were assigned to the same
incentive conditions as high propensity cases (885 cases).
The other 50% (711 cases) were assigned to a doubled pre-
paid respondent incentive of 20 euros per person.

For low propensity cases assigned to CAPI mode, a more
complex design was chosen. Not only were respondent in-
centives manipulated in the same way as described for CATI.
In addition, and orthogonal to the respondent incentive ex-
periment, interviewers received an extra premium for a ran-
dom half of the low propensity cases. However, receiving
an extra incentive for part of their workload might lead in-
terviewers to substitute effort from cases without extra remu-
neration to cases with these extra payments. To control for
this, we selected about 20% of the interviewers to a condi-
tion where they never received extra remuneration for any of
their cases. This leads to five experimental groups among
low propensity cases assigned to CAPI, each consisting of
roughly one fifth of this subsample: 1) Cases without any
extra respondent or interviewer incentives within interview-
ers that were randomly selected to never receive extra incen-
tives, 2) Cases without any extra respondent or interviewer
incentives within interviewers with a mixed assignment, 3)
Cases with an extra interviewer incentive only, 4) Cases with
an extra respondent incentive only, 5) Cases with both, an
extra interviewer and respondent incentive. Tables 2 gives an
overview of the experimental groups and their sizes in CAPI
mode.

Due to this experimental design with unequal treatment
probabilities by mode, we will differentiate all results by ini-



250 JONAS BESTE, CORINNA FRODERMAN, MARK TRAPPMANN AND STEFANIE UNGER

Table 2

Experimental groups and their sizes—CAPI mode

Percentages Absolute group sizes

Respondent Incentives: Yes No Total Yes No Total

Interviewer incentive: Yes 18 19 37 342 360 702
Interviewer incentive: No 19 19 38 356 362 718

Interviewer incentive: Never 22 22 425 425
Without Interviewer identification: 3% (N=54), High Propensities: N=2442

tially assigned mode. Note, that by design this initial mode
can be switched during the course of the fieldwork when-
ever target households cannot be contacted or request a mode
switch. Respondent incentives are not affected by mode
switches. Interviewer incentives are only paid in CAPI.

Note also, that the fieldwork of the 2020 panel wave in
which the experiment took place was severely affected by
Covid-19 containment measures. Fieldwork began on Febru-
ary 14th, 2020. On March 16th, 2020 all CAPI interviews
were stopped and all cases with an available telephone num-
ber were shifted to CATI. Until then 1559 households had
been completed in CAPI and 878 in CATI. From then on until
the end of the fieldwork only telephone interviews were con-
ducted. These were mainly conducted by CATI interviewers,
although towards the end of the fieldwork CAPI interview-
ers became involved in telephone interviews as well. Due to
these specific circumstances, we refrain from giving detailed
results for the experiments involving interviewer incentives.
We instead focus our analyses on the effects of respondent
incentives that were unaffected by the circumstances.

Before we turn to the results of our experiments we
demonstrate that our models were able to effectively predict
cases with different response propensities in wave 14. In
Table 3, we show response rates by predicted decile of the
response propensity distribution. The first column labelled
“no incentive” contains only cases without extra incentives
and can thus be compared across the whole distribution. For
CATI, we find a strictly monotonous trend until including
the eighth decile, with response rates in wave 14 rising from
50% in the lowest decile of the predicted response propen-
sity distribution to 93% in the eighth decile. In the ninth
and tenth decile values remain close to this maximum. For
CAPI we observe a similar pattern with wave 14 response
rates rising from 30% in the lowest decile to 86% in the
highest (with a reversal of the strictly monotonous trend only
between deciles 6 and 7).

These results demonstrate that we were able to validly pre-
dict response propensities and to do so particularly well in
the bottom half of the response propensity distribution.

We return to this table later in order to discuss the effec-
tiveness of incentives across response propensity strata.

3.2 Effects of case prioritization by mode

For completeness sake we will first display results for all
experiments including the interviewer incentive experiments
that could only be effective in the first six weeks of the field-
work. We will however, focus our interpretation on the out-
come of the respondent incentives experiment.

Tables 4 shows main effects of the increased incentive for
low propensity cases in CATI. While the response rate for
high propensity cases is 91%, it is much lower for the low
propensity cases. Among the low propensity cases, those
treated with the doubled respondent incentive show a 7 per-
centage point higher response rate (69%) than those who re-
ceived the regular respondent incentive (62%). This differ-
ence is statistically significant at the 5% level.

Table 5 shows slightly higher response rates for the two
groups with increased respondent incentives (66%) com-
pared to the three groups with regular respondent incentives
(62, 64, and 60%). The overall effect of respondent incen-
tives on response rates is 5 percentage points and statistically
significant at the 5% level. The interviewer incentive has no
effect, which was to be expected due to the early ending of
CAPI fieldwork.

We conclude that doubling incentives for low propensity
cases can be an effective strategy in order to raise response
rates among this group. As we only targeted low propensity
cases, we cannot, however, derive whether this additional in-
centive is more effective for them than it would be for high
propensity cases. We can, however, investigate whether the
effect differs across response propensity strata in the lower
half of the distribution. This result is contained in Table
3. This Table shows no clear trend. For CATI the effect is
almost of the same size in the lowest decile (7 percentage
points) as in the third decile (6) while it is largest in the fifth
(12) and smallest in the second decile (2).

A similar pattern emerges for CAPI. Again, the first (3)
and fifth (3) decile show almost no differences and consider-
ably larger effects can be found in the second (7) and fourth
(7) decile. Thus, while the doubled respondent incentive ef-
fectively increases response rates in the whole lower half of
the response propensity distribution, our data show no evi-
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Table 3

Response rates by predicted decile of the response propensity distribution -
CATI and CAPI

CATI CAPI

Respondent incentive: No Yes No Yes

Decile % N % N % N % N

1 50 271 57 263 30 71 33 52
2 62 156 64 149 45 220 52 127
3 67 98 73 104 60 291 65 158
4 74 102 83 99 68 276 75 175
5 77 83 89 96 75 289 78 186
6 88 156 - 82 510 -
7 89 137 - 76 528 -
8 93 135 - 82 531 -
9 90 172 - 84 493 -
10 93 285 - 86 380 -

Table 4

Main effects of increased incentive for low propensity
cases in CATI

Treatment Mean N

High Propensities 90.85 885
Low—with respondent incentive 68.78 711
Low—without respondent incentive 61.54 710

Total 75.02 2306

dence that this is particularly the case for households with
extremely low response propensity.

3.3 Simulation of effects of prioritization on bias

Adaptive designs usually target groups that are otherwise
underrepresented in order to achieve a more balanced out-
come of different groups in the sample and thereby reduce
nonresponse bias.

We try to answer the question whether our adaptive design
reduced nonresponse bias with respect to important target
variables. To this end we first try to reconstruct the counter-
factual situation what the outcome would have been without
the adaptive design elements.

We will then assess a second counterfactual situation,
namely what would have happened, had we applied the adap-
tive design (extra respondent incentives) to all low propen-
sity cases. Our basic assumption is straightforward: We as-
sume that without prioritization the incentivized cases in the
low propensity half would have produced the nonresponse
bias we observed for the non-incentivized cases in the low

propensity half in our sample.
We explain our approach based on the data in Table 6.

This Table refers to household income and to CATI mode.
Starting with the first row, we see that in the complete

CATI sample the mean household income measured in the
wave before (Wave 13) was 2182 euros. Among those that
responded to Wave 14, the average Wave 13 household in-
come was 2347 euros. Thus, there is a nonresponse bias of
substantial size (165 euros) at a response rate of 75%. The
second row shows how these numbers change if we look only
at the high propensity half of the sample. Here, the initial
sample had a mean household income of 2931 euros, while
the mean household income of those who responded is only
marginally larger at 2951 euros at a response rate of 90%.
This indicates that nonresponse bias is only a minor issue
among those with high predicted response propensity. In
row three, we look only at low propensity cases that were
randomized to the group that received no additional incen-
tive and that reflects a fieldwork without an adaptive design.
The average Wave 13 household income in that part of the
sample was 1758 euros. Note, that this is considerably less
than in the high propensity half which shows us how strongly
related response propensity is to household income. Among
those who participated from this part of the sample, the aver-
age wave 13 household income was 1649 euros. Again, this
points to a positive bias of 108 euros at a response rate of
62%. Now, for comparison, we turn to the low propensity
cases that were randomized to be specifically incentivized.
The Wave 13 average income in this part of the sample is
1773 euros. Note, that any baseline differences to the former
group occur by chance only (and are not significant at the
5%-level, though in this case the difference is quite large and
significant at the 10%-level). Among those who responded
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Table 5

Main effects of increased incentive for low propensity cases in CAPI

Treatment Mean N Mean N

High Propensity 81.86 2442

Low—respondent and interviewer incentive 66.37 342 66.33 698Low—respondent incentive only 66.29 356

Low—interviewer incentive only 61.94 360
Low—neither respondent nor interviewer incentive 63.81 362 61.03 1147
Low—never 57.88 425

Total 73.76 4287 63.03 1845

Table 6

Stepwise simulation of hypothetical outcomes under no prioritization (row 5) and under prioritization of all low
propensity cases (row 6)

Mean household income

Gross Realized
sample sample Nonresponse Gross Net Response
wave 14 wave 14 bias sample sample rate
e e e N N %

1. Total sample 2182 2347 165 2306 1730 75

2. High propensity 2931 2951 20 885 804 91
cases only

3. Non-incentivized low 1649 1758 108 710 437 62
propensity cases only

4. Incentivized low 1773 1868 95 711 489 69
propensity cases only

5. Hypothetical outcomes if no 2182 2362 179 - - -
one had been incentivized

6. Hypothetical outcome if 2182 2323 141 - - -
all had been incentivized

from that part of the sample, the average household income
is 1868 euros. The bias is at 95 euros at a response rate of
69%. This nicely demonstrates the two components of the
adaptive design that ideally work together to decrease bias.
In the low propensity group that received additional incen-
tives nonresponse bias (95 euros) is somewhat lower than in
the low propensity group that received no additional incen-
tives (108 euros). But what is more important is that the
incentive brings more of these low propensity cases (69%
vs. 62%) into the final mix which helps reduce the bias that
would otherwise be present.

We have chosen an example with a rather large chance
baseline difference (1649 vs 1773 euros; significant at the
10%-level) in order to motivate why it is not adequate to

simply compare average income among respondents for both
groups (1758 vs. 1868).

To estimate the composite effect of these two mechanisms,
we will construct the following counterfactual situations:

For the hypothetical case that no one would have been pri-
oritized we add the result in the high propensity half to that of
the non-prioritized low propensity half. Finally, we assume
that the prioritized low propensity half would have produced
the same bias and response rate as the non-prioritized low
propensity half. Weighing all these hypothetical outcomes
by their respective gross sample sizes and expected realized
sample sizes (given the group specific response rate), we get
equation (1) for the hypothetical outcome if no case was pri-
oritized:
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˜̄xNI =

(
x̄High · nHigh

+ (x̄Low, NI − X̄Low, NI) · nLow, NI

+
(
X̄Low., I + (x̄Low, NI − X̄Low, NI)

)
· NLow, I ·

nLow, NI

NLow, I

)
÷

(
nHigh + nLow, NI +

NLow, I · nLow, NI

NLow, NI

)
,

(1)

with upper case variables refer to the gross samples, lower
case variables refer to the realized sample, and “I” and “NI”
refer to icentivized and not icentivized samples. “High” and
“Low” stand for high and low propensity cases. Thus:

nHigh Number of realized high propensity cases;

NHigh Size of gross sample of high propensity cases;

nLow, NI Number of realized non-incentivized low propensity
cases;

NLow, NI Size of gross sample of non-incentivized low propen-
sity cases;

nLow,I Number of realized incentivized low propensity cases;

NLow, I Size of gross sample of incentivized low propensity
cases;

x̄High Mean of variable x in high propensity realized sample;

X̄High Mean of variable x in high propensity gross sample;

x̄Low, NI Mean of variable x in non-incentivized low propensity
realized sample;

X̄Low, NI Mean of variable x in non-incentivized low propensity
gross sample;

x̄Low,I Mean of variable x in incentivized low propensity re-
alized sample;

X̄Low, I Mean of variable x in incentivized low propensity
gross sample.

For the hypothetical case that all cases in the low propen-
sity half would have been prioritized, we add the result in the
high propensity half to that of the prioritized low propensity
half. Finally, we assume that the non-prioritized low propen-
sity half would have produced the same bias and response
rate as the prioritized low propensity half, leading to equa-
tion (2)

X̃I =

(
(x̄High · nHigh) + (x̄Low,I − X̄Low, I) · nLow,i

)
+

( (
X̄Low, NI + ( ˜̄xI − X̄)

)
·

NLow, NI · nLow,I

nLow, I

)
÷

(
nHigh + nLow, I +

NLow, NI · nLow,I

NLow, I

) (2)

Our fieldwork that used prioritization in only a random
half of all low propensity cases resulted in a nonresponse
bias of 165 euros for household income. Had we applied no
prioritization it would have been at 179 euros. While prior-
itizing all low propensity cases would lead to a bias of 140
euros.

Tables A3a to A3g in the appendix contain corresponding
results and simulation for CATI other target variables, while
Tables A4a to A4g contain results for the same variables for
CAPI.

Apart from the one example we described in detail, we
limit ourselves to summarizing the effects of case prioritiza-
tion on simulated bias by mode for a set of variables that were
measured in the previous wave and that have been found in
the past to be candidates for nonresponse bias: These vari-
ables are household income, household size, age, having
been born in Germany, satisfaction with the living standard,
number of close friends, self-rated social inclusion and health
satisfaction.

For most of these variables, household income, household
size, age, having been born in Germany, satisfaction with
living standard, we find significant differences between re-
spondents and non-respondents before case prioritization in
both modes. In addition, we find significant differences be-
tween respondents and non-respondents before prioritization
for self-rated social inclusion for CATI.

Out of these variables, we find in CATI that a full case
prioritization would have the potential to decrease bias for
household income (-22%), age (-28%), satisfaction with the
living standard (-20%), social inclusion (-47%), and being
born in Germany (-19%). On the downside, bias is increased
for household size (+56%).

For CAPI, we find that a full case prioritization would
have the potential to decrease bias for age (-25%), household
size (-79%), and being born in Germany (-29%). Bias is in-
creased for household income (+2%) and satisfaction with
the living standard (+64%).

In summary, case prioritization reduces bias for eight vari-
ables, while it unintentionally increases bias for three vari-
ables.

4 Summary and Discussion

We have demonstrated in this article how machine learn-
ing algorithms can be used to inform adaptive survey design
in the context of a panel survey. Training different algorithms
on twelve prior waves of data collection and using wave 13
fieldwork outcomes as test data, we identified Random For-
est (with 500 trees, minimum 100 objects in each node and
10 randomly selected variables at each split) as the algorithm
that performed best at predicting future fieldwork outcomes
of households from survey and paradata of past panel waves.

In wave 14 of the mixed-mode (CATI/CAPI) PASS panel
survey, we implemented an adaptive design experimentally.
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About half of the households estimated to be low propensity,
were extra incentivized with a 20 euros prepaid incentive
instead of 10 euros. We could demonstrate that this incen-
tive increased response rates for low propensity cases sig-
nificantly by more than 7% in CATI and more than 5% in
CAPI. We find no systematic differences of this effect size
within the low propensity half between the cases with the
lowest response rate and cases with response rates close to
the median.

We could show that by shifting response rates of house-
holds with a low predicted response propensity upwards we
are able to moderately reduce nonresponse bias with respect
to target variables of the survey like household income, age,
social inclusion and being born in Germany.

While these results are encouraging and the survey man-
agers of PASS have decided to utilize the adaptive design
without the experimental evaluation in future waves of PASS,
there remain some limitations and open questions for future
research.

Several limitations apply to this research. The onset of the
Covid-19-pandemic in Germany and the first strict lockdown
fell into the second month of fieldwork and had a strong in-
fluence on the CAPI-fieldwork in the 2020 PASS wave in-
cluding switches to telephone interviews for all cases that
had not been interviewed within the first month of fieldwork.
This limits the generalizability of the findings that are based
on outcomes from that wave.

The overall retention rate for cases with previous wave
interviews was at an all time low in wave 14, although we
consider it quite acceptable at 74% given the extreme dis-
ruptions. Furthermore, while panel retention used to be
larger in CAPI than CATI in previous waves, it was the
other way around in wave 14 due to the unrequested mode-
switches from CAPI to CATI after the first month. However,
while overall turnout might have been different, especially
for CAPI cases, the experimental and control groups are af-
fected in the same way by all these disruptions.

Unfortunately, we also could not evaluate the second ex-
periment in which we promised interviewer premiums for
successful CAPI interviewers in low propensity households
due to the early ending of CAPI fieldwork.

Another limitation is that—as our focus was on prioriti-
zation of low propensity households in an adaptive design
framework—we cannot evaluate whether the extra incentives
would have been as helpful in increasing response rates in the
high propensity half as in the low propensity half. It seems
likely however, that there would have been ceiling effects that
would at least for CATI have prohibited increases of 7% from
a baseline of 91%.

One should also note that model selection was based
on the quality of predictions for one specific wave (Wave
13). The selected parameters that were optimal in the pre-
pandemic world, might not have been an optimal choice for

data collection during a pandemic. In future research, this
might be addressed by including a temporal cross-validation
in the model selection which uses multiple time points for
model evaluation and model selection.

A promising avenue for future research would be a more
sophisticated adaptive design in which response propensities
are estimated based on past waves but then updated in the
light of paradata from the ongoing wave fieldwork (Schouten
et al., 2018). This could be a useful strategy to specifically
target those groups with increased incentives that though
their predicted response propensity was initially high show
indications of a lower expected outcome in the paradata of
the ongoing fieldwork. Given findings that events between
waves can cause panel attrition (Trappmann et al., 2015),
households who exhibit such a drop in expected response
propensity might be likely candidates for households with
changes with respect to important substantial variables (e.g.
(un)employment, family status), that might be of special im-
portance to keep estimates of change unbiased.

We also left the question for future research if other strate-
gies than increased respondent incentives—like interviewer
premiums, call schedules, targeted information—could suc-
cessfully be used instead of or in combination with increased
financial incentives to better fulfil the important task of keep-
ing panel cases with a relatively low predicted response
propensity in a long-running panel.
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Appendix A
Tables

Table A1

Variables potentially used as predictors in the prediction models

Label Scaling Data source

Mode of household interview Categorical Household interview
Language of household interview Categorical Household interview
Federal state, generated Categorical Household interview
Type of renting? Categorical Household interview
Size of household Metric Household interview
Deprivation index Metric Household interview
Receipt social security benefit/pension supplement for old age Binary Household interview
Receipt care allowance Binary Household interview
Receipt payments from other person Binary Household interview
Household is paying other person Binary Household interview
Household income (in EUR) Metric Household interview
Savings of HH (in EUR) Categorical Household interview
Total amount of debts (in EUR) Categorical Household interview
Income from letting and leasing Binary Household interview
Other income from estate Binary Household interview
Child under age 4 in HH Binary Household interview
Child under age 15 in HH Binary Household interview
Current Unemployment Benefit II receipt in HH Binary Household interview
Move since prewave Binary Household interview
Sex of interviewee Categorical Person interview
Age Metric Person interview
Member of a religious community Binary Person interview
Marital status Categorical Person interview
Satisfaction with health Metric Person interview
Satisfaction with housing Metric Person interview
Satisfaction with standard of living Metric Person interview
Social integration Metric Person interview
Social position: Top-bottom-scale Metric Person interview
Satisfaction with one’s life in general Metric Person interview
Student at school or university/apprentice? Categorical Person interview
Employed: Mini-job (marginal employment)? Binary Person interview
Receipt payments from statutory pension insurance? Binary Person interview
Receipt of private/company pension? Binary Person interview
Close friends/family members outside household Binary Person interview
Number of close friends/family members outside household Metric Person interview
Actively engaged in: Union Binary Person interview
Actively engaged in: Political party Binary Person interview
Actively engaged in: Church community Binary Person interview
Actively engaged in: Clubs such as music/sport/culture clubs Binary Person interview
Actively engaged in: Another organization Binary Person interview

Continues on next page
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Continued from last page

Label Scaling Data source

Number of doctor’s visit, last three months Metric Person interview
Officially recognised disabilities? Categorical Person interview
Other serious health restrictions Binary Person interview
Type of health insurance Categorical Person interview
Indicator: Provide care for relatives/friends on regular basis? Binary Person interview
Born in Germany? Binary Person interview
Own child under 18 years in household Binary Person interview
Highest school qualification Categorical Person interview
Highest vocational qualification Categorical Person interview
Current occupation (>450 EUR) Binary Person interview
Current unemployment Binary Person interview
(Un)married/ registered partner in household? Binary Person interview
Record linkage consent Binary Person interview
Duration interview (household questionnaire) Metric Household interview
Duration interview (person questionnaire) Metric Person interview
Total number of waves participated in Metric Household register
Proportion of waves participated in since panel entry Metric Household register
Sample affiliation Categorical Contact data
Number of contacts until household interview was realized Metric Contact data
Total number of variables with missing values Metric Household/Person

interview
Missing: Deprivation - From medical insurance not reimbursed
treatments?

Binary Household interview

Missing: Deprivation - Pay rent on time? Binary Household interview
Missing: Household income (in EUR) Binary Household interview
Missing: Savings of household (in EUR) Binary Household interview
Missing: Total amount of debts (in EUR) Binary Household interview
Missing: Social position - Top-bottom-scale Binary Person interview
How interesting was the interview for the respondent? Binary Interviewer survey
How good did the respondent understand the questions all in all? Binary Interviewer survey
How reliable appear the answers of the respondent all in all? Binary Interviewer survey
Any difficulties in answering certain questions? Binary Interviewer survey
Interviewer: Sex Binary Interviewer survey
Interviewer: Work experience as an interviewer in years Metric Interviewer survey
Interviewer: Highest school-leaving certificate Categorical Interviewer survey
Interviewer: Age Metric Interviewer survey
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Table A2

Machine learning algorithms and tuning parameters used

Algorithm Tuning parameter Tuning grid

Elastic Net logistic regression (eNet) Amount of regularization (lambda) 0(0.01)0.2
Weight of L1 and L2 penalties (alpha) 0(0.1)1

k-Nearest-Neighbours (kNN) Number of neighbours considered (k) 20(20)400
Classification and regression tree (CART) Complexity Parameter (cp) 0.0008(0.0001)0.02
Random Forest (RF) Number of variables to possibly split at

in each node
6, 8, 10, 12, 14, 16, 20, 30

Minimal node size 30, 50, 100, 150, 200, 300, 500
Gradient Boosting Machine (GBM) Number of Boosting Iterations 200, 300, 400, 500, 600

Complexity of the tree 1, 2, 3, 4
Learning rate (Shrinkage) 0.02, 0.04, 0.06, 0.08
Minimal Node Size 100, 150, 200, 300, 400

eXtreme Gradient Boosting (XGB) Number of Boosting Iterations 100, 200, 300
Complexity of the tree 1, 2, 3
Learning rate (Shrinkage) 0.02, 0.05, 0.1
Minimum Loss Reduction 0, 0.5, 1
Subsample Ratio of Columns 0.4, 0.6, 0.8
Minimum Sum of Instance Weight 1, 2
Subsample Percentage 0.8, 1

Table A3

Stepwise simulation of hypothetical outcome for variable household size under no prioritization (row 5) and under prioritiza-
tion of all low propensity cases (row 6)—CATI

1. 2. 3. 4. 5. 6.

Share/mean Share/mean Number of Number of
in gross in realized Nonresponse observations observations
sample sample bias in in gross in net Response

Household size wave 14 wave 14 wave 14 sample sample rate

1. Total sample 2.35 2.28 −0.063 2306 1730 0.75
2. High propensity

cases only 2.00 1.98 −0.016 885 804 0.91
3. Non-incentivized low

propensity cases only 2.52 2.54 0.023 710 437 0.62
4. Incentivized low

propensity cases only 2.61 2.56 −0.058 711 489 0.69
5. Hypothetical outcomes if no

one had been incentivized 2.35 2.30 −0.050
6. Hypothetical outcome if

all had been incentivized 2.35 2.27 −0.078
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Table A4

Stepwise simulation of hypothetical outcome for variable age under no prioritization (row 5) and under prioritization of all
low propensity cases (row 6) - CATI

1. 2. 3. 4. 5. 6.

Share/mean Share/mean Number of Number of
in gross in realized Nonresponse observations observations
sample sample bias in in gross in net Response

Age wave 14 wave 14 wave 14 sample sample rate

1. Total sample 43.79 45.60 1.810 2306 1730 0.75
2. High propensity

cases only 52.69 52.66 −0.030 885 804 0.91
3. Non-incentivized low

propensity cases only 38.07 39.52 1.448 710 437 0.62
4. Incentivized low

propensity cases only 38.42 39.43 1.003 711 489 0.69
5. Hypothetical outcomes if no

one had been incentivized 43.79 45.90 2.115
6. Hypothetical outcome if

all had been incentivized 43.79 45.30 1.513

Table A5

Stepwise simulation of hypothetical outcome for variable born in Germany under no prioritization (row 5) and under prioriti-
zation of all low propensity cases (row 6) - CATI

1. 2. 3. 4. 5. 6.

Share/mean Share/mean Number of Number of
in gross in realized Nonresponse observations observations
sample sample bias in in gross in net Response

Born in Germany wave 14 wave 14 wave 14 sample sample rate

1. Total sample 0.63 0.70 0.073 2306 1730 0.75
2. High propensity

cases only 0.95 0.95 −0.002 885 804 0.91
3. Non-incentivized low

propensity cases only 0.42 0.48 0.062 710 437 0.62
4. Incentivized low

propensity cases only 0.44 0.50 0.057 711 489 0.69
5. Hypothetical outcomes if no

one had been incentivized 0.63 0.71 0.081
6. Hypothetical outcome if

all had been incentivized 0.63 0.70 0.065
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Table A6

Stepwise simulation of hypothetical outcome for variable satisfaction with the living standard under no prioritization (row 5)
and under prioritization of all low propensity cases (row 6) - CATI

1. 2. 3. 4. 5. 6.

Share/mean Share/mean Number of Number of
in gross in realized Nonresponse observations observations

Satisfaction with sample sample bias in in gross in net Response
the living standard wave 14 wave 14 wave 14 sample sample rate

1. Total sample 6.70 6.86 0.165 2306 1730 0.75
2. High propensity

cases only 7.19 7.21 0.014 885 804 0.91
3. Non-incentivized low

propensity cases only 6.30 6.49 0.187 710 437 0.62
4. Incentivized low

propensity cases only 6.48 6.63 0.154 711 489 0.69
5. Hypothetical outcomes if no

one had been incentivized 6.70 6.88 0.180
6. Hypothetical outcome if

all had been incentivized 6.70 6.84 0.145

Table A7

Stepwise simulation of hypothetical outcome for variable number of close friends under no prioritization (row 5) and under
prioritization of all low propensity cases (row 6) - CATI

1. 2. 3. 4. 5. 6.

Share/mean Share/mean Number of Number of
in gross in realized Nonresponse observations observations
sample sample bias in in gross in net Response

Number of close friends wave 14 wave 14 wave 14 sample sample rate

1. Total sample 7.76 7.86 0.098 2306 1730 0.75
2. High propensity

cases only 7.39 7.47 0.081 885 804 0.91
3. Non-incentivized low

propensity cases only 8.19 8.28 0.098 710 437 0.62
4. Incentivized low

propensity cases only 7.80 8.12 0.319 711 489 0.69
5. Hypothetical outcomes if no

one had been incentivized 7.76 7.79 0.033
6. Hypothetical outcome if

all had been incentivized 7.76 7.93 0.172
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Table A8

Stepwise simulation of hypothetical outcome for variable self-rated social inclusion under no prioritization (row 5) and under
prioritization of all low propensity cases (row 6) - CATI

1. 2. 3. 4. 5. 6.

Share/mean Share/mean Number of Number of
in gross in realized Nonresponse observations observations

Self-rated social sample sample bias in in gross in net Response
inclusion wave 14 wave 14 wave 14 sample sample rate

1. Total sample 6.99 7.11 0.116 2306 1730 0.75
2. High propensity

cases only 7.27 7.25 −0.019 885 804 0.91
3. Non-incentivized low

propensity cases only 6.82 7.05 0.232 710 437 0.62
4. Incentivized low

propensity cases only 6.83 6.94 0.110 711 489 0.69
5. Hypothetical outcomes if no

one had been incentivized 6.99 7.15 0.153
6. Hypothetical outcome if

all had been incentivized 6.99 7.07 0.080

Table A9

Stepwise simulation of hypothetical outcome for variable health satisfaction under no prioritization (row 5) and under priori-
tization of all low propensity cases (row 6) - CATI

1. 2. 3. 4. 5. 6.

Share/mean Share/mean Number of Number of
in gross in realized Nonresponse observations observations
sample sample bias in in gross in net Response

Health satisfaction wave 14 wave 14 wave 14 sample sample rate

1. Total sample 6.82 6.76 −0.067 2306 1730 0.75
2. High propensity

cases only 6.38 6.40 0.025 885 804 0.91
3. Non-incentivized low

propensity cases only 7.12 7.22 0.102 710 437 0.62
4. Incentivized low

propensity cases only 7.09 6.93 −0.160 711 489 0.69
5. Hypothetical outcomes if no

one had been incentivized 6.82 6.82 −0.004
6. Hypothetical outcome if

all had been incentivized 6.82 6.70 −0.125
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Table A10

Stepwise simulation of hypothetical outcome for variable household size under no prioritization (row 5) and under prioritiza-
tion of all low propensity cases (row 6) - CAPI

1. 2. 3. 4. 5. 6.

Share/mean Share/mean Number of Number of
in gross in realized Nonresponse observations observations
sample sample bias in in gross in net Response

Household size wave 14 wave 14 wave 14 sample sample rate

1. Total sample 2.17 2.13 −0.046 4287 3162 0.74
2. High propensity

cases only 2.10 2.11 0.010 2442 1999 0.82
3. Non-incentivized low

propensity cases only 2.30 2.14 −0.163 1147 700 0.61
4. Incentivized low

propensity cases only 2.23 2.20 −0.028 698 463 0.66
5. Hypothetical outcomes if no

one had been incentivized 2.17 2.11 −0.065
6. Hypothetical outcome if

all had been incentivized 2.17 2.16 −0.014

Table A11

Stepwise simulation of hypothetical outcome for variable age under no prioritization (row 5) and under prioritization of all
low propensity cases (row 6) - CAPI

1. 2. 3. 4. 5. 6.

Share/mean Share/mean Number of Number of
in gross in realized Nonresponse observations observations
sample sample bias in in gross in net Response

Age wave 14 wave 14 wave 14 sample sample rate

1. Total sample 43.89 44.83 0.940 4287 3162 0.74
2. High propensity

cases only 49.45 49.35 −0.107 2442 1999 0.82
3. Non-incentivized low

propensity cases only 36.60 37.16 0.567 1147 700 0.61
4. Incentivized low

propensity cases only 36.40 36.90 0.507 698 463 0.66
5. Hypothetical outcomes if no

one had been incentivized 43.89 44.93 1.042
6. Hypothetical outcome if

all had been incentivized 43.89 44.67 0.781
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Table A12

Stepwise simulation of hypothetical outcome for variable born in Germany under no prioritization (row 5) and under prioriti-
zation of all low propensity cases (row 6) - CAPI

1. 2. 3. 4. 5. 6.

Share/mean Share/mean Number of Number of
in gross in realized Nonresponse observations observations
sample sample bias in in gross in net Response

Born in Germany wave 14 wave 14 wave 14 sample sample rate

1. Total sample 0.78 0.83 0.043 4287 3162 0.74
2. High propensity

cases only 0.93 0.92 −0.001 2442 1999 0.82
3. Non-incentivized low

propensity cases only 0.59 0.66 0.073 1147 700 0.61
4. Incentivized low

propensity cases only 0.60 0.65 0.049 698 463 0.66
5. Hypothetical outcomes if no

one had been incentivized 0.78 0.83 0.049
6. Hypothetical outcome if

all had been incentivized 0.78 0.82 0.035

Table A13

Stepwise simulation of hypothetical outcome for variable satisfaction with the living standard under no prioritization (row 5)
and under prioritization of all low propensity cases (row 6) - CAPI

1. 2. 3. 4. 5. 6.

Share/mean Share/mean Number of Number of
in gross in realized Nonresponse observations observations

Satisfaction with sample sample bias in in gross in net Response
the living standard wave 14 wave 14 wave 14 sample sample rate

1. Total sample 6.83 6.92 0.090 4287 3162 0.74
2. High propensity

cases only 7.06 7.11 0.049 2442 1999 0.82
3. Non-incentivized low

propensity cases only 6.59 6.61 0.016 1147 700 0.61
4. Incentivized low

propensity cases only 6.44 6.60 0.167 698 463 0.66
5. Hypothetical outcomes if no

one had been incentivized 6.83 6.90 0.073
6. Hypothetical outcome if

all had been incentivized 6.83 6.95 0.120
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Table A14

Stepwise simulation of hypothetical outcome for variable number of close friends under no prioritization (row 5) and under
prioritization of all low propensity cases (row 6) - CAPI

1. 2. 3. 4. 5. 6.

Share/mean Share/mean Number of Number of
in gross in realized Nonresponse observations observations
sample sample bias in in gross in net Response

Number of close friends wave 14 wave 14 wave 14 sample sample rate

1. Total sample 6.91 6.80 −0.101 4287 3162 0.74
2. High propensity

cases only 6.88 6.84 −0.040 2442 1999 0.82
3. Non-incentivized low

propensity cases only 6.97 6.64 −0.324 1147 700 0.61
4. Incentivized low

propensity cases only 6.89 6.89 0.003 698 463 0.66
5. Hypothetical outcomes if no

one had been incentivized 6.91 6.76 0.147
6. Hypothetical outcome if

all had been incentivized 6.91 6.88 −0.027

Table A15

Stepwise simulation of hypothetical outcome for variable self-rated social inclusion under no prioritization (row 5) and under
prioritization of all low propensity cases (row 6) - CAPI

1. 2. 3. 4. 5. 6.

Share/mean Share/mean Number of Number of
in gross in realized Nonresponse observations observations

Self-rated social sample sample bias in in gross in net Response
inclusion wave 14 wave 14 wave 14 sample sample rate

1. Total sample 6.94 6.99 0.048 4287 3162 0.74
2. High propensity

cases only 7.09 7.08 −0.008 2442 1999 0.82
3. Non-incentivized low

propensity cases only 6.76 6.79 0.038 1147 700 0.61
4. Incentivized low

propensity cases only 6.73 6.90 0.173 698 463 0.66
5. Hypothetical outcomes if no

one had been incentivized 6.94 6.97 0.030
6. Hypothetical outcome if

all had been incentivized 6.94 7.02 0.076
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Table A16

Stepwise simulation of hypothetical outcome for variable health satisfaction under no prioritization (row 5) and under priori-
tization of all low propensity cases (row 6) - CAPI

1. 2. 3. 4. 5. 6.

Share/mean Share/mean Number of Number of
in gross in realized Nonresponse observations observations
sample sample bias in in gross in net Response

Health satisfaction wave 14 wave 14 wave 14 sample sample rate

1. Total sample 6.61 6.55 −0.057 4287 3162 0.74
2. High propensity

cases only 6.32 6.35 0.030 2442 1999 0.82
3. Non-incentivized low

propensity cases only 7.03 6.93 −0.096 1147 700 0.61
4. Incentivized low

propensity cases only 6.92 6.83 −0.087 698 463 0.66
5. Hypothetical outcomes if no

one had been incentivized 6.61 6.55 −0.062
6. Hypothetical outcome if

all had been incentivized 6.61 6.56 −0.048
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Appendix B
Figures
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Figure B1

Variable importance of the 15 most important variables
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Figure B2

Partial dependence plots for important variables


	Introduction
	Data and Methods
	Data
	Machine learning algorithms: Training and validation approach
	Brief introduction to the machine learning algorithms
	Elastic net logistic regression
	k-nearest neighbours
	Classification Tree
	Random Forest
	Boosting

	Model evaluation
	Choosing the final model

	Results
	Implementation of the adaptive design experiments
	Effects of case prioritization by mode
	Simulation of effects of prioritization on bias

	Summary and Discussion

