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This paper presents a total survey error model that simultaneously treats sampling error, non-
response error and measurement error. The main aim for developing the model is to determine
the optimal allocation of the available resources for the total survey error reduction. More
precisely, the paper is concerned with obtaining the best possible accuracy in survey estimate
through an overall economic balance between sampling and nonsampling error.
Keywords: Sampling error, nonsampling error, nonresponse error, measurement error, total
survey error model, cost model, total survey design.

Introduction

By “error in survey results” it is meant the difference be-
tween the survey estimate and the value to be estimated. Er-
ror in survey estimates is traditionally divided into two ma-
jor categories: sampling error and nonsampling error. Sam-
pling error occurs because only part of an entire population
is studied: data are collected from a sample to draw conclu-
sions about the population. Nonsampling error encompasses
all other factors that contribute to the total error of a sample
survey estimate, arising from deficiencies or mistakes in the
survey process. This error source may also be present in cen-
suses and may occur because of nonresponse, errors in sam-
pling frame, mistakes in recording and coding of data, and
other errors of collection, response and processing. Thus,
sampling error measured by the sampling variance represents
just the lower bound of the total error, achieved under the
rather idealistic assumption that each sample unit gives the
requested information without errors. As a consequence, a
relative large sampling variance does not condemn all aspects
of a given survey, just as a small sampling variance does not
by itself assure a good data quality. Since in most surveys
the sampling error may be small compared to nonsampling
errors, their estimate is definitely important to asses the ac-
curacy of the information being collected. Accuracy relates
to the quality of survey results and it is distinguished from
precision. Precision denotes only the inverse of the sampling
variance, accuracy is “the inverse of the total error, including
bias as well as the variance” (Kish 1965:25).

Understanding the causes and the prevention of nonsam-
pling errors, through social science theories, is an essential
step both to identify faulty operations that are in need of im-
provement and for effective error reduction. The next step
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should be to translate these human behavior theories into
models of statistical error (Groves 1999). Total survey error
models, whose objective is to measure the relative impact of
each error source on survey estimates and to make probabil-
ity statements about the total error, were developed in a series
of important articles by Hansen et al. (1951, 1961, 1965).
Kish (1965) proposed a very general model that decomposes
the total error into fixed biases and variable errors. Such a
model sufficiently general, must be made more specific in
order to be useful in an actual survey. This model was used
by Andersen et al. (1979) in their exploration of errors in a
survey of health services use. More specifically, the model
was focused on three components of nonsampling error: non-
response bias, measurement bias and processing bias limited
to imputation bias. Theoretical and empirical contributions
on various types of nonsampling errors that can occur in sur-
veys and on related costs could be found in Groves (1989)
and Weisberg (2005).

As indicated by Lessler and Kalsbeek (1992), that pro-
posed a model with sampling, nonresponse, measurement
and frame errors, total error models are preliminary steps that
must be more highly specified in an actual survey situation.

Forsman (1989, 1993) reviews the history of the survey
error model theory, in particular its last 60 years. He notes
that even though theory for specific sources of nonsampling
error has had a positive development, we are far from re-
alizing an integrated treatment of survey errors within one
model, and above all connecting them to the budgetary con-
ditions. The construction of total survey error models aims
to translate the complex sequence of survey operations into
a mathematical statement. As a consequence, the implemen-
tation of a total survey error approach involves a careful bal-
ance of results from mathematical statistics and empirical
studies. More specifically, mathematical statistics provides
the essential underlying framework while empirical studies
allows us some preestimation of parameters appearing in the
nonsampling errors models (Andersen et al. 1979).

This paper presents a total survey error model that si-
multaneously treats sampling error, nonresponse error and
measurement errors. We ignore coverage error and data pro-
cessing error. The former is due to the lack overlap between
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sampling frame and target population. The latter comprises
errors arising from coding, imputation, keying, editing, and
tabulating the survey data.

The main aim for developing the model comes from the
desire to define a total survey design minimizing the total er-
ror, which can be implemented with costs that are consistent
with the available budget. More precisely, the paper focuses
on the task of obtaining the best possible accuracy in sur-
vey estimate through an overall economic balance between
sampling and nonsampling error. The purposes of paper are
twofold: (i) quantification of the total survey error using a
model-based approach; (ii) study of the optimal allocation of
the available budget for the total survey error reduction.

As far as the first point is concerned, we compute the
Mean Square Error (MSE) for the model recognizing the ex-
istence of nonsampling error component in addition to sam-
pling variance. In order to accomplish this, we introduce
model assumptions to describe both how observations drop
out due to nonresponse and measurement errors generating
mechanism.

As far as the second point is concerned, we note that a
survey involves a trade-off between survey costs and errors,
increasing one reduces the other. The existence of this trade-
off implies, conditionally on funds available, an inverse rela-
tion between sampling and nonsampling error. That is, given
a budget to carry out the survey, the larger the observational
process accuracy the larger the cost of measuring each of the
sample cases. Hence, the lower the sample size with con-
sequent increase of sampling variance. In other words, the
larger the sample size the poorer the resources allocated for
nonsampling errors reduction (Tranquilli 1995). Since we
analyze a model with sampling error, nonresponse error and
measurement error the question is how to allocate the avail-
able budget between reduction of sampling variance, maxi-
mization of response rate and minimization of measurement
errors. As a matter of fact, in order to define a total survey
design it is essential to investigate the relationship between
survey errors and survey costs. For instance, the magnitude
of error reduction achieved through the use of qualified in-
terviewers, the interviewers training, the choice of data col-
lection mode, the number of callbacks and so on, must be
evaluated through empirical studies. Clearly, the impact of
these actions depends heavily on combined factors such as:
the characteristics of the underlying population, the survey
topic.

The paper is organized as follows. In section 1 a hy-
pothetical total survey error model that treats sampling error,
nonresponse error and measurement errors is introduced, and
the MSE is computed under a stratified sampling design. It
is important to stress that the total survey error model does
not come from an actual survey situation, but represents a
preliminary step to answer to the following questions: (i)
which parameters in total survey error model depend on sur-
vey costs (ii) how we can formalize the cost-error tradeoff for
arriving at a total survey design (iii) how we can estimate the
parameters appearing in the reparametrization model, con-
necting the nonsampling error to survey costs. Section 2
deals with the cost model depending on both the strata sam-

ple sizes n = (n1, .., nM) and strata per-unit costs (c(1), c(2)) =
[(c(1)

1 , .., c
(1)
M ), (c(2)

1 , .., c
(2)
M )], that influence strata nonresponse

rates and strata measurement errors respectively. Since the
best possible accuracy in survey estimate is achieved by min-
imizing the total error subject to a fixed cost, we must solve
a constrained optimization problem. In order to accomplish
this, we introduce in section 3 the reparametrization model
concept connecting the error components to the budgetary
conditions. In more detail, while sampling error is related
to cost model by the strata sample sizes, nonsampling error
is not, since the strata cost variables (c(1), c(2)) do not ap-
pear in the MSE expression. Hence, to formalize the cost-
error tradeoff we introduce model assumptions associating
the nonsampling error sources with the cost components.

Section 4 describes how cost and reparametrization mod-
els are used together with the total error model to find the op-
timal allocation of the available resources. In this section we
distinguish two different approaches. The former deals with
the optimal allocation problem assuming that (c(1), c(2)) are
fixed. The latter approach, called unconditional approach,
achieves the best accuracy in survey estimate not condi-
tional on the strata per-unit costs. More specifically, given
(c(1), c(2)) the response probability and the magnitude of mea-
surement errors within the strata are given too. Hence, the
optimal allocation problem can be formulated as the determi-
nation of the strata sample sizes minimizing the total error. In
section 4.1 we discuss a possible application of the total error
model developed in section 1 to business surveys. Finally, in
section 5 we assess the limitations and the extensions of the
unconditional approach.

1 Total Error Model

Let U be a finite population partitioned in M nonoverlap-
ping subpopulations U = {U1, ..,Ug, ..,UM} called strata and
denote by Ng the number of population elements in stratum
g, for g = 1, ..,M. Consider a single study variable θ, and
suppose that an estimate is needed for the population total tθ.
Assume that a probability sample sng

of size ng is selected
from Ug according to a simple random sampling without re-
placement (for g = 1, ..,M), and that the selection in one
stratum is independent of the selections in all other strata.
The resulting total sample sn will thus be composed as

sn = (sn1
∪ sn2

∪ ... ∪ snM
) where n =

M∑
g=1

ng

However, nonresponse occurs in the survey process and
the response set

sr = (sr1
∪ sr2

∪ ... ∪ srM
) where r =

M∑
g=1

rg

of size r is obtained. Since we do not ordinarily know how
the strata response sets are generated we must make model
assumptions about the true unknown response distribution.
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In order to accomplish this we apply the theory for the two-
phase sampling with estimated response probabilities as sec-
ond phase inclusion probabilities. One such model is the re-
sponse homogeneity groups model (RHGs). For each stra-
tum g, the realized sample sng

can be partitioned into Hsng
re-

sponse groups sngh
indexed by h = 1, 2, ...,Hsng

. Given sng
, all

elements within one and the same group sngh
respond with the

same probability and in an independent manner (Särndal et
al. 1992). The auxiliary information required here is that we
can uniquely classify every sampled element within a given
stratum, respondent or nonrespondent, into one of the Hsng

groups. Note that the grouping need not be the same for dif-
ferent samples, hence the subscript sng

in Hsng
.

Let srgh
be the response set of size rgh in the gh-th RHG

sngh
, generated as the result of ngh independent Bernoulli tri-

als with constant probability αgh of success that is, response.
For a given sng

, the response model we assume formalizes
“the response mechanism” within each response group sngh

as a Bernoulli sampling design. Hence, the response set srg

of size rg in the g-th stratum will be composed as

srg
= (srg1

∪ ... ∪ srgHsng

) where rg =

Hsng∑
h=1

rgh

In practice to handle the problem of nonresponse a two-
phase sampling was adopted: the first-phase sample sn is se-
lected by a simple stratified random sampling without re-
placement from population U; for each given sng

, the re-
sponse set srg

is distributed in accordance with the stratified
Bernoulli sampling design.

Besides, suppose that the data collection operations gen-
erate errors in the individual data so that the observed value
will differ from the true value θigh , for each element igh in
the response set srgh

. It is assumed that, under the general
conditions of the survey, the measurement for the igh-th indi-
vidual varies over repeated trials of the survey measurement
process. Under this perspective the survey at hand is only
one of an infinite number of possible replications of the sur-
vey design, and the measurement for each element igh is a
random variable given by

ỹigh = θigh + η̃igh = θigh + δigh + ε̃igh (1)

∀igh ∈ srgh
,∀g ∈ (1, ..,M),∀h ∈ (1, ..,Hsng

). The observed
value ỹigh for the igh-th respondent is composed of the true
value θigh and an error term η̃igh = δigh + ε̃igh (Särndal et al.
1992) The measurement error η̃igh comes from the sum of a
systematic error δigh , constant over repeated trials of the sur-
vey, and a random error ε̃igh such that

Eε(ε̃igh |srgh
) = 0

Varε(ε̃igh |srgh
) = σ2

εg

Covε(ε̃igh , ε̃ jgh′
|srgh
, srgh′

) = ρεgσ
2
εg
∀g, ∀h, h

′

Covε(ε̃igh , ε̃ jg′ h
|srgh
, srg′ h

) = 0 ∀g , g
′

(2)

where Eε(.|srgh
) and Varε(.|srgh

) denote the conditional expec-
tation and the conditional variance over all possible trials re-
spectively, for any given response set srgh

. Note that σ2
εg

is
the variation between repeated measurements on any unit in
the g-th stratum, and ρεg is the correlation between measure-
ments on any two units within the same stratum g.

In the measurement error we distinguish the systematic
measurement error from random measurement error. Sys-
tematic errors are biases that consistently affect the measure-
ment process no matter what time the interview is conducted:
we obtain the same results using measures in different oc-
casions. Of the two types of measurement errors, system-
atic errors are the most serious but also the most control-
lable. In general, efforts are focused on reducing system-
atic errors concern with the choice of data collection mode
(mail, telephone, face to face interview, administered ques-
tionnaire, etc), as well as a good questionnaire wording and
field personnel training. Clearly all these factors have cost
implications. We specify further the model (2)

Eε(ỹigh |srgh
) = θigh + δigh = µigh

Varε(ỹigh |srgh
) = σ2

εg

Covε(ỹigh , ỹ jgh′
|srgh
, srgh′

) = ρεgσ
2
εg
∀g, ∀h, h

′

Covε(ỹigh , ỹ jg′ h
|srgh
, srg′ h

) = 0 ∀g , g
′

(3)

asserting that, for any given srgh
, the measurement ỹigh on el-

ement igh has mean µigh , variance σ2
εg

and the covariance be-
tween elements within the same stratum g is given by ρεgσ

2
εg

.
Since we consider a partition of U into M strata, the follow-
ing decomposition holds

tθ =
M∑

g=1

θgNg (4)

where θg denotes the stratum mean. Consider as an estimator
of θg

ỹrg
=

Hsng∑
h=1

 1
rgh

∑
igh∈srgh

ỹigh

 νgh =

Hsng∑
h=1

ỹrgh
νgh (5)

where νgh = ngh/ng is the relative size of the response group
sngh

. The expression within parentheses is the weighting esti-
mator of yngh

, the mean of ngh units in sngh
. The nonresponse

compensation adjustment weight is the inverse of the esti-
mated response probability α̂gh = rgh/ngh. Hence, the esti-
mator of tθ is given by

˜̂tθ =
M∑

g=1


Hsng∑
h=1

ỹrgh
νgh

 Ng (6)

In order to analyze the inference not conditionally on
r = (r1, .., rg, .., rM), with rg = (rg1, .., rgh, ..rgHsng

), we ex-
clude the event

{rgh = 0 for some g = (1, ..,M), h = (1, ..,Hsng
)}
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since in that case the estimator ˜̂tθ is not defined. Denoted by
1 the unitary vector of length

∑M
g=1 Hsng

, the expected value

for ˜̂tθ is given by (see Appendix A)

E(˜̂tθ) = Esn
Er|r≥1Esr

Eε(˜̂tθ) =
M∑

g=1

θgNg +

M∑
g=1

δgNg (7)

where Eε(.|sr, r ≥ 1, sn), Esr
(.|r ≥ 1, sn), Er|r≥1(.|sn) denote

conditional expectations with respect to the measurement
model, the response model and the response set size r (for
r ≥ 1) respectively, while Esn

(.) denotes expectation over all
possible samples. It follows that the approximate bias of ˜̂tθ,
given by

Bias(˜̂tθ) = E(˜̂tθ) − tθ =
M∑

g=1

δgNg (8)

is independent of the sample size n and is due to measure-
ment error. Even in a census survey (i.e. when n = N),
it would remain unchanged. The RHGs model is widely
used in practice for modelling nonresponse. “No practi-
tioner really believes that all elements in a group have ex-
actly the same probability to respond, the point is that the
assumption of constant probability within well-constructed
groups removes most of the nonresponse bias” (Särndal et
al. 1992:579).

The approximate variance of ˜̂tθ is given by (see Ap-
pendix B)

Var(˜̂tθ) �
M∑

g=1

(
1
ng
−

1
Ng

) [
σ2
θg
+ σ2

δg
+ 2Cov(θg, δg)

]
N2

g

+ Esn
Er|r≥1


M∑

g=1


Hsng∑
h=1

ngh

ngh − 1

(
1

rgh
−

1
ngh

)
s2
µgh

 N2
g |r ≥ 1, sn


+ Esn

Er|r≥1


M∑

g=1


Hsng∑
h=1

σ2
εg

rgh
ν2gh

 N2
g |r ≥ 1, sn


+ Esn

Er|r≥1


M∑

g=1


Hsng∑
h=1

(rgh − 1)
ρεgσ

2
εg

rgh
ν2gh

 N2
g |r ≥ 1, sn

 (9)

where σ2
θg

, σ2
δg

and Cov(θg, δg) represent the variance of
true values and systematic errors and their covariance in the
g-th stratum respectively, while s2

µgh
is the sample variance of

the expected measurement values in the response group sngh
.

In the sequel, we assume that the strata used for the
sample selection and the response homogeneity groups coin-
cide. This means that we find it plausible that each sampled
unit in a given stratum responds with the same probability:
the response is random within strata. As a matter of fact,
the response homogeneity groups and the strata are not the

same. This assumption can be considered plausible for busi-
ness surveys where the population is often stratified by three
auxiliary variables: industry, size and geography. Under this
assumption the nonresponse compensation weight is ng/rg,
then the estimator of tθ is given by

˜̂tθ =
M∑

g=1

ỹrg
Ng (10)

where ỹrg
is the sample mean of the rg observed values in the

g-th stratum. The approximate bias of estimator (10) is given
by (8). With regard to the variance, we have (see Appendix
C)

Var(˜̂tθ) �
M∑

g=1

(
Er|r≥1

(
1
rg

)
−

1
Ng

) [
σ2
θg
+ σ2

δg
+ 2Cov(θg, δg)

]
N2

g

+

M∑
g=1

Er|r≥1

(
1
rg

)
σ2
εg

N2
g +

M∑
g=1

Er|r≥1

(
rg − 1

rg

)
ρεgσ

2
εg

N2
g (11)

Through algebraic calculations the following decomposition
holds

Var(˜̂tθ) �
M∑

g=1

(
1
ng
−

1
Ng

)
σ2
θg

N2
g +

M∑
g=1

[
Er|r≥1

(
1
rg

)
−

1
ng

]
σ2
θg

N2
g

+

M∑
g=1

(
1
ng
−

1
Ng

) σ2
δg
+ 2Cov(θg, δg) +

σ2
εg

ng

 N2
g

+

M∑
g=1

(
1
ng
−

1
Ng

)
(ng − 1)

ng
σ2
εg
ρεg N2

g

+

M∑
g=1

[
Er|r≥1

(
1
rg

)
−

1
ng

]
(
σ2
δg
+ 2Cov(θg, δg) + σ2

εg
(1 − ρεg )

)
N2

g

(12)

which reflects the contribution to the variance made by each
error source. The first term is the sampling variance when
each sampled unit gives the requested information without
errors; the second term, conditionally on the strata sample
sizes, is the increase in variance due to nonresponse; the
third and fourth terms are related to the measurement vari-
ance of the observed values; and the last term is the inter-
action variance. In particular, the third component called
the simple measurement variance arises from variability in
measurements on individual elements. The fourth compo-
nents called the correlated measurement variance depends on
the covariances between measurements on different elements
within the same stratum.

In order to simplify the constrained optimization prob-
lem of section 4, we introduce the following approximation

Er/r≥1

(
1
rg

)
≥

1
Er/r≥1(rg)

=
[1 − (1 − αg)ng ]

ngαg
'

1
ngαg

(13)
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where the response set size rg is a binomially distributed ran-
dom variable with parameters (ng, αg), for g = 1, ..,M. On
the accuracy of approximation (13), note that the mean dif-
ference E[(Er|r≥1(1/rg) − 1/(ngαg))/αg] is less then 0.01 for
ng > 30. If the terms 1/Ng are negligible then the approxi-
mate mean square error is given by

MS E(˜̂tθ) �
M∑

g=1

1
ngαg

(
σ2
θg
+ σ2

δg
+ 2Cov(θg, δg) + σ2

εg

)
N2

g +

+

M∑
g=1

(ngαg − 1)
ngαg

σ2
εg
ρεg N2

g +

 M∑
g=1

δgNg


2

(14)

where the last term is the squared bias. The total error de-
pends on both the strata sample sizes ng and the unknown
parameters

(αg, σ
2
δg
, 2Cov(θg, δg), δg, σ2

εg
, ρεg )

coming from the nonsampling errors models. Clearly, these
parameters must be estimated. For details on this topic, see
Särndal et al. (1992).

2 Cost Model

In order to determine the optimal allocation of the available
resources minimizing the total error, in this section we intro-
duce a cost model describing the survey costs structure on
the basis of the error sources taken into account.

It is known that an efficient sample design must provide
reasonably precise estimate under the constraint of a fixed
budget. Then the most efficient design is achieved by mini-
mizing the sampling variance subject to a fixed cost B. The
solution is limited to one source of error: sampling error.
In presence of nonsampling errors the question is to deter-
mine the optimal allocation of the available resources B to
obtain the best accuracy in survey estimate. Formally, we
must solve the following constrained optimization problem

min
(c(1),c(2),n)

MS E(˜̂tθ) s.t. B = f (c(1), c(2), n) (15)

where the cost model B = f (c(1), c(2), n) depends on
both the strata sample sizes n = (n1, .., nM) affecting the
sampling error, and the strata per-unit costs [c(1), c(2)] =
[(c(1)

1 , .., c
(1)
M ), (c(2)

1 , .., c
(2)
M )] affecting the strata nonresponse

rates and the strata measurement errors respectively. That
is, executing the survey operations related to the data collec-
tion phase more carefully leads to a decrease in nonsampling
error through an increase in survey costs (c(1), c(2)).

Suppose that the overall cost B of the survey is decom-
posed into more detailed components, associated with vari-
ous aspects of its design and implementation. More specif-
ically, we postulate that the overall cost is a linear function

expressed as

B = C0 +

M∑
g=1

c(1)
g ng +

M∑
g=1

c(2)
g E(rg|rg ≥ 1)

� C0 +

M∑
g=1

(c(1)
g + c(2)

g αg)ngc(1) > c(0), c(2) > c(0)(16)

where c(0) is a vector of length M with all components equal
to c(0), the questionnaire sending cost by mail. In other words
c(0) is the minimum cost that is needed to pay for interview-
ing the sample units. Note that C0 is a fixed cost, to be in-
curred regardless of what sample size is chosen. This compo-
nent includes the costs related to preparatory activities, that
do not depend on the total sample size n such as coordina-
tion of survey planning, frame development, sample design
and so on. In more detail, in the cost model (16)

1. c(1)
g represents the per-unit cost to keep nonresponse

low or alternatively to increase the response proba-
bility αg in the g-th stratum. Reducing nonresponse
means to employ strategies that reduce the reluctance
of the sample units to cooperate with an interview
request. For instance, if the first contact with the
potential respondent is an unsuccess it is common
to instruct the interviewers to return, conducting the
interview at a time more convenient for the potential
respondent. Then, the larger will be the per-unit
cost c(1)

g the larger will be the callbacks to obtain a
response, or alternatively more accurate will be the
data collection mode in the follow-up procedure (mail
questionnaire, telephone call, face to face interview).
Hence, the component c(1)

g ng in the model (16) is the
cost related to the effort of contacting each sampled
unit within the g-th stratum.

2. c(2)
g represents the per-unit cost to improve the re-

sponses quality in the g-th stratum. This cost includes
the use of qualified interviewers, the increase of bud-
get reserved to supervision phase, an accurate ques-
tionnaire wording and so on. For instance, since some
items in the questionnaire could be ambiguous and
lead to misunderstanding on the part of the respondent,
bias from question wording is minimized through care-
ful design of the survey questions, pilot testing, anal-
ysis of pilot-test results and interviewer feedback that
can reveal problem with understanding of the question.
Analogously the use of qualified interviewers or the
interviewers training allows to reduce the errors com-
ing from the interviewer misunderstanding, the incor-
rectly recording and the interviewer influence on the
responses. Finally, efforts to instruct respondents in
appropriate respondent behavior (e.g., thinking care-
fully, seeking clarification from the interviewer), in-
creasing the length of the questionnaire and the in-
terviewing time, also have cost implications (Groves
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1989). Hence, the component c(2)
g ngαg in the model

(16) represents the cost to improve the data quality
provided by the expected number of respondents ngαg
in the g-th stratum.

Note that the cost model (16) is continuous. In practice a
more realistic cost function is frequently a stepwise function
rather than a linear function of the principal cost factors. For
instance, if 10 interviews can be conducted in a single day,
then the addition of one interview requires an extra day of
work and thus a substantial cost increase, whereas the addi-
tion of two interviews may add little cost. Clearly, the dis-
continuities in the cost models imply that partial derivatives
do not exist, hence no single optimum total survey design
can be found through standard calculus methods. It should
be pointed out that the cost model is an approximation of
the reality affecting the total survey design features. Hence,
some attention needs to be paid to the specification of the cost
model to determine whether its form is sufficiently appropri-
ate to the survey. Groves has a relatively large discussion on
cost models, including various complex and realistic forms,
e.g., non-linear, discontinuous, step-function cost expression
(Groves 1989). However, the scarcity of detailed information
on costs associated with various aspects of survey implemen-
tation often makes to set up a cost model a hard task.

3 Reparametrization Model

This section deals with the reparametrization model allow-
ing us to associate the nonsampling error with the cost com-
ponents (c(1), c(2)), affecting nonresponse and measurement
error respectively. More specifically, in the constrained opti-
mization problem (15) while sampling error is related to the
cost model by the strata sample sizes, nonsampling error is
not, since (c(1), c(2)) do not appear in the MS E(˜̂tθ). As a con-
sequence, we formalize the cost-error tradeoff through model
assumptions expressing the strata MSE parameters

(αg, σ
2
δg
, 2Cov(θg, δg), δg, σ2

εg
, ρεg ) (17)

coming from the nonsampling errors models, by strata per-
unit costs (c(1)

g , c
(2)
g ). In order to accomplish this, one must

(i) give the mathematical formulation of the model, and
(ii) estimate the parameters appearing in it. Looking for a
compromise between intuitive validity and simplicity of the
reparametrization model, we have assumed functional hy-
potheses regarding a hyperbolic model. We suppose that the
stratum response probability αg depends on c(1)

g according to
the function

αg = α(c(1)
g ) =

α∗γgc(1)
g

1 + γgc(1)
g

(18)

where the parameter γg > 0 measures the effect of ad-
ditional financial resources on the response probability. The
larger the cost c(1)

g the larger is the effort of contacting each
sampled unit within the g-th stratum, then the larger will be

the stratum response rate. Note that as c(1)
g increases, the

function (18) increases to the asymptote α∗. We assume
α∗ < 1 since in most surveys there is a fraction of hard core
nonresponse, composed of elements that do not under any
circumstances respond. Besides, since the per-unit cost c(2)

g
affects the measurement error, we assume

σ2
δg
+ 2Cov(θg, δg) + σ2

εg
= 1

agc(2)
g
=
βg

c(2)
g

σ2
εg
ρεg =

1
fgc(2)

g
=
ϕg

c(2)
g

δg =
1

kgc(2)
g
=
τg

c(2)
g

(19)

where βg = 1/ag, ϕg = 1/ fg, τg = 1/kg > 0. The functions
(19) decrease as c(2)

g increases. For instance, the larger is the
per-unit cost c(2)

g more accurate will be the measurement pro-
cess then the lower will be the measurement error magnitude.
For instance, face to face interview is the most expensive data
collection mode since fieldwork and its organization requires
more resources and generates more costs, while one of the
advantages of a postal survey is low cost. At the same time,
the presence of an interviewer makes the interview situation
more controllable and makes it possible to clarify both ques-
tions and answers reducing the measurement error. The pa-
rameters (ag, fg, kg) measure the effect of additional financial
resources on the measurement error components (simple re-
sponse variance, correlated response variance and response
bias).

As we show in section 4.1, in order to obtain estimates
of unknown parameters appearing in (18)-(19) we could re-
fer to previous surveys or carry out a pilot survey. The ef-
fects evaluation on both response rate and measurement error
components of additional financial resources could require
an experiment too. For instance, to determine how much ad-
ditional callbacks will increase the response probability, or
how much additional interviewers training will reduce mea-
surement bias and variance could require experimenting with
different callbacks number or different levels of interviewers
training.

It is important to stress that the functions appearing in
(18)-(19) do not come from quantitative studies or actual
survey data, but represent just an attempt to formalize the
cost-error tradeoff for arriving at a total survey design. As a
consequence, the reparametrization model can be seen as a
key tool in the search for an overall optimization of a survey.
In practice, more realistic functions are probably not smooth
and may not even be continuous.

4 Optimal allocation of the available resources

This section essentially deals with the optimal allocation
problem of the available resources minimizing the total er-
ror. The goal is to obtain the best possible accuracy in sur-
vey estimate through an overall economic balance between
sampling and nonsampling error. The problem can be stated
in this way: given the cost structure represented in the cost
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model, how should the budget be allocated to minimize the
total survey error. Formally, we must solve the following
constrained optimization problem

min
(c(1),c(2),n)

MS E(˜̂tθ) s.t. D =
M∑

g=1

(c(1)
g + c(2)

g αg)ng (20)

where D = B − C0. As a guideline to the analysis, it could
be useful to consider two different approaches: the former
is conditional on the strata per-unit costs (c(1), c(2)), the lat-
ter is unconditional. As a matter of fact, assuming as given
the strata per-unit costs is equivalent to fix the survey con-
ditions under which the data will be collected. In addition
to the sampling method, any data collection effort involves
making decisions on a number of survey operations: the data
collection mode, the questionnaire wording, the interview-
ers training, the use of supervisors, the maximum number of
callbacks, the data collection mode in follow-up procedure
and so on. All these decision have cost implications. Hence,
given the strata per-unit costs (c(1), c(2)) the strata response
probabilities and the strata measurement errors magnitude
are given too, since the features of the total survey design
have been defined. As a consequence, prior of the sample
selection and given an estimate of parameters (17), the con-
strained optimization problem (20) can be formulated as the
determination of the ng minimizing the MSE under the cost
model (16). Formally, we have

min
n

MS E(˜̂tθ) s.t. D =
M∑

g=1

(c(1)
g + c(2)

g αg)ng (21)

A method for carrying out such optimization is the La-
grange’s Multiplier Method. It consists of introducing a new
function which incorporates the MS E(˜̂tθ) together with the
constraint. Let Âg be the estimate of the stratum parameter

Ag = σ
2
δg
+ 2Cov(θg, δg) + σ2

εg
(1 − ρεg ) (22)

and denote by α̂g the stratum response probability estimate.
Let L(n, λ) be the Lagrangian function, where λ is the La-
grange multiplier, the M+1 simultaneous conditions

∂L(n, λ)
∂ng

= 0 for g=1,..,M;
∂L(n, λ)
∂λ

= 0 (23)

give the solution

n∗g = D

√
(σ2
θg
+ Âg)N2

g/

√
α̂g(c(1)

g + c(2)
g α̂g)∑M

g=1

√
(σ2
θg
+ Âg)(c(1)

g + c(2)
g α̂g)N2

g/
√
α̂g

(24)

for g=1,..,M

representing the strata sample sizes minimizing the total er-
ror subject to a fixed cost, given the survey conditions. Note

that, in absence of nonresponse and measurement errors
we obtain the standard result of optimum sample allocation
(Cochran 1977).

On the other hand, to adopt the unconditional approach
means that in the planning phase of a survey the researcher
can influence the magnitude of nonsampling errors through
the choice of strata per-unit costs (c(1)

g , c
(2)
g ), defining the sur-

vey conditions under which the data will be collected. Then,
the question is how to allocate a budget available between re-
duction of sampling variance, maximization of response rate
and minimization of measurement errors. It then becomes
clear how the cost-error tradeoff knowledge, formalized by
(18)-(19), is fundamental for an optimal allocation of the re-
sources when an unconditional approach is employed. For-
mally, substituting the reparametrization model in the objec-
tive function of the constrained optimization problem (20)
we obtain

min
(c(1),c(2),n)

M∑
g=1

1 + γgc(1)
g

ngα∗γgc(1)
g

σ2
θg
+
βg

c(2)
g

 N2
g

+

M∑
g=1

1 − 1 + γgc(1)
g

ngα∗γgc(1)
g

 ϕg

c(2)
g

N2
g

+

 M∑
g=1

τg

c(2)
g

Ng


2

s.t.

D =
M∑

g=1

c(1)
g + c(2)

g

 α∗γgc(1)
g

1 + γgc(1)
g

 ng

(25)

Denoted by L(c(1), c(2), n, λ) the Lagrangian function, the
solution is determined by solving the following system of
3M + 1 equations


∂L(c(1),c(2),n,λ)

∂ng
= 0 ∂L(c(1),c(2),n,λ)

∂c(1)
g

= 0 ∂L(c(1),c(2),n,λ)
∂c(2)

g
= 0

∂L(c(1),c(2),n,λ)
∂λ

= 0 for g=(1,..,M);
(26)

where λ is the Lagrange multiplier. In next section we dis-
cuss a possible application of the model developed in section
1, in order to show how the unconditional approach could be
implemented.

4.1 A possible application to business surveys
Nevertheless a total error model must be highly specified in
an actual survey situation, in this section we suppose to apply
the model of section 1 to business surveys. Consider a sur-
vey that collects data for only one item and estimates a single
population-level total (e.g., total employment, total sales).

Business surveys are usually designed as one stage strat-
ified simple random samples selected without replacement.
A more common method for stratifying a skewed population
is to create a certainty stratum of large businesses in which
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all units are sampled. This work can be easily extended in-
cluding a take all or completely enumerated stratum. In busi-
ness surveys the stratification usually has three dimensions:
size, type of activity and region. Nevertheless the efforts to
obtain full response to a survey a certain amount of nonre-
sponse is inevitable. As indicated by Cox et al. (1995:490),
in business surveys the list frame design strata tend to form
good weighting classes for nonresponse adjustment. As a
consequence, we assume that the strata used for the sam-
ple selection and the response homogeneity groups coincide:
businesses of similar size, in the same region and in the same
industrial sector have the same chance of response. Further-
more, we postulate that the measurement errors generating
mechanism is described by (1)-(2). As a consequence, the
stratification variables contribute to explain both the stratum
response propensity and the measurement errors generating
mechanism.

In the unconditional approach the available resources
must be allocated to provide the highest overall accuracy,
shifting them to the area where they are more effective. Then,
the survey designer needs to understand potential sources of
error and attempt to model them as function of the resources
available.

With regard to nonresponse error, it is known that cer-
tain techniques (follow-up contacts, financial incentives to
induce compliance with the survey request, prior notice) have
emerged as important in achieving high response in business
surveys. Then, given a set of techniques to keep nonresponse
low and assumed as known the costs and the response rates
associated to them, we can estimate through the least squares
method the parameter γg appearing in the reparametrization
model (18). The response rates can be obtained from previ-
ous surveys or carry out empirical studies.

The same consideration holds for the measurement error
components. One important source of measurement error in
business surveys is the survey instrument, that is the ques-
tionnaire and the instructions to the respondent for supplying
the requested information. The economic concepts tradition-
ally used in business surveys are not easily understood by
respondents.

In this case, standard techniques that keep the measure-
ment error low regard the questionnaire wording, the use of
qualified interviewers or the interviewers training and the use
of supervisors. For instance, suppose we want to evaluate
through an experiment the effect on the measurement error
components (measurement bias, simple response variance,
correlated response variance) of the number of days devoted
to interviewers training (e.g., one day, five days, ten days) in
conjunction with the use of supervisors. Through an empiri-
cal study we can estimate the magnitude of measurement er-
ror components associated to each option: the magnitude of
error reduction. These data together with the costs associated
to each survey method, allows us to estimate the parameters
in (19).

After estimating the parameters appearing in the
reparametrization model we can solve the constrained opti-
mization problem (25), obtaining the combination of strata
sample sizes, nonresponse and measurement procedures

which minimize the total error within the resources available
for the survey.

Note that we assumed a continuous reparametrization
model. For instance, the response probability αg is a con-
tinuous increasing function of per-unit cost c(1)

g . As a conse-
quence, each increase in c(1)

g implies an increase in the g-th
stratum response probability. A considerable problem con-
cerns with the stepwise nature of reparametrization model.
As stressed in section 3, more realistic functions are probably
not smooth and may not even be continuous. For instance,
to increase the response rate could be necessary numerous
callbacks with a substantial investment on c(1)

g . Note that the
discontinuities offer the researcher large benefits if they can
be identified. Besides, as we will stress in the next section, a
set of methods to keep nonresponse low could be eliminated
as feasible alternatives in an actual survey situation because
of time constraints.

As a matter of fact, evaluation studies can be very useful
in defining the reparametrization model and getting estimates
of parameters appearing in it. This implies that extra data
must be collected and experimental methods must be used to
estimate the cost-error tradeoff. Resources need to be pro-
vided to support these studies.

5 Conclusions

Estimating total survey error assumes that a mathematical
model exists that includes all the key error sources of the
survey. The first step in the development of such a model
consists in deciding what nonsampling errors should be con-
sidered. Since the important sources of error vary from sur-
vey to survey, this choice is strictly depending on the survey
characteristics. For instance, coverage and interviewer errors
might be the most important error sources in some surveys,
while in other surveys the most considerable sources of error
might be nonresponse or recall errors. Besides, most surveys
produce many estimates that may be affected differently by
the error sources. The total survey error approach should
be flexible enough both to allow different errors to be incor-
porated and to take into account their covariance structure
(Federal Committee on Statistical Methodology 2001)

Since inference in presence of nonsampling errors must
rely in part on modelling, we must make model assumptions
about their generating mechanism in order to evaluate their
magnitude. Note that the selection of a model needs a care-
ful analysis of the social environment where the survey is to
be conducted, study variable nature as well as all possible
interactions between errors coming from different phases of
survey. Since the formulation of a given model is the same
as introducing some not fully testable hypotheses, any infer-
ence will depend on the validity of such assumptions. Model
misspecifications will lead to invalid conclusions. As we
stressed in the introduction, the implementation of a total er-
ror model represents a preliminary step for arriving at a total
survey design.

In practice, an integrated unified total survey error model
is as improbable as an unified theory for predicting human
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behavior across a myriad of situations. The “best” model for
a given survey will not be the “best” for another. In other
words, the nonsampling errors models are not transferable
from one survey to another, hence a general model valid for
all surveys is a non-sense. For instance, the nonsampling
errors models for an income survey will differ from the mod-
els for other survey topics. More generally, since the rich
tend to underestimate their income while the poor tend to
overestimate it the measurement model will have probably a
multiplicative form.

As we stressed previously, the main problem is how we
can formalize the cost-error tradeoff for arriving at a total sur-
vey design. In this paper, we proposed the reparametrization
model as a key tool in the search for an overall optimization
of a given survey. Note that in the reparametrization model,
the MSE parameters (αg, σ

2
δg
, 2Cov(θg, δg), δg, σ2

εg
, ρεg ) have

been expressed just as functions of the corresponding strata
per-unit costs. For instance, the response probability αg de-
pends on c(1)

g according to (18). In practice, it is known
that many actions reducing measurement errors (for exam-
ple the use of qualified interviewers, an accurate question-
naire construction) also reduce nonresponse and vice-versa.
Hence, further developments could include more complex
reparametrization models. For instance, the stratum response
probability could assume the following form

αg = α(c(1)
g , c

(2)
g ) (27)

depending on both costs (c(1)
g , c

(2)
g ).

In conclusion, the paper is concerned with obtaining the
best possible accuracy in survey estimate through an overall
economic balance between sampling and nonsampling error.
As Groves emphasizes it is important to think to the survey
from a cost stand point because of its importance as limit-
ing factor (Groves 1989) The best practices in different fields
like sampling, avoiding nonresponse, decreasing measure-
ment errors, are often not compatible in the same survey be-
cause they are generally also the most expensive (Desrosieres
et al. 2001). Hence, we need to identify the best practices in
each field conditionally on the available money.

It is important to stress that the optimal allocation of the
available budget loses its optimality in an empirical context
both because the MSE is the error resulting from the er-
ror sources that the model takes into account and for mis-
specifications regarding the nonsampling errors, cost and
reparametrization models. Besides, the decision problem is
so complex that an optimum, in the sense of a mathematical
solution to a closed-form problem, is inconceivable. There
are too many interrelated decisions and too many variables
to take into account (Särndal et al. 1992; Särndal and Platek
2001).

The decision, therefore, would likely be made on the ba-
sis of quantitative studies or assumptions, budgetary and pri-
ority considerations, time constraints but not on the basis of
a mathematical model alone (Fellegi and Sunter 1974). In
actual situations, the choice criteria may conflict and require
a compromise. For instance, the time required to conduct the
follow-up of nonrespondents may eliminate it as a feasible

alternative to reduce nonresponse. Hence, the time constraint
introduces in the balance between error components a source
of limitation to the alternatives that need to be considered.
Despite of its limitations we believe that this optimization
approach stimulating the research on both survey costs and
cost-error tradeoff, could improve the information about the
survey estimates accuracy.

Lack of data on costs of survey methods and their as-
sociated errors seriously impedes the use of the total survey
design approach at the planning stages. As a consequence,
there is a great need for accumulating a systematic body
of knowledge regarding the nonsampling errors, the survey
costs and their relationship. In order to accomplish this, ex-
perimental procedures must be introduced in the survey pro-
cess to evaluate both the effect of a given error source on the
total error, and the effect that alternative survey methods have
on reducing its magnitude.

Since is expensive to develop a total error model and
carry out an overall optimization of the survey, such ex-
pense is justified for a large-scale survey that will continue
for a number of years: the knowledge accumulates during
the years can be used in the planning phase of surveys that
follow.

Much work still remains to be done in this context both
in theoretical and applied field. As we showed, the attempt
to formalize the tradeoff between cost and error for arriving
at a total survey design generates a set of parallel research
fields which development is needed.
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Appendix A

The expected value for ˜̂tθ is given by

E(˜̂tθ) = Esn
Er|r≥1Esr

Eε(˜̂tθ)

= Esn
Er|r≥1Esr

Eε
M∑

g=1


Hsng∑
h=1

νgh

 1
rgh

∑
igh∈srgh

ỹigh


 Ng|sr, r ≥ 1, sn
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 Ng|sn


= Esn

Er|r≥1

 M∑
g=1

µng
Ng|sn


= Esn

 M∑
g=1

µng
Ng


=

M∑
g=1

µgNg

=

M∑
g=1

θgNg +

M∑
g=1

δgNg (28)

where Eε(.|sr, r ≥ 1, sn), Esr
(.|r ≥ 1, sn), Er|r≥1(.|sn) de-

note conditional expectations with respect to the measure-
ment model, the response model and the response set size
r (for r ≥ 1) respectively, while Esn

(.) denotes expectation
over all possible samples. Besides, µng

and µg represent the
sample mean and the population mean of the expected mea-
surement values in the g-th stratum.
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Appendix B

The variance of ˜̂tθ is shown to be composed of four compo-
nents. This can be seen by writing the variance expression in
the following form

Var(˜̂tθ) = Varsn
Er|r≥1Esr

Eε(˜̂tθ|sr, r ≥ 1, sn)

+Esn
Varr|r≥1Esr

Eε(˜̂tθ|sr, r ≥ 1, sn)

+Esn
Er|r≥1Varsr

Eε(˜̂tθ|sr, r ≥ 1, sn)

+Esn
Er|r≥1Esr

Varε(˜̂tθ|sr, r ≥ 1, sn)

= A + B +C + D (29)

Consider each of these separately, we have

A = Varsn
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(30)

where

σ2
µg
=

1
Ng

∑
i∈Ug

(µig − µg)2

=
1

Ng

∑
i∈Ug

[(θig − θg) + (δig − δg)]2

= σ2
θg
+ σ2

δg
+ 2Cov(θg, δg) (31)

and Cov(θg, δg) represents the covariance between systematic
errors and true values in the g-th stratum.

Considering the term B = Esn
Varr|r≥1Esr

Eε(˜̂tθ|sr, r ≥
1, sn), we have

B = Esn
Varr|r≥1

 M∑
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Ng|sn
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(32)

Considering the term C = Esn
Er|r≥1Varsr

Eε(˜̂tθ|sr, r ≥
1, sn), we have

C = Esn
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(33)

where s2
µgh

is the sample variance of the expected measure-
ment values in the gh-th response group sngh

, while µrgh

is the sample mean of the rgh respondents in the same
group. Finally, to complete the variance we need D =

Esn
Er|r≥1Esr

Varε(˜̂tθ|sr, r ≥ 1, sn). It follows that

D = Esn
Er|r≥1


M∑

g=1


Hsng∑
h=1

σ2
εg

rgh
ν2gh

 N2
g |sn


+Esn

Er|r≥1


M∑

g=1


Hsng∑
h=1

(rgh − 1)
ρεgσ

2
εg

rgh
ν2gh

 N2
g |sn


(34)

To summarize, we have
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Appendix C

If we assume that the strata used for the sample selection
and the response homogeneity groups coincide, the terms A
and B in the variance (29) remain unchanged. The term (33)
becomes

C = Esn
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The term (34) becomes
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To summarize, we have

Var(˜̂tθ) �
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