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Response probabilities are used in adaptive and responsive survey designs to guide data collec-
tion efforts, often with the goal of diversifying the sample composition. However, if response
probabilities are also correlated with measurement error, this approach could introduce bias
into survey data. This study analyzes the relationship between response probabilities and data
quality in grid questions. Drawing on data from the probability-based GESIS panel, we found
low propensity cases to more frequently produce item nonresponse and nondifferentiated an-
swers than high propensity cases. However, this effect was observed only among long-time
respondents, not among those who joined more recently. We caution that using adaptive or
responsive techniques may increase measurement error while reducing the risk of nonresponse
bias.
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1 Introduction

Response propensities are estimates of a sampled indi-
vidual’s probability to respond to a survey. They are of-
ten used in adaptive and responsive survey designs to guide
data collection efforts (Schouten, Peytchev, & Wagner, 2017;
Tourangeau, Michael Brick, Lohr, & Li, 2017; Wagner,
2008). For example, a common approach uses response
propensities to tailor interventions and balance the sample
(Peytchev, Riley, Rosen, Murphy, & Lindblad, 2010; Rosen
et al., 2014) to reduce the risk of nonresponse bias (Schouten,
Cobben, Lundquist, & Wagner, 2016). The U.S. National
Survey of Family Growth, for instance, instructed interview-
ers to give priority to cases with low response propensi-
ties as those are hardest to recruit for a survey interview
(Wagner et al., 2012). The German Longitudinal Election
Study experimented with assigning low response propen-
sity cases to the most experienced interviewers in order to
make sure that these reluctant cases become actual respon-
dents (Gummer & Blumenstiel, 2018). However, if response
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probabilities are associated with other sources of error (e.g.,
Groves, 2006; Tourangeau, 2019), these interventions may
lead to unintended consequences. In particular, if probabili-
ties are correlated with measurement error, prioritizing cases
by propensity may impact not only nonresponse bias and
outcome rates but also measurement error and total survey
error (Bach, Eckman, & Daikeler, 2020; Kreuter, Müller,
& Trappmann, 2010). For instance, Peytchev, Peytcheva,
and Groves (2010) found low propensity cases to be more
likely to misreport prior experiences. Similarly, Fricker and
Tourangeau (2010) found low propensity respondents more
likely to report rounded, less precise values to continuous
variables, and more prone to item nonresponse.

This study tests the relationship between response proba-
bilities and measurement error in a probability-based panel
survey in Germany. Since response probabilities are latent
constructs with unknown true values, they have to be esti-
mated, for example, via logistic regression modeling or non-
parametric prediction techniques based on classification tree
algorithms (Kern, Klausch, & Kreuter, 2019). Panel surveys
are an ideal setting for such estimation, because they often
come with a rich set of historical data about cases from pre-
vious waves which can be used to obtain accurate estimates
of the response probabilities.

Bethlehem, Cobben, and Schouten (2011, p. 44) show
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that the nonresponse bias of the sample mean (i.e., based on
those respondents who participate in a survey) of variable Y
(ȳR) is approximately equal to

B(ȳR) =
RθYS θS Y

θ̄
(1)

where RθY is the correlation between the response probabil-
ity θ and Y , S θ is the standard deviation of θ, S Y is the stan-
dard deviation of Y , and θ̄ is the mean response probability.
The formula shows that a nonresponse bias exists, if response
probabilities vary in the target population and are correlated
with the variable of interest. In this regard, Groves (2006,
p. 651–652) describes the “Nonresponse-Measurement Er-
ror model” in which a measurement error ε is caused by θ.
If this relationship exists, and RθY , 0 and S θ , 0, ȳR will
further be affected by measurement error.

We focus our assessment of measurement error on grid
questions because they are burdensome and can result in in-
creased levels of measurement error. For example, grid ques-
tions lead to less differentiated responses, more speeding,
and less substantive answers compared to item-by-item de-
signs (Liu & Cernat, 2018; Roßmann, Gummer, & Silber,
2018; Tourangeau, Couper, & Conrad, 2004; Tourangeau,
Maitland, et al., 2017). Despite these issues, grid questions
are still frequently used, because they reduce interview du-
ration and require less space. Their susceptibility to quality
issues makes grid questions an important case study of the re-
lationship between response probabilities and measurement
error.

In the next section we present our data and methods. We
then discuss our results before concluding with practical im-
plications of our findings and future research opportunities.

2 Data and Methods

To investigate the relationship between response proba-
bilities and measurement error, we draw on data from the
GESIS panel (GESIS Panel Team, 2018), a probability-based
mixed-mode general population panel in Germany (Bosnjak
et al., 2018).1 In 2013, the panel was recruited via face-to-
face interviews with a sample drawn from population reg-
isters. The recruitment survey achieved a Response Rate 5
(AAPOR, 2016) of 38.6%, and 4,888 panelists joined the
panel in 2014. We refer to this sample as the initial sam-
ple. To account for panel attrition and aging, a refreshment
sample was drawn as part of the German General Social Sur-
vey (ALLBUS) in 2016. Similar to the initial sample, the
ALLBUS drew a sample from population registers aiming to
cover the German population. Thus, the refreshment sample
covered the full target population of the GESIS panel. The
ALLBUS achieved a Response Rate 5 of 34.8% and 1,710
respondents joined the GESIS panel. We refer to this sample
as the refreshment sample.

Upon recruitment, the panelists were asked about their
preferred mode of participating in re-interviews: web or
mail. Every two months, all active panelists are interviewed
using their preferred mode. Changing the mode of partici-
pation later is possible by contacting the fieldwork institute.
However, few respondents have made use of this possibility.
The survey length is limited to approximately 20 minutes per
wave. Questions are presented similarly in the two modes to
minimize mode effects. Respondents who do not participate
in three waves in a row are dropped from the panel and no
longer receive invitations to participate.

For the present study, we use wave “ed,” the fourth wave
in 2017, because this wave featured an attention check item
in one of its grids, which we use to assess respondent
attentiveness. Attention checks are instruments designed
to measure whether respondents answer questions without
thoroughly processing them (Gummer, Roßmann, & Silber,
2021; Meade & Craig, 2012). Frequently, these checks in-
volve a task that respondents have to complete to indicate
their attentiveness, for example “click strongly agree” or “in-
stead of answering click the blue box in the right corner”.
Overall, nine grids were included in the wave’s question-
naire, one of which contained an attention check. All scales
were presented in a horizontal orientation. An example is
provided in the Appendix, Figure A1.

All 4,777 active panelists were invited to participate in
wave “ed” (initial sample = 3,287; refreshment sample =

1,490) of which 4,257 completed the questionnaire (initial
sample = 2,976; refreshment sample = 1,281). Prior to wave
“ed,” panelists of the initial sample had been invited to par-
ticipate in 22 waves, whereas panelists of the refreshment
sample had only been invited to between 4 and 7 waves, de-
pending on when they were recruited in 2016. Of the re-
spondents who completed the survey, 33% participated via
mailed questionnaire and 67% via the web (initial sample
= 68% web; refreshment sample = 65% web). Among the
web respondents, 15% completed the survey using mobile
devices.

2.1 Data quality measures

To investigate measurement errors in wave “ed,” we use
six data quality measures for each of the nine grid ques-
tions. We focus on measures that indicate whether respon-
dents may have skipped steps in the cognitive answering pro-
cess (Tourangeau, Rips, & Rasinski, 2000) to reduce their
response burden (Krosnick, 1991, 1999).

Left-aligned responses. The proportion of rows in a grid
where the left response option was used. Selecting the
first available answer on a scale can be a strategy to re-

1Data used in our study are available at the GESIS Data Archive:
study number ZA5665, Version 24.0.0 (GESIS Panel Team, 2018).
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duce response burden (Krosnick, 1999). This variable
takes values between 0 and 1, inclusive.

Extreme responses. The proportion of rows in a grid where
a scale end-point was selected. To reduce the complex-
ity of the response process, respondents could align
their answers to scale endpoints (Paulhus, 1991). This
variable takes values between 0 and 1, inclusive.

Item Nonresponse. The proportion of rows in a grid where
no answer was given. Respondents were able to skip
any row to ease their response process (Krosnick,
1991). This variable takes values between 0 and 1,
inclusive.

Straightlining. Indicator (0,1) that all rows in a grid have
the same answer. Satisficing response behavior (Kros-
nick, 1991, 1999) can lead respondents to base their
answers to a grid on the first response option they
deem satisfactory, if they then align their subsequent
responses to the grid to their first response, straightlin-
ing occurs (e.g., Roßmann et al., 2018).

Probability of differentiation (ρ). The use of diverse re-
sponse options. As an additional measure for non-
differentiation in responses to a grid, we calculate the
probability of differentiation ρ, as suggested by Kros-
nick and Alwin (1988). ρ takes values between 0 and
1 and is defined as: ρ = 1 −

∑n
i=1 P2

i , where n is the
number of response options and Pi is the proportion of
rows using response option i. ρ is missing for all grids
where any row has a missing value. Higher values in-
dicate the use of a more diverse set of response options
and 0 indicates straightlining.

Coefficient of variation (CV). The variation in chosen re-
sponse options. To complement ρ, we compute an ad-
ditional measure of nondifferentiation: CV = S

x where
x denotes the mean of all grid responses and S is the
standard deviation of these answers. CV is set to miss-
ing for all grids where any item has a missing value.
Similar to ρ, 0 indicates straightlining and higher val-
ues indicate more differentiation and potentially higher
data quality (McCarty & Shrum, 2000).

Failing an attention check. The eighth grid in the wave
“ed” questionnaire contained an instructed response
item attention check (Gummer et al., 2021; Meade
& Craig, 2012). Respondents were instructed to se-
lect the response option “rather disagree” for the sixth
item. The grid was part of an experiment; two-thirds
of the respondents were randomly assigned to receive
the attention check item. This measure is at the case
level and is 0 or 1 where 1 means that the respondent
gave the wrong answer.

The first six measures are at the case-grid level; each re-
spondent has a score for each measure for each of the nine
grids. The seventh measure, the attention check question, is
at the case level, though only two-thirds of the respondents
received the attention check question. The final data set con-
tains 38,313 data points clustered in 4,257 respondents.

To ease interpretation and comparison, we rescale all mea-
sures to take values between 0 and 1, where 0 indicates low
data quality in a grid (e.g., providing item nonresponses,
nondifferentation) and 1 indicates high data quality. Table 1
gives summary statistics for the seven measures after rescal-
ing. Correlations between the seven data quality measures
are shown in Figure 1. Some correlations are quite high,
especially between the three measures of nondifferentiated
responding (straightlining, CV, ρ). Others, however, are less
than .1, indicating that the measures capture different aspects
of measurement error.

2.2 Estimation of response probabilities

Response propensities are estimates of the probability that
a case will respond to a survey (Bethlehem et al., 2011, Chap-
ter 11). Response propensities vary between zero and one,
with higher values indicating higher probabilities to respond
to a survey. We estimate them with a model where the de-
pendent variable is each invited panel member’s observed re-
sponse status in wave “ed”. The independent variables are
the characteristics of a person (such as their age, gender, and
education) and information about the survey process in wave
“ed” as well as data from previous waves (e.g., how many
times a person was contacted and in which mode). A list of
all variables used for the estimation of the response propen-
sity model is given in Appendix Table B1.

Logistic regression is often used to estimate response
propensity models, but prediction algorithms from the ma-
chine learning literature have received increased attention in
the survey literature in recent years for several reasons (e.g.,
Bach et al., 2020; Buskirk & Kolenikov, 2015; Kern et al.,
2019). Researchers using logistic regression models need to
specify the functional form of their model in advance. That
is, they need to choose which variables should be included
in the model and in which functional form (e.g., in linear or
quadratic form, with or without interactions). While such
approaches are useful for hypothesis or theory testing, spec-
ifying a model in advance is less useful when the goal is
to model the response process as closely as possible. With
tree-based machine learning algorithms such as the one used
in this paper, the response process modelling is completely
driven by the associations found in the data, which often re-
sults in more accurate estimates of the response probabilities
(see, e.g. Kern et al., 2019). That is, using a tree-based ma-
chine learning model, we do not need to specify the func-
tional form of the response propensity model in advance. In
addition, we do not need to decide which of the variables
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Table 1
Descriptive statistics for Data Quality Measures

Data quality measure Mean Min Max N(grids) N(obs)

Left-aligned responses 0.917 0 1 9 38,313
Extreme responding 0.814 0 1 9 38,313
Item Nonresponse 0.992 0 1 9 38,313
Straightlining 0.968 0 1 9 38,313
ρ 0.577 0 1 9 36,629
Coefficient of variation 0.340 0 1 9 36,629
Failing attention check 0.849 0 1 1 2,320

Note. All measures rescaled: 0 is low quality and 1 is high quality.

Left−aligned R.

0.688 Extreme R.

−0.013 −0.028 Item Nonresp.

−0.047 −0.021 −0.027 Straightlining

−0.184 −0.142     . 0.673 Rho

−0.757 −0.540     . 0.375 0.581 CV

0.069 0.069 0.027 0.241 0.237 0.106 Attention Check

Figure 1. Correlation matrix of seven data quality measures

should be included in the model. Instead, we feed the al-
gorithm all information available for both respondents and
nonrespondents and let the algorithm decide which variables
should enter the model and with what functional form. This
decision is based only on the data, the explanatory power
of the independent variables and the resulting performance
of the model. Since we are interested in obtaining accurate
estimates of the response probabilities and not in the model
itself, this data-driven approach is preferable to the theory-
driven approach underlying traditional regression modeling.
Moreover, several studies have shown that such tree-based
machine learning algorithms often outperform standard re-
gression models in terms of bias in the resulting response
propensities (see, e.g., Buskirk & Kolenikov, 2015; Kern et
al., 2019).

In this study, we use the gradient boosting machine algo-
rithm as implemented in the “gbm” package (version 2.1.3)
in R (Friedman, 2001; R Core Team, 2020; Ridgeway, 2017).
Briefly speaking, this algorithm is based on a combination of
several classification trees.2 Each classification tree works
by splitting the predictor space (i.e., the set of all possible
values of the predictors) into non-overlapping rectangular re-
gions such that the the resulting regions are as homogeneous
as possible with respect to the outcome variable (i.e., the re-
sponse status of an individual). In other words, the data are
split into regions such that the share of respondents in a re-
sulting region is either very high or very low.

The tree-growing-process starts by determining the pre-

2Our description of the method draws heavily on Kern et al.
(2019) and Bach et al. (2020).
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dictor and its cut-point such that the resulting split creates
two sub-regions where the homogeneity of the outcome is
maximal. Through a recursive approach, the tree is then
grown by considering each resulting sub-region for a new
split using the process described above. Eventually, this pro-
cess will result in sub-regions with only one observation.
Such a tree, however, would perform poorly when applied
to new data. Therefore, stopping criteria such as a minimum
number of observations per sub-region may be applied.

Because a single tree often performs poorly (Kern et al.,
2019), boosting uses a combination of several trees to form
the final prediction model. Each tree is built from the results
of the previous tree: new trees are fit to the difference be-
tween the observed outcome and the predicted probability.
That is, a new tree tries to explain what the previous tree(s)
could not. In this way, boosting algorithms aim to find a com-
bination of trees such that each new tree adds an improve-
ment to the previous tree and thereby improves the overall
algorithm. In the end, this process results in a powerful com-
bination of many trees. For further technical details, see, e.g.
Friedman (2001), Kern et al. (2019), Ridgeway (2017).

Following standard practice, we randomly split the 4,777
invited cases into training (75%) and test (25%) sets (Hastie,
Tibshirani, & Friedman, 2009, Chapter 7). We train and tune
the boosting algorithm on the training sample using five-fold
cross-validation to guard against overfitting. Final model
performance is then evaluated on the test set to get a real-
istic estimate of the test error. The final response propen-
sity model achieves an accuracy of 0.79. That is, we cor-
rectly classify 79 percent of all participants in the test set
as either a respondent or a nonrespondent (using Youden’s J
statistic to determine the optimal probability cutoff (Youden,
1950). Our model seems to do equally well at identifying
both respondents and nonrespondents: sensitivity is 0.80 and
specificity is 0.77. Regarding the area under the (receiver op-
erating characteristic) curve (AUC), our model achieves ex-
cellent discrimination between the two classes (AUC=0.84),
according to the rules of thumb proposed by Hosmer and
Lemeshow (2000). Moreover, the AUC tells us that the
chance that a randomly chosen respondent has a higher re-
sponse propensity score than a randomly chosen nonrespon-
dent is 0.84. Thus, our model seems to predict response in
wave “ed” of the panel survey very well, providing us with
accurate estimates of each participant’s response probability.

We then predict the response propensity for all respond-
ing cases (n = 4,257). Only responding cases are needed
for analysis, because the data quality measures developed
above are available only for those panelists who responded
in wave “ed”. The mean response propensity among re-
spondents from the initial sample is 0.93 (Std. Dev. = 0.08,
Min = 0.18, Max = 0.97). Response propensities among
respondents in the refreshment sample are similar: mean of
0.92 (Std. Dev. = 0.08, Min = 0.18, Max = 0.97).

2.3 Analyses

To understand the relationship between response proba-
bilities and data quality, we fit seven mixed models. In each
model, the dependent variable is one of the measures of data
quality. The independent variables are the predicted response
propensity, an indicator for the nine grids, and an indicator
for the refreshment sample. We include indicators for the
grids (dummy variables) to control for differences between
the grids regarding content and layout that may impact re-
sponse behavior. In addition, we include an interaction ef-
fect between the sample type and the response propensities.
We suspect that the relationship between response propensity
and data quality might differ for respondents of the refresh-
ment sample who have been invited to at most 7 waves and
the initial sample who participated in up to 22 waves. The
model also includes random intercepts at the respondent level
to allow for the fact that data quality varies between respon-
dents for reasons not captured in our independent variables.

All analyses are done using Stata 15.1. Replication code
for the analyses and the prediction of response propensities
is available in the online appendix.

3 Results

The mixed models reveal whether response propensities
correlate with data quality measures in the initial and refresh-
ment samples. Table 2 shows the estimated slope coefficients
from the models separately for the two sample types: initial
and refreshment. The third column tests for differences be-
tween the samples’ slopes. Full results from the regression
models are provided in the Appendix, Table B2. The model
for the attention check question has many fewer cases be-
cause each respondent saw that question only once and one-
third of the respondents did not see it at all.

For the initial sample, we find a significant relation-
ship between data quality and response propensities for four
measures: item nonresponse, straightlining, ρ, and the CV.
Higher response propensities are associated with better data
quality. High propensity respondents less frequently refused
to answer when completing the grids of the questionnaire
compared to low propensity respondents. Similarly, panelists
with higher response propensities provide more differenti-
ated answers compared to low propensity respondents. They
use more of the available response options and their answers
show more variation. Our data show no significant effects
of response propensity on left-aligned responses, extreme re-
sponses, and failing the attention check. Interestingly, we
find no significant associations between response propensi-
ties and data quality for the refreshment sample (see Table
2).

We then test whether the slopes differ significantly be-
tween the initial and refreshment samples. That is, we ana-
lyze whether the relationship between response propensities
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Table 2
Regression estimates on relationship between response propensities and data quality measures by
sample

Sample Difference
Initial Refreshment between

Data quality measure Coeffa(SE) Coeffa(SE) samples N(grids) N(respondents)

Left-aligned responses −0.026 0.017 9 38313
(0.016) (0.020)

Extreme responding −0.033 0.057 9 38313
(0.032) (0.039)

Item Nonresponse 0.016*** −0.005 ** 9 38313
(0.004) (0.005)

Straightlining 1.420* −0.014 9 38313
(0.686) (0.950)

ρ 0.045* −0.021 * 9 36629b

(0.018) (0.022)

Coefficient of variation 0.051** −0.016 * 9 36629b

(0.018) (0.021)

Failing attention check −0.259 0.552 1 2320
(0.862) (0.939)

a Estimated relationship between response propensities and data quality measure
b N differs because of omission of missing values (see Data section)
* p < 0.05 ** p < 0.01 *** p < 0.001

and data quality measures vary between the samples. The
slopes differ in the item nonresponse, ρ, and CV models.
Figure 2 visualizes the slopes for these three data quality
measures. The plots show that these differences in data qual-
ity between samples are most pronounced for lower propen-
sities, whereas high propensity cases appear to provide re-
sponses of relatively similar quality.

4 Discussion and Conclusion

With the present study, we investigate the relationship be-
tween response probabilities and measurement error in grid
questions in a panel survey. Drawing on data from the
probability-based GESIS panel, we find response propensi-
ties to be associated with several measures of data quality.
However, this relationship holds only for respondents who
are part of the initial sample. We find no such effects for
respondents who are part of the newly recruited refreshment
sample, who have participated in fewer waves of the panel.

We can only speculate about the reasons for the differ-
ences in effects between the samples. In an systematic re-
view, Olson (2013) summarizes different hypotheses on re-
lationship between nonresponse (i.e., response probabilities)
and data quality. She argues that the relationship is likely
not explained by one single hypotheses but the interplay of
different effects. In our view, this could be a possible ex-

planation for our findings. On the one hand, the refresh-
ment sample consists of newly recruited panelists who re-
cently agreed to participate in re-interviews. These respon-
dents can be reasoned to properly answer questions as they
remember their participation decision well and consequently
try to behave like a good respondent. Olson (2013) labels
this explanation the “self-perception hypothesis” with refer-
ence to self-perception theory (Bem, 1967). We assume this
effect to counteract other effects (e.g., motivation) that would
result in a negative relationship between response probabil-
ities and data quality. On the other hand, respondents in
the initial sample participated for several waves and effects
of decisions made during the panel recruitment should be
less pronounced. Consequently, beneficial effects such as the
self-perception hypothesis should be smaller and not able to
counteract diminishing effects of factors that influence non-
response and data quality.

We do not find effects for all data quality measures in
our analyses. This finding highlights the importance of
acknowledging that data quality encompasses different as-
pects that are the result of different response behaviors and
motivations—some of which are related to response proba-
bilities.

Our findings have practical implications for surveys that
feature adaptive and responsive designs, particularly panel
surveys. First, efforts to balance the sample, for instance by
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Figure 2. Relationship between response propensity and selected data quality measure

case prioritization (Peytchev, Riley, et al., 2010), may af-
fect both nonresponse bias and measurement error. In our
study, respondents with low response propensities are those
most likely to produce missing answers and nondifferenti-
ated responses. If adaptive design succeeds in increasing re-
sponse by such cases, data quality may suffer. Second, re-
sponse propensities could further be used to target data qual-
ity improvement interventions for high risk groups. For ex-
ample, low propensity groups might be routed to a version
of the questionnaire without grid questions to mitigate non-
differentiation (Roßmann et al., 2018). Third, adaptive de-
sign could specifically be designed to simultaneously reduce
the risk of nonresponse and measurement errors (Calinescu
& Schouten, 2016). However, the relationship between re-
sponse probabilities and measurement error we find in our
paper will increase the complexity of the optimization task
when fielding such a design.

As always, our study can be extended and offers future
research opportunities. We focus on data quality in grids
because of this question type’s important role in question-
naire design and its susceptibility for quality issues. With our
data, we analyze the relationship between response probabil-
ities and data quality in nine different grid questions. How-
ever, as previous research (e.g., Liu & Cernat, 2018) has
shown, the design and content of a grid question may im-
pact the response process and thus data quality. We therefore
encourage future studies to extend our work and investigate
a more diverse set of grid questions. Based on our experi-

ences we would recommend to implement such a study in a
long-running panel survey that features different refreshment
samples. It would also be interesting if results could be com-
pared between panels in different countries to test whether
our results can be generalized beyond Germany.

In addition, our approach of estimating response propen-
sities and using them to understand the relationship between
nonresponse and data quality could be extended to other
question types such as open-ended questions. Investigating
further question types will require to select a different set of
data quality measures that indicate issues in their specific an-
swering process. In the case of open-ended questions, the ex-
tent and topical variety of narrative answers could be interest-
ing to analyze (e.g., Smyth, Dillmann, Christian, & McBride,
2009).

Finally, in our study we draw on the beneficial properties
of panel data. To predict response propensities we use in-
formation available from interviews in prior waves. When
building similar models in cross-sectional survey, this step
will be more challenging because researchers have to draw
on sparse information that they are able to gather for the
gross sample. If a sample is drawn from population regis-
ters most likely only basic socio-demographic information
will be available (e.g., sex, age, place of residency). When
continuing our line of research for cross-sectional survey, we
recommend future research to devote additional attention to
the estimation of response probabilities and especially the
inclusion of auxiliary data that will help to improve the pre-
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diction.

References

AAPOR. (2016). Standard definitions: Final dispositions of
case codes and outcome rates for surveys. AAPOR.

Bach, R. L., Eckman, S., & Daikeler, J. (2020). Misreporting
among reluctant respondents. Journal of Survey Statis-
tics and Methodology, 8(3), 566–588. doi:10 . 1093 /

jssam/smz013
Bem, D. J. (1967). Self-perception: An alternative interpre-

tation of cognitive dissonance phenomena. Psycholog-
ical Review, 74(3), 73–93.

Bethlehem, J., Cobben, F., & Schouten, B. (2011). Handbook
of nonresponse in household surveys. Hoboken, NJ:
John Wiley & Sons, Inc.

Bosnjak, M., Dannwolf, T., Enderle, T., Schaurer, I., Stru-
minskaya, B., Tanner, A., & Weyandt, K. W. (2018).
Establishing an open probability-based mixed-mode
panel of the general population in germany: The
GESIS panel. Social Science Computer Review, 36(1),
103–115. doi:10.1177/0894439317697949

Buskirk, T. D., & Kolenikov, S. (2015). Finding Respondents
in the Forest: A Comparison of Logistic Regression
and Random Forest Models for Response Propensity
Weighting and Stratification. Public Opinion Quar-
terly, 74(3), 413–432.

Calinescu, M., & Schouten, B. (2016). Adaptive survey de-
signs for nonresponse and measurement error in multi-
purpose surveys. Survey Research Methods, 10(1), 35–
47.

Fricker, S., & Tourangeau, R. (2010). Examining the re-
lationship between nonresponse propensity and data
quality in two national household surveys. Public
Opinion Quarterly, 74(5), 934–955.

Friedman, J. H. (2001). Greedy function approximation: A
gradient boosting machine. Annals of Statistics, 29(5),
1189–1232.

GESIS Panel Team. (2018). GESIS panel - standard edition.
GESIS Datenarchiv, Köln. ZA5665 Datenfile Version
24.0.0. doi:10.4232/1.13001

Groves, R. M. (2006). Nonresponse rates and nonresponse
bias in household surveys. Public Opinion Quarterly,
70(5), 646–675.

Gummer, T., & Blumenstiel, J. E. (2018). Experimental evi-
dence on reducing nonresponse bias through case pri-
oritization: The allocation of interviewers. Field Meth-
ods, 30(2), 124–139.

Gummer, T., Roßmann, J., & Silber, H. (2021). Using in-
structed response items as attention checks in web
surveys: Properties and implementation. Sociological
Methods & Research, 50(1), 238–264.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The ele-
ments of statistical learning: Data mining, inference,
and prediction (2nd ed.). Berlin: Springer.

Hosmer, D., & Lemeshow, S. (2000). Applied Logistic Re-
gression. New York: Wiley.

Kern, C., Klausch, T., & Kreuter, F. (2019). Tree-based ma-
chine learning methods for survey research. Survey Re-
search Methods, 13(1), 73–93. doi:10 . 18148 / srm /

2019.v1i1.7395
Kreuter, F., Müller, G., & Trappmann, M. (2010). Non-

response and measurement error in employment re-
search: Making use of administrative data. Public
Opinion Quarterly, 74(5), 880–906.

Krosnick, J. A. (1991). Response strategies for coping with
the cognitive demands of attitude measures in surveys.
Applied Cognitive Psychology, 5(3), 213–236.

Krosnick, J. A. (1999). Survey research. Annual Review of
Psychology, 50(1), 537–567.

Krosnick, J. A., & Alwin, D. F. (1988). A test of the form-
resistant correlation hypothesis: Ratings, rankings, and
the measurement of values. Public Opinion Quarterly,
52(4), 526–538.

Liu, M., & Cernat, A. (2018). Item-by-item versus matrix
questions: A web survey experiment. Social Science
Computer Review, 36(6), 690–706.

McCarty, J. A., & Shrum, L. J. (2000). The measurement
of personal values in survey research: A test of al-
ternative rating procedures. Public Opinion Quarterly,
64(3), 271–298.

Meade, A. W., & Craig, S. B. (2012). Identifying careless re-
sponses in survey data. Psychological Methods, 17(3),
437.

Olson, K. (2013). Do non-response follow-ups improve or
reduce data quality? A review of the existing litera-
ture. Journal of the Royal Statistical Society: Series A,
176(1), 129–145.

Paulhus, D. L. (1991). Measurement and control of response
bias. In J. P. Robinson, P. R. Shaver, & L. S. Wrights-
man (Eds.), Measures of personality and social psy-
chological attitudes (pp. 17–59). New York, NY: Aca-
demic Press.

Peytchev, A., Peytcheva, E., & Groves, R. M. (2010).
Measurement error, unit nonresponse, and self-reports
of abortion experiences. Public Opinion Quarterly,
74(2), 319–327.

Peytchev, A., Riley, S., Rosen, J., Murphy, J., & Lindblad, M.
(2010). Reduction of nonresponse bias through case
prioritization. Survey Research Methods, 4(1), 21–29.

R Core Team. (2020). A language and environment for sta-
tistical computing. Vienna, Austria: R Foundation for
Statistical Computing.

https://doi.org/10.1093/jssam/smz013
https://doi.org/10.1093/jssam/smz013
https://doi.org/10.1177/0894439317697949
https://doi.org/10.4232/1.13001
https://doi.org/10.18148/srm/2019.v1i1.7395
https://doi.org/10.18148/srm/2019.v1i1.7395


THE RELATIONSHIP BETWEEN RESPONSE PROBABILITIES AND DATA QUALITY IN GRID QUESTIONS 73

Ridgeway, G. (2017). Gbm: Generalized boosted regression
models. R package version 2.1.3. https://cran.r-project.
org/package=gbm.

Rosen, J. A., Murphy, J., Peytchev, A., Holder, T., Dever, J.,
Herget, D., & Pratt, D. (2014). Prioritizing low propen-
sity sample members in a survey: Implications for non-
response bias. Survey Practice, 7(1).

Roßmann, J., Gummer, T., & Silber, H. (2018). Mitigating
satisficing in cognitively demanding grid questions:
Evidence from two web-based experiments. Journal of
Survey Statistics and Methodology, 6(3), 376–400.

Schouten, B., Cobben, F., Lundquist, P., & Wagner, J. (2016).
Does more balanced survey response imply less non-
response bias? Journal of the Royal Statistical Society:
Series A (Statistics in Society), 179(3), 727–748.

Schouten, B., Peytchev, A., & Wagner, J. (2017). Adaptive
survey design. CRC Press.

Smyth, J. D., Dillmann, D. A., Christian, L. M., & McBride,
M. (2009). Open-ended questions in web surveys: Can
increasing the size of answer boxes and providing ex-
tra verbal instructions improve response quality? Pub-
lic Opinion Quarterly, 73(2), 325–337.

Tourangeau, R. (2019). How errors cumulate: Two examples.
Journal of Survey Statistics and Methodology, (online
first).

Tourangeau, R., Couper, M. P., & Conrad, F. (2004). Spacing,
position, and order: Interpretive heuristics for visual
features of survey questions. Public Opinion Quar-
terly, 68(3), 368–393.

Tourangeau, R., Maitland, A., Rivero, G., Sun, H., Williams,
D., & Yan, T. (2017). Web surveys by smartphone and
tablets: Effects on survey responses. Public Opinion
Quarterly, 81(4), 896–929.

Tourangeau, R., Michael Brick, J., Lohr, S., & Li, J. (2017).
Adaptive and responsive survey designs: A review and
assessment. Journal of the Royal Statistical Society:
Series A, 180(1), 203–223.

Tourangeau, R., Rips, L. J., & Rasinski, K. (2000). The
psychology of survey response. Cambridge University
Press.

Wagner, J. (2008). Adaptive survey design to reduce nonre-
sponse bias (Doctoral dissertation).

Wagner, J., West, B. T., Kirgis, N., Lepkowski, J. M., Axinn,
W. G., & Ndiaye, S. K. (2012). Use of paradata in a
responsive design framework to manage a field data
collection. Journal of Official Statistics, 28(4), 477–
499.

Youden, W. J. (1950). Index for rating diagnostic tests. Can-
cer, 3, 32–35.

https://cran.r-project.org/package=gbm
https://cran.r-project.org/package=gbm


74 TOBIAS GUMMER, RUBEN BACH, JESSICA DAIKELER AND STEPHANIE ECKMAN

Appendix A
Figure

Figure A1. Screenshot of question grid on personality in GESIS Panel wave ed.
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Appendix B
Tables

Table B1
Predictor variables used in nonresponse model

Predictor variables

Trust: general trust
Private internet usage
Frequency private Internet usage: PC
Private internet usage: smart phone
Private internet usage: tablet PC
Survey experiences in total
Survey experiences online
Survey experiences postal
Survey experiences personal
Gender
Country of birth mother, region 3 categories
Marital status, 5 categories
Steady partner
Joint household
Highest school leaving certificate, incl. N/A
Vocational or professional training, incl. N/A
Employment situation
Number of children under 16 years, 3 categories
Personal income, 15 categories
Household income, 14 categories
Television consumption
Radio consumption
Newspaper consumption
Most important problem in Germany
Second most important problem in Germany
Satisfaction federal government
Satisfaction democracy in Germany
Political interest
Left-right-scale
Civic duty: Social/ political activity
Civic duty: Political consume
Civic duty: Military service
Quality of life in region
Affected by environmental influences: Noise pollution
Affected by environmental influences: Air pollution
Affected by environmental influences: Missing accessible public parks
Social relationship neighborhood
Previously changed place of residence
More time for: Read books
More time for: Gardening
More time for: Home improvement

Continues on next page
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Continued from last page

More time for: Watching TV
More time for: Doing sports
More time for: Going out
More time for: Travel
More time for: Surf the internet/ play on the computer
More time for: Children/ grandchildren
More time for: Partner
More time for: Relatives/ friends
More time for: Voluntary activities
More time for: Hobbies
More time for: Go shopping
More time for: Others (indicator dichotomous)
More time for them: Other - open ended
Personal priority: Be able to afford something
Personal priority: Be there for others
Personal priority: Fulfil oneself
Personal priority: Successful career
Personal priority: Own house
Personal priority: Fortunate marriage/partnership
Personal priority: Children
Personal priority: Campaign politically/ socially
Personal priority: See the world, make a lot of voyages
Mode of invitation
Mode of participation
Mode of invitation at first wave
AAPOR wave code
Survey Evaluation: Interesting
Survey Evaluation: Diverse
Survey Evaluation: Important for science
Survey Evaluation: Long
Survey Evaluation: Difficult
Survey Evaluation: Too personal
Overall assessment
Participation interrupted
Other people present during interview
Participation Location
Participation device
Year of birth, extreme values summarized
Participation history: Counting response in the previous waves



THE RELATIONSHIP BETWEEN RESPONSE PROBABILITIES AND DATA QUALITY IN GRID QUESTIONS 77

Ta
bl

e
B

2
R

eg
re

ss
io

n
es

tim
at

es
on

re
la

tio
ns

hi
p

be
tw

ee
n

re
sp

on
se

pr
op

en
si

tie
s

an
d

da
ta

qu
al

ity
m

ea
su

re
s

L
ef

t-
al

ig
ne

d
E

xt
re

m
e

It
em

Fa
ili

ng
re

sp
on

se
s

re
sp

on
se

s
no

nr
es

po
ns

e
St

ra
ig

ht
lin

in
g

ρ
C

V
at

te
nt

io
n

ch
ec

k
b

(s
e)

b
(s

e)
b

(s
e)

b
(s

e)
b

(s
e)

b
(s

e)
b

(s
e)

R
es

po
ns

e
pr

op
en

si
ty

−
0.

02
6

−
0.

03
3

0.
01

6**
*

1.
42

0*
0.

04
5*

0.
05

1**
−

0.
25

9
(0
.0

16
)

(0
.0

32
)

(0
.0

04
)

(0
.6

86
)

(0
.0

17
)

(0
.0

18
)

(0
.8

62
)

Sa
m

pl
e:

In
iti

al
R

ef
.

R
ef

.
R

ef
.

R
ef

.
R

ef
.

R
ef

.
R

ef
.

R
ef

re
sh

m
en

t
−

0.
04

7*
−

0.
10

7*
0.

01
8**

1.
49

9
0.

06
9**

0.
07

4**
−

0.
68

9
(0
.0

23
)

(0
.0

47
)

(0
.0

06
)

(1
.0

87
)

(0
.0

26
)

(0
.0

26
)

(1
.1

84
)

R
ef

re
sh

m
en

t×
0.

04
3

0.
09

0
−

0.
02

1**
−

1.
43

4
−

0.
06

6*
−

0.
06

7*
0.

81
1

R
es

po
ns

e
pr

op
en

si
ty

(0
.0

25
)

(0
.0

51
)

(0
.0

07
)

(1
.1

72
)

(0
.0

28
)

(0
.0

28
)

(1
.2

75
)

N
38

31
3

38
31

3
38

31
3

38
31

3
36

62
9

36
62

9
23

20
L

og
L

ik
el

ih
oo

d
23

44
2.

19
8

56
33

.0
60

57
84

1.
61

9
-4

20
3.

46
3

20
06

1.
24

7
21

20
5.

88
2

-9
85

.5
57

In
te

rc
ep

ta
nd

co
nt

ro
ls

om
itt

ed
fr

om
ou

tp
ut

.
*

p
<

0.
05

**
p
<

0.
01

**
*

p
<

0.
00

1


	Introduction
	Data and Methods
	Data quality measures
	Estimation of response probabilities
	Analyses

	Results
	Discussion and Conclusion

