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Cross-sectional variance estimation for the French
“Labour Force Survey”

Pascal Ardilly and Guillaume Osier
Institut National de la Statistique et des Études Économiques (INSEE)

This paper describes the method that was implemented by the Statistical Office of France (IN-
SEE) to calculate cross-sectional variance estimates for the French “Labour Force Survey”
(LFS). A home-made SAS application, named POULPE, was used for the calculations. After
outlining the LFS sample design in the first part, the paper presents the software POULPE,
particularly its technical capabilities and the theoretical principles underlying the variance esti-
mation methods it implements. The third part develops how POULPE was utilized to compute
variance estimates for the LFS, focusing on the statistical problems which were met and how
they were solved. Finally, we provide estimated standard errors for totals and ratios and we
make comments about those values.
Keywords: Multi-stage sampling, software POULPE, standard error, confidence interval, de-
sign effect

1 The French “Labour Force Survey”

1.1 Scope and objectives of the survey

The “Labour Force Survey” (LFS) is a quarterly survey car-
ried out by the INSEE on a sample of around 54,000 private
dwellings. Its purpose is to study the French labour mar-
ket every quarter (in particular, estimate the number of un-
employed people and the unemployment rate) and measure
quarterly employment variations. All the persons aged 15
and over living in Continental France are eligible for inclu-
sion in the sample.

1.2 A multi-stage sample

The LFS is based on a multi-stage selection of dwellings.
The Primary Sampling Units (PSU) are either municipali-
ties or blocks. They were stratified according to NUTS2
region and degree of urbanisation. At the first stage, PSUs
were selected with probability proportional to the number of
dwellings. One sector (a sector is a contiguous area con-
taining between 120 and 240 dwellings) was then chosen
in each PSU with probability proportional to the number of
dwellings, and one area of around 20 dwellings was drawn
from each sector by simple random sampling. Finally, all
the dwellings enumerated by the 1999 Census within the se-
lected areas were surveyed.

Contact information: Institut National de la Statistique et des
Études Économiques (INSEE), 18 Boulevard Adolphe Pinard,
75675 PARIS Cedex 14, France (pascal.ardilly@insee.fr)

The dwellings which came into being after the Census
(the new dwellings) were sampled according to a specific de-
sign. Let X denote the total number of new dwellings in an
area (value collected during the fieldwork):
• X ≤ 10: all the new dwellings are surveyed
• 11 ≤ X ≤ 40: 10 dwellings are selected by simple

random sampling (SRS)
• 41 ≤ X: 1/4 of the dwellings are selected by SRS

2 The variance estimation software POULPE

2.1 Introduction and key features

POULPE is a SAS macro-based application which was de-
veloped by the INSEE for variance estimation in complex
designs. The sampling plans POULPE can deal with are:

1. The one-phase multi-stage plans with at each stage one
of the following

(a) Simple random sampling without replacement

(b) Balanced simple random sampling

(c) Sampling with unequal inclusion probabilities
(probability proportional-to-size sampling)

(d) Systematic sampling with equal inclusion proba-
bilities

2. The two-phase multi-stage plans where the second
phase is carried out by either Poisson sampling or post-
stratified sampling.

3. The three-phase multi-stage plans where the second
phase is carried out by post-stratified sampling and the
third one by Poisson sampling.
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In particular, the impact of unit non-response on variance
estimates can be included in the calculations by viewing a
sample of respondents as the outcome of an additional phase
of selection. In addition, POULPE can take into account the
impact of weight adjustments to external data sources (cali-
bration procedure, cf. Deville and Särndal 1992).

For a given set of estimators, POULPE will estimate:
• Their variances and standard errors
• The lower and upper bounds of a 95% confidence in-

terval. The estimators are assumed to follow a normal
distribution, provided the sample size is large enough.
Thereby, a 95% confidence interval for a parameter θ
is given by:

CÎ (θ, 95%) =
[
θ̂ − 2

√
V̂

(
θ̂
)
, θ̂ + 2

√
V̂

(
θ̂
)]

(1)

• The design effect Deff. This is the ratio of the actual
variance, under the sampling plan P actually used, to
the variance that would be obtained under a simple ran-
dom sampling without replacement and of same size:

Deff =
VP

(
Ŷ
)

VS RS (N · ȳ)
(2)

N is the target population size and ȳ the sample mean of
the variable y. N ȳ is the standard unbiased estimator of the
population total of y under simple random sampling. Basi-
cally, a design effect greater than one indicates that the de-
sign has increased the variance, while a value less than one
indicates that the design actually decreased the variance of
the estimate. The Deff estimation formula is given in the
appendix.

2.2 Theoretical principles underlying the vari-
ance calculations

POULPE is based on analytic variance formulas, i.e. explicit
formulas reflecting the peculiarities of a sample design, and
Taylor linearisation. Detailed documentation on this topic
can be found in Caron (1998).

2.2.1 The general formula

Every multi-stage sampling is splitted in “elementary” sam-
plings. The variances contributed by each “elementary” sam-
pling are estimated and then combined so as to form an esti-
mate for the overall variance. The underlying formula is due
to Raj (1968). Consider a two-stage sampling design where
the second-stage sampling is assumed to have the properties
of independence and invariance and let t̂ denote the Horvitz-
Thompson estimator of a total t. An unbiased variance esti-
mator for t̂ is given by:

V̂
(
t̂
)
= f

(
T̂
)
+

∑
i∈s

ωis · V̂i (3)

• f
(
T̂
)

is the estimated variance contributed by the first
stage. T̂ is the vector of the estimated totals for the
PSUs.
• V̂i is an unbiased estimator for the second-stage vari-

ance in the PSUi.
• ωis is the sampling weight of i.

It is easy to see that the formula (3) can be extended to multi-
stage designs. Thus, the variance of a multi-stage design can
be expressed as a sum of variance terms representing the con-
tribution of each sampling stage.

2.2.2 Variance formulas for element sampling designs

Let
t̂ =

∑
k∈s

yk

πk

denote the Horvitz-Thompson estimator of a population total

t =
∑
k∈U

yk

.

Simple random sampling without replacement of size n

V̂
(
t̂
)
= N2 ·

(
1
n
−

1
N

)
· s2 (4)

Where n is the sample size, N the population size and s2

the sample variance of the target variable y.

Balanced simple random sampling of size n

V̂
(
t̂
)
= N2 ·

(
1
n
−

1
N

)
· e2 (5)

Where e2 is the sample variance of the linear regres-
sion residuals of the target variables on the balance variables
(Deville and Tillé 2005).

Sampling with unequal inclusion probabilities
Sampling schemes with unequal inclusion probabilities are
difficult to handle because:
• The double inclusion probabilities πi j (i.e. the proba-

bility that both i and j be selected) generally cannot be
calculated.
• The ”classical” Horvitz-Thompson variance estimator

(Särndal et al. 1992) is expressed as a quadratic form.
The number of terms in the sum is prohibitive.

POULPE relies on the following variance formula:

V̂
(
t̂
)
=

n
n − 1

∑
k∈s

(1 − πk) ·
[

yk

πk
− D

( y
π

)]2

(6)
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Where

D
( y
π

)
=

∑
i∈s (1 − πi) yi∑
i∈s (1 − πi) πi

The formula (6) is an approximation which is valid under
fixed-sized sample designs with large entropy (randomness).
It only requires knowing the simple inclusion probabilities
{πi, i ∈ s} . Besides, the sum has only n terms, where n is the
effective sample size, which makes (6) tractable.

Systematic sampling of size n with equal inclusion proba-
bilities

V̂
(
t̂
)
= N2

(
1
n
−

1
N

)
· δ2 (7)

Where

δ2 =
1

2 (n − 1)

n−1∑
i=1

(yi − yi+1)2

If the population is listed in random order, (7) is similar
to (4). For information on variance estimation under system-
atic sampling, see Wolter (1985).

2.2.3 Multi-phase sampling

Variance estimation under multi-phase sampling is a long-
established theory (Särndal et al. 1992). It can be regarded as
an extension of variance estimation under multi-stage sam-
pling (cf. 2.2.1): the variance of a multi-phase design can be
expressed as a sum of variance terms representing the contri-
bution of each sampling phase. POULPE tackles multi-phase
sampling designs by estimating the variances contributed by
each phase of selection and then combining them in order to
obtain an estimate for the overall variance.

2.2.4 Treatment of non-linear statistics

POULPE can deal with non-linear statistics expressed as ra-
tios or products of linear estimators by linearising them. Lin-
earising a non-linear statistic θ̂ consists of deriving a linear
statistic which has the same asymptotic variance:

Var
(
θ̂
)
≈ Var

∑
i∈s

ωis × zi

 (8)

For instance, consider the ratio θ̂ of two linear estimators
X̂ and Ŷ for the totals X and Y of two variables x and y. Then,
a “linearised” variable at k for θ̂ is:

zk =
1
X

(
yk −

Y
X

xk

)
(9)

An extensive literature about the linearisation technique
is available, e.g. Woodruff (1971), Binder and Patak (1994),
Deville (1999).

2.3 Running POULPE

As an “analytic” variance estimation software, POULPE has
strong theoretical foundations. The direct consequence of
this is much information is needed to make the software run.
That information is conveyed through three datasets which
must be created before running POULPE.

2.3.1 The design dataset

The design dataset will describe a multi-stage sampling plan
according to a stage-by-stage hierarchy. The following infor-
mation will be given for each sampling stage:
• The description of the selected units
• The description of the ”aggregation” units, from which

the selected units are drawn
• The type of sampling that is implemented

2.3.2 The survey dataset

The survey dataset has one record per unit that is drawn, in-
cluding out-of-scope and non-responding units. The dataset
also contains identifying codes for the units which are se-
lected at each sampling stage. Finally, additional variables
must be recorded depending on the type of sampling design,
e.g.:
• An identifying variable for the sampling phases (in

case of multi-phase design)
• Estimated response probabilities
• Calibration variables
• The variables used to arrange the sampling frame (in

case of systematic sampling). . .

2.3.3 The geographical dataset

It contains relevant auxiliary numerical information about the
sampling units, basically:
• Population sizes (in case of simple random sampling

or systematic sampling)
• The sample distribution of the “size” variable (in case

of probability proportional-to-size sampling)
On the basis of the information contained in the geo-

graphical and the survey datasets, POULPE will manage to
calculate the inclusion probabilities for each sampling stage.
This information is essential for variance estimation.

2.3.4 The interactive environment

The construction of the design, the survey and the geograph-
ical datasets is the most difficult step in using POULPE. It is
as difficult as the sample selection is complex. Once those
three preliminary datasets have been created, running the
software will be pretty easy. POULPE carries out variance
estimation in four stages. At each stage, a macro is executed
and some work is done. Thanks to a “push-button” environ-
ment, assigning values to the macro parameters is interactive.
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Figure 1. Sampling ”Tree” of the LFS

3 Implementation of POULPE to the French
”Labour Force Survey”

This section deals with the implementation of POULPE to
produce variance estimates in the particular situation of the
French “Labour Force Survey”. The emphasis is put on
the creation of the three preliminary datasets, the problems
which were encountered during this stage and the solutions
which were found.

3.1 Creation of the design dataset

As stated in 2.3.1, the design dataset aims to describe a multi-
stage sampling design according to a stage-by-stage hierar-
chy. In the case of the LFS, on the basis of the information
given in 1.2, that hierarchy is:

(0): Stratification by NUTS2 region and degree of urbani-
sation

(1): Selection of PSUs with probability proportional to the
number of dwellings

(2): Selection of one sector with probability proportional
to the number of dwellings

(3): Selection of one area by simple random sampling
(4): Exhaustive selection of the enumerated dwellings;

simple random selection of new dwellings
A sampling “tree” is a good way to represent multi-stage

sampling designs, as shown in Figure 1.
However, a major statistical problem happens. It is due

to samples of size 1: within a PSU, one sector is selected and
one area is then selected within a sector. Samples of size 1 do
not allow unbiased variance estimation. The solution to this
problem consists in using a proxy design for which unbiased

Figure 2. Elimination of the Sector Stage

Figure 3. Merging Primary Sampling Units

variance estimation can be achieved, i.e. with no selection
of samples of size 1. This entails some approximation as a
proxy design never exactly reflects the exact design. In the
case of the LFS, two actions were taken in order to deal with
samples of size 1:
• Elimination of the sector stage
• Merging Primary Sampling Units

3.1.1 Elimination of the sector stage

We assume that one area is directly selected from a PSU by
simple random sampling, as shown in Figure 2. This as-
sumption does not affect the accuracy. It can be shown the
variances calculated under the actual design (with the sec-
tor stage) and under the proxy design (after eliminating the
sector stage) are equal.

3.1.2 Merging Primary Sampling Units

Despite the elimination of the sector stage, a problem re-
mains: only one area is selected within a PSU so we still have
to deal with samples of size 1. A possible solution to this
problem consists in forming groups of 2 or 3 PSUs. We then
assume that a sample of those groups has been selected with
probability proportional to the number of dwellings. Two
or three areas have been then selected within each group by
simple random sampling, as shown in Figure 3.

Obviously, forming groups of PSUs will make variance
estimates biased and one must strive to make groups so as to
control that bias as much as possible.

Consider two Primary Sampling Units PSU1 and PSU2
of sizes1 N1 and N2. One area is selected within both of

1 Size=number of “areas”
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Figure 4. Final Sampling ”Tree” of the LFS

them by simple random sampling. Let VP denote the vari-
ance under this design (denoted P). Suppose now that those
two areas are selected by simple random sampling within the
group PSU1 + PSU2. Let Y denote a variable defined at the
area level. A standard unbiased variance estimator for the
sample mean of Y is:

V̂
( ˆ̄Y

)
= (1 − f ) ·

s2

2
(10)

Where s2 is the sample variance of Y and f the sampling
rate.

Assuming N1 ≈ N2 and both N1 and N2 are large enough,
the expectation of (10) with respect to P is:

EP

(
V̂
)
= VP + f · VP + (1 − f ) ·

(
Ȳ1 − Ȳ2

2

)2

(11)

Where Ȳ1 and Ȳ2 are the PSU1 and PSU2 means of Y.
As a conclusion, merging PSUs turns out to overestimate

the variance, which is a conservative estimator. Moreover,
the closer the means Ȳ1 and Ȳ2 are, the lower that increase of
variance is.

Thus, we sought to merge PSUs of same sizes and of
same characteristics on some target survey variables.

3.1.3 Final sampling ”tree”

We used the sampling tree that is represented in Figure 4.

3.2 Creation of the geographical dataset
The geographical dataset contains all the auxiliary numerical
information that POULPE needs to calculate the inclusion

probabilities of the sampling units. For the LFS, two diffi-
culties happened.

3.2.1 The total numbers of areas in the groups of PSUs

Under the proxy design introduced in the previous section,
the total number of areas in a group of PSUs is needed in
order to compute the inclusion probabilities. For a given
area, which is picked up by simple random sampling within
a group of PSUs, the inclusion probability is equal to n/N,
where n is the total number of selected areas and N the to-
tal number of areas in the group. POULPE is able to deter-
mine the numerator n by counting the records in the survey
dataset. However, concerning the denominator N, the value
is not available as it actually does not exist (only a sector was
divided into areas and not a whole PSU).

As an area contains about 20 dwellings, the total number
of areas in a group of PSUs was estimated by dividing its
size (in number of dwellings) by 20. For instance, the total
numbers of areas in a group of 1200 dwellings is 1200 / 20 =
60.

3.2.2 The total numbers of new dwellings in the areas

Those values are necessary to calculate the inclusion proba-
bilities for the new dwellings. In practice, the total number
of new dwellings in an area was not available. Nevertheless,
we managed to derive the information for most of the areas
using the number of new dwellings that had been surveyed
in each of them.

The idea is to ”inverse” the sampling design presented
in 1.2. Let n denote the number of new dwellings selected
within an area and N the total number of those dwellings.
According to 1.2, we have:
• N ≤ 10 : all the new dwellings are surveyed
• 11 ≤ N ≤ 40 : 10 dwellings are selected by simple

random sampling
• 41 ≤ N : 1/4 of the dwellings are selected by SRS

It is easy to deduce N from n:
• n < 10 : N = n
• n > 10 : N = 4 × n
• n = 10 : N is unknown. We only know that N∈

[10, 40]. We chose N=40, which is the most conser-
vative solution.

The number of areas with n=10 is very small (8 areas for
the first quarter 2003), so the uncertainty as to the value of N
when n=10 should not be very problematic.

3.3 Creation of the survey dataset

All the selected dwellings, including the out-of-scope and the
non-responding ones, were recorded in the survey dataset.
Identifying variables for the sampling units, i.e. the groups
of PSUs and the areas were added. No serious difficulty hap-
pened at this stage.
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Table 1: Estimated standard errors for totals (first quarter 2003)

Confidence interval at 95%

Indicator Value Standard error Lower bound Upper bound CV*(%) Design effect

Number of unemployed people by age, group and gender

Total 2 684 701 56 992 2 572 996 2 796 406 2.1 1.85
Male 1 289 136 35 458 1 219 638 1 358 634 2.7 1.63
Female 1 395 565 34 244 1 328 447 1 462 683 2.4 1.37
15-29 years 918 009 30 190 858 836 977 182 3.3 1.66
Male 472 643 19 663 434 104 511 182 4.2 1.37
Female 445 366 18 157 409 778 480 954 4.1 1.29
30-49 years 1 305 894 33 650 1 239 940 1 371 848 2.6 1.41
Male 576 036 20 735 535 395 616 677 3.6 1.31
Female 729 858 24 002 682 815 776 901 3.3 1.29
50 years and over 460 798 21 785 418 099 503 497 4.7 1.56
Male 240 457 15 082 210 897 270 017 6.3 1.54
Female 220 341 12 959 194 941 245 741 5.9 1.16

Number of unemployed people by NUTS2 region

Ile De France 541 076 34 361 473 727 608 425 6.3 3.28
Rhône-Alpes 221 330 14 382 193 141 249 519 6.5 1.26
Auvergne 43 763 6 308 31 398 56 127 14.4 1.29
Nord - Pas de Calais 219 867 15 418 189 648 250 086 7.0 1.44
*Coefficient of variation = Standard error/value

4 Numerical results2

Estimated standard errors for totals (number of unemployed
people) and ratios (unemployment rate) have been calculated
using POULPE and are set out in Table 1 and Table 2.

The coefficients of variation for the subpopulation indi-
cators (the numbers of unemployed people or the unemploy-
ment rates by age group and gender, by NUTS2 region) ap-
pear to be higher than for the population indicators. This is
a basic result, which can be explained by the smaller sample
size at subpopulation level. On the other hand, domain esti-
mators seem to have lower design effects. This could be fig-
ured out by considering the impact of intra-class correlation.
For simplicity, all the dwellings are assumed to have the same
composition: one father, one mother, one son and one daugh-
ter. The design effect for the total number of unemployed
people assuming a simple random selection of dwellings is
(Cochran 1977; Ardilly 2006):

Deff ≈ 1 + ρ · (n̄ − 1) (12)

Where ρ is the intra-class correlation coefficient of the
0/1 variable ”unemployed or not” and n̄ is the average house-
hold size ( n̄= 4). Let us consider now the total number of un-
employed people in the male population m. The expression
(12) is still valid, but each of its terms has to be calculated at
the male population level:

Deffm ≈ 1 + ρm · (n̄m − 1) (13)

As n̄m =
n̄
2 and ρm ≈ ρ,Deffm ought to be lower than

Deff.

Besides, it is worth mentioning the design effects for the
number of unemployed people and the unemployment rate
in the Ile De France region (3.28 and 2.65), and for the un-
employment rate in the Nord-Pas de Calais region (1.44 and
0.78). The two first values are likely to result from strongly
positive intra-class correlation in the region. On the contrary,
the value for the Nord-Pas de Calais region might be caused
by small intra-class correlation, i.e. the dwelling population
in this region is similar to the national dwelling population
regarding unemployment characteristics.

Another advantage of POULPE is it can measure the
impact on the accuracy of weight adjustments to external
sources (calibration procedure). The LFS sample was cal-
ibrated to many external sources, basically census data at
household level (number of rooms, household tenure sta-
tus. . . ) and updated data at individual level (population
counts by age group and gender. . . ). POULPE was run as-
suming no weight calibration in order to measure the impact
the LFS calibration model had on the estimated standard er-
rors for the main indicators. The results are set out in Table
3.

In our calculations, calibration always makes the accu-
racy better3, but the impact varies depending on the indicator.
In general, the better the calibration model is, the stronger
the impact of the procedure. That impact appears to be weak
for the subpopulation indicators. Actually, the LFS calibra-
tion model is a good fit for unemployment. At subpopulation
level, unemployment patterns can become more complex and

2 Source: Osier (2003)
3 The negative relative difference (-0.06) for the number of un-

employed people in the Rhône-Alpes region must not be significant.
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Table 2: Estimated standard errors for ratios (first quarter 2003)

Confidence interval at 95%

Indicator Value Standard error Lower bound Upper bound CV*(%) Design effect

Unemployment rate by age, group and gender (%)

Total 9.9 0.22 9.5 10.3 2.2 1.96
Male 8.8 0.26 8.3 9.3 2.9 1.68
Female 11.2 0.28 10.6 11.7 2.5 1.46
15-29 years 16.9 0.57 15.8 18.0 3.4 1.64
Male 15.9 0.68 14.5 17.2 4.3 1.34
Female 18.2 0.76 16.7 19.7 4.2 1.37
30-49 years 8.6 0.24 8.2 9.1 2.8 1.47
Male 7.1 0.28 6.6 7.7 3.9 1.33
Female 10.4 0.35 9.7 11.0 3.7 1.35
50 years and over 7.1 0.33 6.4 7.7 4.6 1.58
Male 6.8 0.43 5.9 7.6 6.3 1.57
Female 7.4 0.42 6.6 8.2 5.7 1.14

Unemployment rate by NUTS2 region (%)

Ile De France 10.0 0.59 8.8 11.1 5.9 2.65
Rhône-Alpes 12.6 0.92 10.8 14.4 7.3 1.70
Auvergne 8.6 0.52 7.6 9.7 6.0 1.22
Nord – Pas de Calais 7.6 0.91 5.9 9.4 12.0 0.78
*Coefficient of variation = Standard error/value

Table 3: Impact of calibration on the estimated standard errors

Standard error Standard error Relative
Indicator Value before calibration after calibration difference (%)

Number of unemployed people by age, group and gender

Total 2 684 701 67559 56 992 15,6
Male 1 289 136 39328 35 458 9.8
Female 1 395 565 40531 34 244 15.5

Number of unemployed people by NUTS2 region

Ile De France 541 076 34512 34 361 0.44
Rhône-Alpes 221 330 14374 14 382 -0.06

Unemployment rate by age, group and gender (%)

Total 9.9 0.23 0.22 4.35
Male 8.8 0.26 0.26 0.00
Female 11.2 0.30 0.28 6.67

Unemployment rate by NUTS2 region (%)

Ile De France 10.0 0.59 0.59 0.00
Rhône-Alpes 12.6 0.92 0.92 0.00

then the quality of the model may decrease, which may ex-
plain the loss of efficiency at domain level. For a general
discussion on this point, see Ardilly (2006).

5 Conclusion

In our opinion, the variance estimation method that was pre-
sented in this document has three advantages:

• It has strong theoretical foundations.
• Contrary to re-sampling methods (Bootstrap, Jack-

knife. . . ), it is not computer-intensive.
• It is easily reproducible once the design, the survey

and the geographical datasets have been created.
However, although POULPE has been developed as a

universal variance estimation tool, it cannot easily deal with
”highly” complex sample designs. For instance, each quarter,
1/6 of the LFS sample rotates out. The difference between
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unemployment rates estimated at two consecutive quarters is
affected by covariance effects between those quarters. Vari-
ance estimation in POULPE taking this aspect into account
is conceptually much more difficult to handle.
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Appendix: Estimation of the Design Effect in
POULPE

1 Definition

Let Ŷ denote the linear estimator for the total Y of a variable
y with respect to a sample design P. Let ñ be the (expected)
sample size. Let ŶS RS be the linear estimator that would be
obtained from a simple random sampling (SRS) without re-
placement and of size ñ. Then, the Design Effect is:

Deff =
VP

(
Ŷ
)

VS RS

(
ŶS RS

)
2 Estimation in case of a one-phase sampling

Preliminary notations:

U = target population, of size N
s = sample of size n, drawn from U according

to a sample design P
yk = value of a target variable y on k
πk = inclusion probability of k

Each of the two variances above is estimated separately.
An estimate of VP

(
Ŷ
)

is the result of a POULPE session.

What remains is estimating the variance VS RS

(
ŶS RS

)
.

1. We have:

VS RS

(
ŶS RS

)
= N2 ·

(
1 −

n
N

)
·

S 2

n

Where:

S 2 =
1

N − 1

∑
k∈U

(
yk − Ȳ

) 2
=

N
N − 1

·

 1
N

∑
k∈U

y2
k − Ȳ2


2. Hence:

VS RS

(
ŶS RS

)
= N2 ·

(
1 −

n
N

)
·

1
n
·

N
N − 1

·

 1
N

∑
k∈U

y2
k − Ȳ2


=

1
n
·

(
1 −

n − 1
N − 1

)
·

N ·∑
k∈U

y2
k −

∑
k∈U

yk

2
3. With respect to the sample design P, we have:

∑
k∈U

y2
k estimated by

∑
k∈s

y2
k

πk∑
k∈U

yk

2

estimated by

∑
k∈s

yk

πk

2

− V̂P

(
Ŷ
)

Indeed,

EP

∑
k∈s

yk

πk

2

= VP

∑
k∈s

yk

πk

 + E2
P

∑
k∈s

yk

πk


= VP

∑
k∈s

yk

πk

 + ∑
k∈U

yk

2

4. Then, we have:

V̂S RS

(
ŶS RS

)
=

1
n
·

(
1 −

n − 1
N − 1

)
·

N ·∑
k∈s

y2
k

πk
−

∑
k∈s

yk

πk

2

+ V̂p

(
Ŷ
)

5. Replacing V̂p

(
Ŷ
)

with Dêff · V̂S RS

(
ŶS RS

)
and re-

arranging the expression, we get:
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V̂S RS

(
ŶS RS

)
·

[
1 −

Dêff
n
·

(
1 −

n − 1
N − 1

)]
=

1
n
·

(
1 −

n − 1
N − 1

)
·

N ·∑
k∈s

y2
k

πk
−

∑
k∈s

yk

πk

2
6. Finally, by replacing N with N̂ =

∑
k∈s

1
πk

and[
1 − Dêff

n ·
(
1 − n−1

N−1

)]
with 1, we obtain the following

approximation formula for the Deff:

Dêff =
V̂p

(
Ŷ
)

1
n ·

(
1 − n−1

N̂−1

)
· N̂ ·

∑
k∈s

1
πk

(yk − ȳ)2

Where ȳ =
∑

k∈s
yk
πk∑

k∈s
1
πk

3 Estimation in case of a multi-phase sampling

We have:

V̂S RS

(
ŶS RS

)
=

1
r
·

(
1 −

r − 1
N̂ − 1

)
· N̂ ·

∑
k∈s

1
πk

(yk − ȳ)2

Where r denotes the effective sample size and πk the
inclusion probability of k.


