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Responses to open-ended questions in surveys are usually coded into pre-specified classes,
manually or automatically using a statistical learning algorithm. Automatic coding of open-
ended responses relies on a set of manually coded responses, based on which a statistical
learning model is fitted. In this paper, we investigate whether and how double coding can help
improve the automatic classification of open-ended responses. We evaluate four strategies for
training the statistical algorithm on double coded data, using experiments on simulated and real
data. We find that, when the data are already double coded (i.e. double coding does not incur
additional costs), double coding where an expert resolves intercoder disagreement leads to the
greatest classification accuracy. However, when we have a fixed budget for manually coding,
single coding is preferable if the coding error rate is anticipated to be less than about 35% to
45%.
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1 Introduction

Open-ended questions allow researchers to ask questions
without constraining respondents’ answer choices and with-
out accidentally biasing them towards more socially desir-
able responses. However, open-ended questions yield text
responses and text is hard to analyze quantitatively: logis-
tic and linear regression require numerical data. Therefore,
text answers are often categorized (or classified) into classes
based on a coding manual.

When text responses to open-ended questions need to be
categorized, there are two choices: manual coding and au-
tomatic coding. Manual coding refers to having a human
coder decide in which class a response should be, while au-
tomatic coding refers to categorizing responses based on sta-
tistical learning models. Manual coding is expensive because
it requires human coders. Therefore for large data sets, au-
tomatic (Gweon, Schonlau, Kaczmirek, Blohm, & Steiner,
2017; Schierholz, 2019) or semi-automatic coding (Schon-
lau & Couper, 2016) may be attractive. In automatic cod-
ing, a statistical learning model is trained on a smaller set of
manually coded data, which is called the training data. The
model is then used to predict the code of uncategorized text
answers. The advantage of automatic coding is reduced cost
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and fast speed (relative to human coding). One disadvantage
of automatic coding is the need for expertise to execute the
modelling and prediction.

Because automatic coding predicts the classes of texts
based on a trained model, its performance is influenced by
manually coded data the model is trained on. The quality of
manually coded data depends on human coders, and ideally
coders make no mistake. Unfortunately, in practice, coders
do make mistakes due to human errors or the ambiguity of
responses. The coding error in the manually coded data dete-
riorates the performance of automatic coding (Mullainathan
& Obermeyer, 2017). How much the performance deterio-
rates is poorly understood. Given that some coding error is
unavoidable, studying whether automatic coding should ex-
plicitly address coding error is worthwhile.

To ascertain the extent of intercoder disagreement, re-
searchers often double code a subset of the data using two
different coders. When double coded data are available, it
is unclear whether the statistical learning model should be
trained on the codes of both coders, or on the codes after
inter-coder disagreement is resolved, or something in be-
tween. Alternatively, if the texts have not yet been coded and
the budget for manual coding is fixed, the statistical learn-
ing model may still benefit from double coding. There is a
tradeoff between a larger single coded training data set, and
a smaller, higher quality double coded training data set. We
consider this tradeoff using a simulation and apply the pro-
posed methodology to two data sets.

In earlier work, we investigated whether and how statis-
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tical learning algorithms should use double coding for bi-
nary classification, i.e. when there are only two possible
codes (He & Schonlau, 2019). This applies, for example,
to choose-all-that-apply questions where an answer does or
does not mention each answer category. We found when
the coding budget is fixed, double coding outperforms sin-
gle coding if the coding error rate exceeds a threshold. When
double coded data are already available, asking an expert to
resolve inter-coder disagreement is preferable to resolving
disagreement by majority vote or by not including texts with
disagreement in the training data.

In this paper, we extend the idea of double coding as part
of statistical learning from binary classification to multi-class
classification. For binary classification, there is only one
type of coding mistake: the true class was the other class.
For multi-class classification the situation is more complex:
simulations of intercoder disagreement require additional as-
sumptions on the structure of the misclassification matrix.

The outline of this paper is as follows: Section 2 reviews
relevant literatures on double coding and the application of
statistical learning to text classification. Section 3 intro-
duces double coding in the context of multi-class classifi-
cation. Section 4 presents experiments on simulated codes;
such simulated experiments allow adjusting the coding error
rate to observe the performance of different coding strategies
in various scenarios. Section 5 verifies our finding from sim-
ulated experiments by applying the proposed coding strate-
gies on two double coded data sets. Section 6 concludes with
a discussion.

2 Background

Responses to open-ended questions in surveys are often
text data. Statistical learning has been widely used in ana-
lyzing text data. For instance, Joachims (2001) used Support
Vector Machines (SVM) to develop a model to classify text
and showed good generalization performance of the model.
Schonlau and Couper (2016) applied multinomial gradient
boosting in a semi-automatic algorithm, which coded text an-
swers that were likely to be correctly classified automatically
and manually. Kern, Klausch, and Kreuter (2019) discussed
previous and prospective applications of tree-based statisti-
cal learning methods (random forest, boosting, etc.) such as
classifying text answers and modeling nonresponse in survey
research.

One example of text data in surveys is occupation cod-
ing. It refers to coding the text answer of an open-ended
question about one’s job. Applying statistical learning algo-
rithms on occupation coding has become increasingly com-
mon. Schierholz (2019) compared statistical learning algo-
rithms in occupation coding. Gweon et al. (2017) proposed
three automatic coding algorithms and improved coding ac-
curacy for occupation coding.

Another example of text data in surveys is responses to

probing questions. Probing questions are follow-up ques-
tions asking respondents to provide additional information
about a survey item (Beatty & Willis, 2007; Meitinger,
Braun, & Behr, 2018). Behr, Kaczmirek, Bandilla, and
Braun (2012) classified answers to probing questions into
two classes, productive and nonproductive answers, and
tested whether an increasing number of preceding probing
questions influenced the quality of the answers.

In order to apply statistical learning methods in coding
text responses, we have to fit a model on a set of data (train-
ing data) and then use the fitted model to predict the codes
for some other data (test data). Usually, more training data
means the trained algorithm performs better. More classes
and more features typically require more training data. There
is no strict guidance on the size of training set in the litera-
ture. Schierholz (2019) suggested that the training set should
be large enough to contain a variety of potential texts (in-
cluding misspellings) to cover all contingencies how a spe-
cific text can be coded into different classes. Moreover, if the
training data do not cover some of the categories, these cate-
gories would never be suggested by predictions based on the
training data only. Learning competitions usually have large
training data sets (with known responses). Here, the text an-
swers for training have to be manually coded first, which is
costly. To avoid large costs, we need to balance our desire
to predict well – requiring a large training data set – with
our desire to keep the costs down – requiring a small training
data set. Schonlau and Couper (2016) have used a training
data set of size 500 for four outcome classes.

Statistical learning on text responses requires training data
which are manually coded. For manual coding, there are usu-
ally multiple coders either to speed up the coding process or
to compute intercoder reliability, which enhances objectiv-
ity and quality (Ames et al., 2005; Carley, 1993; Popping
& Roberts, 2009; Schonlau, 2015). It is natural that differ-
ent coders have different opinions on some texts (Conrad,
Couper, & Sakshaug, 2016), which may due to ambiguity of
texts, lack of clarity of the coding manual or different per-
sonal understanding.

The extent of inter-coder agreement is usually measured
by Cohen’s kappa coefficient (Fleiss, Levin, & Paik, 2013).
Inter-coder agreement for classifying open-ended questions
is often low. For example, Elias (1997) and Mannetje and
Kromhout (2003) found that the agreement rates for occu-
pation coding are 55% to 80% at 3-digit level. Researchers
have considered assessing inter-coder reliability and modi-
fying codebook as an iterative process to reduce inter-coder
disagreement (Hruschka et al., 2004). Remaining coding dis-
agreements can be resolved through 1) a discussion of the
two coders until a consensus is reached (D’Orazio, Kenwick,
Lane, Palmer, & Reitter, 2016), 2) adding a third coder and
deciding by majority vote, or 3) letting an expert decide.
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3 Methodology

In binary classification, as a response can only be in one of
the two classes (assumed to be class A and class B), a coder
can only make two coding mistakes: coding a response from
A incorrectly to B and coding a response from B incorrectly
to A.

In multi-class classification, the number of misclassifica-
tion errors is larger. We use a coding matrix to represent the
coding performance of a regular coder. The coding matrix is
a L ∗ L matrix, where L is the number of classes. The (i, j)th

element of the coding matrix pi j represents the probability
that a regular coder codes a text corresponding to class i into
class j. The coding matrix can then be written as

M =


p11 p12 . . . p1L

p21 p22 . . . p2L
...

...
...

...
pL1 pL2 . . . pLL

 ,

where
∑L

j=1 pi j = 1. The coding matrix for binary classifica-
tion in He and Schonlau (2019) is a special case:

Mbinary =

(
1 − p p

p 1 − p

)
,

where p is the error rate. When two coders classify a re-
sponse independently, they may assign different codes. We
evaluate the following strategies to deal with the inter-coder
disagreement:

• Single coding: each text is coded by a regular coder
into one of the classes.

• Replicate: replicate each double coded text into two
texts, one with each of the double codes, no matter
whether the double codes are the same or not.

• Remove differences: texts that are coded differently by
the two coders are removed from the data.

• Majority vote: if a text is coded differently by the two
coders, a third coder codes. For simplicity, we assume
the third coder can only choose a code from the first
two codes. Thus, the third code leads to a 2:1 majority.

• Expert resolves: an expert coder arbitrates any inter-
coder disagreement.

When responses have already been double coded, we can
apply any of the above strategies (for single coding one must
choose one of the two coders’ code). When texts are not yet
coded and the budget for manual coding is fixed, the cost
of applying “replicate” or “remove differences” is twice that
of single coding, while the cost of “majority vote” or “expert
resolves” is more than twice that of single coding. Therefore,
the number of responses we can afford to code under a fixed

budget using different coding strategies varies. The number
of texts we can afford to code under a fixed budget for “repli-
cate” and “remove differences” is half of that of single coding
as we spend two annotations on each text. If we denote the
number of texts for “single coding” as N, then for “replicate”
and “remove differences”, the number under a fixed budget
is

N/2 (1)

For “majority vote”, the number of texts under a fixed bud-
get is

N/(3 −
L∑

i=1

qi

L∑
j=1

p2
i j) (2)

and that for “expert resolves” is

N/(2 + t − t
L∑

i=1

qi

L∑
j=1

p2
i j) , (3)

where t is the relative cost of coding by an expert vs. coding
by a regular coder, and q1, q2, ..., qL are the marginal distri-
bution of the classes. The derivation of the formulas can be
found in Appendix A.

We use the accuracy of automatic coding as the evaluation
criterion for comparing the strategies. Accuracy is defined as
the fraction of correctly coded observations, i.e. the text re-
sponses for which the predicted class matches the true class.

The general coding matrix M contains L(L − 1) parame-
ters. In practice, the coding matrix is unknown and contains
too many parameters to estimate. Therefore, we consider
three special coding matrices: one with equal misclassifica-
tion probabilities, one with misclassification in neighboring
classes, and one with misclassification in higher classes. The
coding matrix with equal misclassification probabilities rep-
resents the case where coding error happens at random with
equal probabilities. It may be a good default choice. The
other two coding matrices we consider, one with misclassifi-
cation in neighboring classes and one with misclassification
in higher classes, represent two specific coding error struc-
tures: in the first case coders miscode only into neighbor-
ing classes, and in the second case have a tendency to code
a higher class. We choose these coding matrices because
they are, in our opinion, the simplest choices. More com-
plex coding matrices exist, of course. For a specific data set,
researchers may decide which special case fits the problem
at hand.

3.1 Coding Matrix 1: Equal Misclassification Probabil-
ities

A coder has probability 1 − p to code a text correctly
and probability p/(L − 1) to code it into any of the incorrect
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classes. The coding matrix is as follows:

M1 =


1 − p p/(L − 1) . . . p/(L − 1)

p/(L − 1) 1 − p . . . p/(L − 1)
...

...
...

...
p/(L − 1) p/(L − 1) . . . 1 − p

 .

In other words, a coder has coding error rate p, and, he/she is
equally likely to classify a response into any incorrect class
if a mistake happens.

Using formulas 1, 2 and 3, assuming the coding matrix
is M1, the number of texts that can be coded under a fixed
budget of N annotations is in Table 1. Table 1 also contains
special cases for specific values of the error rate p. Unlike the
general formulas 2 and 3 which are derived in Appendix A,
the formulas in Table 1 do not depend on the marginal class
distribution {qi}.

3.2 Coding Matrix 2: Misclassification in Neighboring
Classes

Some classes are naturally ordered. For example, in the
Patient Joe data that are introduced in Section 4, we classify
text answers into four ordered classes: proactive, somewhat
proactive, passive and destructive. This second coding ma-
trix is appropriate for ordered classes:

M2 =



1 − p p 0 0 . . . 0 0
p/2 1 − p p/2 0 . . . 0 0
0 p/2 1 − p p/2 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . p/2 0
0 0 0 0 . . . 1 − p p/2
0 0 0 0 . . . p 1 − p


The matrix suggests that a coder has probability of p to in-
correctly classify a response into a neighboring class, and if
there are two neighboring classes, the probability of classify-
ing into any of them is equal (i.e. p/2).

3.3 Coding Matrix 3: Misclassification in Higher
Classes

The third special case we consider is also for ordered
classes. It assumes the coding matrix of a regular coder is:

M3 =



1 − p p(1 − g1) . . . p
∏L−3

i=1 gi(1 − gL−2) p
∏L−2

i=1 gi

0 1 − p . . . p
∏L−4

i=1 gi(1 − gL−3) p
∏L−3

i=1 gi

...
...

...
...

...

0 0 . . . p(1 − g1) pg1

0 0 . . . 1 − p p
0 0 . . . 0 1


This coding matrix represents a coder who has a personal

tendency to code responses into “higher” classes. The pa-
rameters g1, g2, . . . , gL−2 show the strength of personal ten-
dency. An example of personal tendency is that an optimistic

coder may consider responses to be in more “optimistic”
classes.

4 Experiments on Simulated Data

To explore which coding strategy to use in the three spe-
cial coding matrices proposed in Section 3, we run exper-
iments based on the Patient Joe data set (Schonlau, 2020).
The Patient Joe data set contains 1758 answers to the fol-
lowing open-ended question: “Joe’s doctor told him that he
would need to return in two weeks to find out whether his
condition had improved. But when Joe asked the reception-
ist for an appointment, he was told that it would be over a
month before the next available appointment. What should
Joe do?” (Martin et al., 2011). This question was used to
investigate patients’ decision making. The study was fielded
in Dutch in the LISS panel1 in 2012. The responses in this
data set have been classified by two coders into one of four
ordered classes: proactive, somewhat proactive, passive and
destructive. The differences between them were resolved
by an expert, which yielded the “gold standard” classifica-
tion (Schonlau & Couper, 2016).

We converted the text data into unigram and bigram vari-
ables (Schonlau, Guenther, & Sucholutsky, 2017). A uni-
gram variable counts occurrence of individual words and a
bigram variable counts occurrence of two-word sequences.
Because the number of unique words across all texts is rather
large, this approach creates a large number of unigram and
bigram variables. Benefits of using unigram and bigram vari-
ables (or more generally, n-gram variables) include simplic-
ity and scalability. We used stemming in Dutch and removed
stopwords. Unigram and bigram variables that did not appear
in at least 5 texts were removed. We randomly chose 1000
responses for training and the remainder for testing. Under a
fixed budget, the size of training set is calculated using for-
mulas 1, 2 and 3 with N = 1000.

For the training set, we simulated coding errors by chang-
ing the “gold standard” class to another class based on prob-
abilities specified in the coding matrix. Also, we assume that
experts are 10 times as expensive as regular coders (t=10).
Automatic coding requires choosing a statistical learning
model. We fit SVM models with a linear kernel, a common
choice for text data (Joachims, 2001). The value of the tuning
parameter C was set to 100 based on an experiment with the
manually coded data.

In “majority vote”, the third coder is only supposed to
choose between the two codes already chosen by the first two
coders. We assume that the probability that the third coder
chooses between the first two codes is proportional to the
probability in the coding matrix. For example, assuming the
coding matrix is M2, if a text in Class 2 is coded into Class
1 and 2 by the first two coders respectively, the third coder

1http://www.lissdata.nl

http://www.lissdata.nl
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Table 1
Number of texts coded under a fixed budget of N annotations when the coding matrix
is M1.

Strategy Number of texts coded When p = 0.1 When p = 0.2under fixed budget

Single coding N N N
Replicate N/2 N/2 N/2
Remove difference N/2 N/2 N/2

Majority vote N
2+2p−p2L/(L−1)

N
2.2−0.01L/(L−1)

N
2.4−0.04L/(L−1)

Expert resolves N
2+2tp−tp2L/(L−1)

N
2+0.2t−0.01tL/(L−1)

N
2+0.4t−0.04tL/(L−1)

has probability p/(2 − p) to choose Class 1 and probability
2(1 − p)/(2 − p) to choose Class 2.

4.1 Coding Matrix with Equal Misclassification Proba-
bilities

Using the coding matrix M1, we run experiments on the
Patient Joe data with simulated coding. Figures 1a and 1b
show the average predictive accuracy as a function of the
error rate p for various strategies. For each value of p the
experiment was repeated 100 times.

When the double coded texts are already available (Fig-
ure 1a), “expert resolves” is the best strategy to resolve inter-
coder disagreement, followed by “remove differences”. Note
that “single coding” and “majority vote” perform similarly.
When the budget is fixed (Figure 1b), no single strategy dom-
inates: for low error rates single coding is best, for high error
rates “expert resolves” is best. The threshold for the transi-
tion is about 35%.

4.2 Coding Matrix with Misclassification in Neighbor-
ing Classes

Assuming the coding matrix is M2, we run experiments on
the Patient Joe data with simulated coding. Figures 1c and
1d show the predictive accuracy as a function of the error
rate p averaged over 100 repeated experiments. Unlike for
coding matrix M1, we have to assume a marginal distribution
of the classes for the simulation (There was no need to do so
for M1 because the results in Table 1 did not depend on the
marginal distribution qi). We assume the marginal distribu-
tion of classes is distribution 1 in Table 2.

In Figure 1c, we observe a similar pattern as we have seen
for coding matrix M1. “Expert resolves” is the best strategy
when double coded texts are already available. In Figure 1d,
under a fixed budget, single coding works better than double
coding strategies for small and moderate error rates p, and
“expert resolves” is best when p gets large.

4.3 Coding Matrix with Misclassification in Higher
Classes

Assuming the coding matrix is M3, we run 100 repeated
experiments on the Patient Joe data with simulated coding.
The average predictive accuracy as a function of the error
rate p is shown in Figures 1e and 1f. We also assume the
marginal distribution of classes is distribution 1 in Table 2.

The parameters gi are simulation parameters that repre-
sent the tendency of a coder to consider a response in a
“higher” class. In the Patient Joe data, L = 4. We assume
here that g1 = 0.2 and g2 = 0.2. Such an assumption sug-
gests that coders have a mild tendency to misclassify into
higher classes, and if they make such a mistake, about 80%
of times the misclassification will result in the neighboring
higher class. The experiment results with other combinations
of g1 and g2 are in Appendix B. The results are similar.

For coding matrix M3, we find that “expert resolves” im-
proves prediction most when double coded texts have already
been available. Under a fixed budget, for small error rates
single coding works better, and for large error rates “expert
resolves” outperforms others. Based on the experiments, sin-
gle coding works better than double coding, unless the error
rate is large (> 45%). “Remove differences” is no longer
the second-best double coding strategy as computed for M1
and M2. Instead, “majority vote” is the second best when
double coded texts have already been available, followed by
“replicate”.

4.4 Robustness of the Marginal Class Distribution

Because coding matrices M2 and M3 depend on the
marginal class distributions and using incorrect class distri-
bution may lead to inaccurate estimation of the number of
texts that can be coded under a fixed budget, we now in-
vestigate the sensitivity of the results using different class
distributions. Specifically, we assume the classes are almost
uniformly distributed (distribution 2 in Table 2).

Figure 2 shows the results: When double coded texts are
available, the class distribution has no effect. When the bud-
get is fixed, although the basic pattern of the performance



272 ZHOUSHANYUE HE AND MATTHIAS SCHONLAU

0.0 0.1 0.2 0.3 0.4 0.5

0.
4

0.
5

0.
6

0.
7

When double coded data are available
(a)

p

av
er

ag
ed

 a
cc

ur
ac

y 
ba

se
d 

on
 M

 1

Single−coding

Replicate

Remove Differences

Majority Vote

Expert Resolves

0.0 0.1 0.2 0.3 0.4 0.5

0.
4

0.
5

0.
6

0.
7

Under fixed budget
(b)

p

Single−coding

Replicate

Remove Differences

Majority Vote

Expert Resolves

0.0 0.1 0.2 0.3 0.4 0.5

0.
4

0.
5

0.
6

0.
7

 
(c)

p

av
er

ag
ed

 a
cc

ur
ac

y 
ba

se
d 

on
 M

 2

Single−coding

Replicate

Remove Differences

Majority Vote

Expert Resolves

0.0 0.1 0.2 0.3 0.4 0.5

0.
4

0.
5

0.
6

0.
7

 
(d)

p

Single−coding

Replicate

Remove Differences

Majority Vote

Expert Resolves

0.0 0.1 0.2 0.3 0.4 0.5

0.
4

0.
5

0.
6

0.
7

 
(e)

p

av
er

ag
ed

 a
cc

ur
ac

y 
ba

se
d 

on
 M

 3

Single−coding

Replicate

Remove Differences

Majority Vote

Expert Resolves

0.0 0.1 0.2 0.3 0.4 0.5

0.
4

0.
5

0.
6

0.
7

 
(f)

p

Single−coding

Replicate

Remove Differences

Majority Vote

Expert Resolves

Figure 1. Averaged accuracy as a function of error rate p in simulated experiments using the
Patient Joe data. Each row represents a different coding matrix (M1, M2 and M3). The coding
matrix M3 has parameters g1 = 0.2 and g2 = 0.2. The first column shows the results when
double coded data are available, while the second column shows the results when the budget is
fixed.

Table 2
Assumed class distributions for the Patient Joe data

Distribution Proactive Somewhat Passive DestructiveType Proactive

Distribution 1 0.1 0.3 0.1 0.5
Distribution 2 0.3 0.3 0.2 0.2

curves is the same, using a more uniform distribution of
classes increases the threshold between single coding and
“expert resolves”. This probably has not much impact in
practice: if the coding error is large, the coding procedure
should be redesigned.

5 Two Case Studies of Applying Double Coding
Strategies to Data

In Section 4, we simulated the double codes assuming
coders follow the coding matrix. In practice, coding errors
do not exactly correspond to a specific coding matrix. The
results need to be robust to mild violations of the coding ma-
trix assumption. Therefore, we apply the strategies on two
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Figure 2. Sensitivity analysis for the Patient Joe data with different marginal class distributions.
Otherwise it is analogous to Figure 1.

double coded data sets: Happiness and Patient Joe. In both
the Patient Joe and the Happiness data sets, two coders coded
all data independently, and the disagreement between them
was resolved by experts. We can implement all strategies on
the two data sets based on available codes (except “majority
vote” due to the lack of a third coder).

The Happiness data were collected in a web survey con-
ducted in November 2017. The participants were from an
online-access panel in Germany provided by respondi (http:
//www.respondi.com/EN/).2 The data set contains 1445 re-
sponses to the question “What aspects of your life have you
considered when assessing your happiness?” Based on a cod-
ing manual, these responses were classified into 34 classes,
such as family, mental health and job situation. We removed
stopwords and stemming (in German). Then we converted
the texts into unigram and bigram variables. Variables that
appeared in two or fewer responses were removed as “rare
terms”. While it is a convenience sample, we make no claim
that results are representative nor do we report substantative
results. Our interest is merely in assessing the five strategies
for automatic classification.

For automatic classification a statistical learning algo-
rithm must be chosen. Here we fit SVMs with linear ker-
nel because this choice is popular for text data (Joachims,
2001). We select the tuning parameter C of SVMs through
10-fold cross-validation and allow the value of C to be dif-
ferent for different strategies3. Then, we run 10-fold cross-
validation for 100 times. The mean predictive accuracy of
the 100 cross-validations is presented in Figure 3.

The Happiness data set has unordered classes while Pa-
tient Joe has ordered classes. After checking the coding ma-
trices of the coders, the equal misclassification coding matrix
M1 appears reasonable.

To decide how many texts to code under a fixed budget,
we need an estimate of the coding error rate. Since the cod-
ing error rate is unknown, we draw a random sample of 100
texts from each data set. We estimate the coding error rate p
to be 4% in the Happiness and 12% in the Patient Joe data.
Based on these modest coding errors, we expect under a fixed
budget single coding performs best and when double codes
are already available “expert resolves” performs best.

We compare all strategies (except “majority vote”) to ver-
ify our expectations. For the Happiness data (Figure 3), when
double codes are available, “expert resolves” and “replicate”
improve automatic coding significantly compared with sin-
gle coding (p = 0.025 for “expert resolves” and p = 0.030
for “replicate”). Under a fixed budget, single coding per-
forms significantly better than all the double coding strate-
gies (p < 0.001 for each two-way comparison). While “repli-
cate” performed better than expected, this is consistent with

2The Happiness data are available for replication purposes from
Dr. Katharina Meitinger at k.m.meitinger@uu.nl.

3While tuning parameters were allowed to vary by strategy, in
practice they were mostly constant. For the Happiness data the tun-
ing parameter was always estimated as C = 1000. The only excep-
tion was for “replicate” strategy when data were already available,
where it is C = 500. For the Patient Joe data, the tuning parameter
was always estimated as C = 100.

http://www.respondi.com/EN/
http://www.respondi.com/EN/
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Figure 3. Boxplot of the predictive accuracy on the Happiness data when double codes are
available (top) and under a fixed budget (bottom).

the results in Section 4.
For the Patient Joe data (Figure 4), we find that “expert

resolves” and single coding works best when double coded
data are available and under a fixed budget, respectively.
When double codes are available, bootstrap tests show that
the difference between single coding and “replicate” and be-
tween single coding and “expert resolves” are significant
(p = 0.011 and p < 0.001, respectively). When the bud-
get is fixed, “expert resolves” works significantly better than
single coding (p < 0.001), “replicate” (p < 0.001) and “re-
move differences” (p < 0.001). This result is consistent with
our expectation that single coding is preferable if the coding
error rate is less than about 40%.

6 Discussion

Can double coding improve automatic coding of open-
ended responses? We have evaluated four double coding
strategies for multi-class classification. We found: 1) When
double coded responses are available, use them. “Expert re-
solves” works best, followed usually by “majority vote” and,
less often, “remove differences”. 2) When the coding budget
is fixed, use single coding unless error rates are very large.
For large error rates (about 35% to 45% in most simulations),
the double coding strategy “expert resolves” outperforms sin-

gle coding. Remarkably, the findings are similar for different
coding matrices.

For fixed cost in multi-class classification we found “ma-
jority vote” usually works better than “remove differences”.
For binary classification, He and Schonlau (2019) found the
reverse. In multi-class classification knowledge that an ob-
servation likely belongs to one of two classes (the ones the
coders disagree on) carries some information. In binary clas-
sification, a response with two different codes contains no in-
formation (There are only two classes; if coders choose one
each, we do not learn anything). This explains why for multi-
class classification “remove differences” is a less attractive
strategy than for binary classification.

Throughout we have assumed that experts do not make
errors. This assumption makes the simulations less complex.
If we did allow for the expert to make errors, the performance
of “expert resolves” would gradually get worse as a function
of the assumed error. If the expert had an error as large as
that of a regular coder, then the result would be the same as
that of “majority vote” (assuming that the double coded data
are available, i.e. we don’t have to pay for the expert).

The limitations of the study include: 1) For statistical
learning, we used SVM in our experiments. However, we
also tried random forests (not shown) and obtained essen-
tially the same results. We therefore do not believe results are
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Figure 4. Boxplot of the predictive accuracy on the Patient Joe data when double codes are
available (top) and under a fixed budget (bottom).

sensitive to the choice of the statistical learning algorithm. 2)
We compared the performance of strategies based on predic-
tive accuracy. Though accuracy is widely-used evaluation
criterion, logloss is a smoother criterion for multi-class clas-
sification. In our experiments, the results based on accuracy
and logloss are similar (results not shown). 3) For large error
rates under a fixed budget the strategy changes. The thresh-
old of what “large” constitutes is data dependent. In practice
this does not matter much: if coding errors are large, you
would want to redesign the coding procedure to reduce the
coding error. For example, one might change or combine
the answer categories or improving the coding manual. 4)
We assume that regular coders have the same coding matrix.
This is perhaps not true. However, assuming different cod-
ing matrices would further increase complexity and we have
no reason to believe that it would make a difference in the
conclusions.

We recommend the following for survey researchers who
wish to code answers to open-ended questions automatically:
when double coded texts are available and an expert has re-
solved differences, use the resolved coding. When double
coded texts are available but no expert is available, use a third
regular coder to resolve the differences. When double coded
texts are not available and researchers have a fixed budget
for manual coding, use single coding unless the error rate is

very high (more than 35% − 45%). If the coding error rate is
very high, one should probably redesign the coding strategy
(redesign the manual, or the answer classes). Further, if the
estimated probability of correct classification for some text
answers is deemed too low, the concept of semi-automated
classification (Schonlau & Couper, 2016) suggests to code
those text answers manually.
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Appendix A
Derivations

The Number of Texts under Fixed Budget for “Expert
Resolves” and “Majority Vote”

Under a fixed budget of N annotations, researchers
can only afford to code limited texts. We first compute the
expected cost of coding a single text under the strategy “ex-
pert resolves”.

The probability that a text in class i (i is the true class)
is coded differently by the two regular coders is 1−

∑L
j=1 p2

i j,
where pi j is the (i, j)th element in coding matrix M. So the
probability that a random text is coded differently for the first
two coders is

∑L
i=1 qi(1 −

∑L
j=1 p2

i j), where qi is the marginal
distribution of classes. Then, the average cost for coding a
randomly picked text is 2 + t

∑L
i=1 qi(1 −

∑L
j=1 p2

i j), where t
denotes the relative cost of coding by an expert over a regular
coder. Therefore, the number of texts under a fixed budget of
N annotations is

N
2 + t

∑L
i=1 qi(1 −

∑L
j=1 p2

i j)
=

N
2 + t − t

∑L
i=1 qi

∑L
j=1 p2

i j

(1)

In terms of costs, “majority vote” can be viewed as
“expert resolves” with t = 1. Therefore, the number of texts
under a fixed budget follows from formula 1 by setting t = 1:

N
3 −

∑L
i=1 qi

∑L
j=1 p2

i j

(2)
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Appendix B
Figures

Experimental Results for the Coding Matrix with Misclassification in Higher Classes with Different Simulation Param-
eters

In Section 4.3, we ran simulated experiments on the Patient Joe data using the coding matrix M3 and showed experi-
mental results when the parameters in M3 was g1 = 0.2 and g2 = 0.2. In order to show that the result is not sensitive to the
choice of g1 and g2, here we present results for the Patient Joe data when g1 and g2 take other values. Specifically, we consider
three combinations: g1 = 0.2 & g2 = 0.5, g1 = 0.5 & g2 = 0.2, and g1 = 0.5 & g2 = 0.5.
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Figure B1. Averaged accuracy as a function of error rate p in simulated experiments using the
Patient Joe data, when we assume the coding matrix is like M3. Top plots are for g1 = 0.2 and
g2 = 0.5, middle plots are for g1 = 0.5 and g2 = 0.2, and bottom plots are for g1 = 0.5 and
g2 = 0.5. The first column shows experiments when double coded data are available while the
second column shows when the budget is fixed.

Figure B1 shows similar results as in Section 4.3. When double coded texts are available, “expert resolves” works
better than single coding and other double coding strategies. Under a fixed budget, single coding is preferable unless the
coding error rate is too high (> 45%). The different choices of g1 and g2 do not have a large influence on the results.
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