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Practitioners use various indicators to screen for meaningless, careless, or fraudulent responses
in Internet surveys. This study employs an experimental-like design to empirically test the abil-
ity of non-reactive indicators to identify records with low data quality. Findings suggest that
careless responses are most reliably identified by questionnaire completion time, but the tested
indicators do not allow for detecting intended faking. The article introduces various indicators,
their benefits and drawbacks, proposes a completion speed index for common application in
data cleaning, and discusses whether to remove meaningless records at all.
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1 Introduction

Academic researchers and practitioners appreciate
respondent-administered Internet surveys for providing an
efficient and cost-minimizing method to collect data. The
survey mode Internet has become increasingly common
in survey research, not least because response behavior
in web-based surveys was found similar to pen ’n’ paper
mail surveys (for a summary see Couper & Bosnjak, 2010).
The uses and limitations of web-based surveys are broadly
discussed in survey methodology textbooks (e.g., Bethlehem
& Biffignandi, 2012; Callegaro, Lozar Manfreda, & Vehovar,
2015; Fowler, 2009; Groves et al., 2011; Marsden & Wright,
2010; Sue & Ritter, 2012).

Invalid responses are considered one drawback of web-
based surveys. Although they are not specific to web-based
surveys, they are more likely to occur on the Internet: A
web page “may give respondents a sense of reduced account-
ability” in comparison to a printed questionnaire (Johnson,
2005, p. 108), and submitting an online questionnaire re-
quires much less effort than submitting a printed question-
naire as letter. The increase in invalid records is accompa-
nied by a decreased chance of incidentally finding them. Ev-
ery click in the online questionnaire is automatically encoded
and written into the data set. There is no human typing the
answers from printed questionnaires and recognizing uncom-
mon response behavior, such as zigzag patterns in matrix-
style question batteries.
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Detection of uncommon patterns, however, can be auto-
mated and, besides, metadata or paradata (Kreuter, 2013)
is easily available in web-based surveys. This includes
page/survey completion times, a respondent’s IP address, in-
formation about the browser, device and screen size, as well
as more detailed paradata that can easily be collected with lit-
tle effort (Cellagaro, 2013; Diedenhofen & Musch, 2017; Ol-
son & Parkhurst, 2013). Paradata has proven helpful to iden-
tify multiple submissions by the same respondent (Bowen,
Daniel, Williams, & Baird, 2008; Johnson, 2005; Konstan,
Rosser, Ross, Stanton, & Edwards, 2005; Selm & Jankowski,
2006) and to supplement the screening for careless responses
(Barge & Gehlbach, 2012; Bauermeister et al., 2012; Meade
& Craig, 2012).

The paper aims to improve understanding about bad or
low-quality survey data (Schendera, 2007, p. 6). It starts with
a summary upon meaningless data and discusses promising
indicators of data quality. Subsequently, it presents four stud-
ies that evaluate multiple indicators in terms of their abil-
ity to identify different kinds of meaningless records in self-
administered Internet surveys. Finally, the paper draws prac-
tical conclusions on the application of quality indicators in
field research.

2 Meaningless Data

As validity and invalidity have several facets, different
terms have been used to refer to “bad” survey data. The com-
mon characteristic of invalid survey responses is that they do
not reflect the true characteristics of the survey respondent,
but something else instead—some measurement error. The
term meaningless responses is more specific in attributing
this error to the respondent, that is, the respondent is not will-
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ing to give a valid response. Meaningless responses shall be
distinguished from “pseudo-opinions” (Bishop, Oldendick,
Tuchfarber, & Bennett, 1980) and “nonattitudes” (Franzén,
2011; Schuman & Presser, 1980) that are caused by respon-
dents who are unable to provide a valid answer, for exam-
ple, due to insufficient knowledge or understanding. Such re-
sponses are typically not meaningless, but often reflect some
more general attitudes (Payne, 1950).

Literature describes the phenomenon of meaningless data
with attributions to causes and appearance: “Satisficing”
(Krosnick, 1991, 1999) and “inattentive or careless re-
sponse” (Johnson, 2005; Meade & Craig, 2012, p. 438)
refer to the respondent’s intention to give a qualified an-
swer. “Response sets” (Jandura, Peter, & Küchenhoff, 2012),
“response styles” (Van Vaerenbergh & Thomas, 2012) and
“content nonresponsivity” (Meade & Craig, 2012, p. 437;
Nichols, Greene, & Schmolck, 1989) refer to the observation
that an answer is more or less independent from what was
asked. Sometimes the term “random responding” is used to
express that answer options are selected arbitrarily, but this
is somewhat misleading because meaningless answers rather
follow effortless patterns (e.g., always selecting the first op-
tion, Meade & Craig, 2012) instead of being statistically ran-
dom.

The respondent, of course, is only one possible source of
invalid data. A fit between the research questions and the
employed measures, the wording of questions (Converse &
Presser, 2003; Payne, 1980) are necessary prerequisites for
useful survey data; and depending on the research design,
sampling, coverage, and non-response (Dillman, 2013) may
threaten data quality more severely than a few meaningless
records (Weisberg, 2009). Yet, given a systematically and
rigorously designed questionnaire, those few records have
the potential to cause serious errors, such as faux-significant
effects in an experiment.

2.1 Systematic Result Biases

The hazard posed by meaningless data depends on how
the measurement error affects data structures. In the best
case only the accuracy (Wang & Strong, 1996) of the data set
is affected, causing type II errors (not rejecting wrong null-
hypotheses; for details see Meade & Craig, 2012). Given
that respondents will usually not give statistically random re-
sponses, the best case is unlikely to occur. More often, we
have to assume that meaningless data is systematically dif-
ferent from valid data regarding response distributions. For
example, when a respondent always selects the first response
option in scales with unbalanced items (for a summary on re-
sponse styles see Van Vaerenbergh & Thomas, 2012). Using
such data exposes the researcher to the risk of drawing wrong
conclusions (type I errors) and possibly to make detrimental
recommendations (Bauermeister et al., 2012; Woods, 2006).

2.2 Detection of Meaningless Records

Meade and Craig (2012) distinguish two routes for de-
tecting meaningless data. If researchers anticipate meaning-
less data to be a serious issue a-priori, additional questions
may be included in the questionnaire to identify meaningless
data (for an overview see DeSimone, Harms, & DeSimone,
2015). This first route is comprised of self-reports (direct
questions whether to use the answers for analysis, or scales
for response behavior; also see Aust, Diedenhofen, Ullrich,
& Musch, 2012) and covered measures (scales designed to
measure language understanding or consistent responding,
bogus items, or instructed response items). With a focus
on faking behavior, Burns and Christiansen (2011) present
a systematic framework and summary of such methods (also
see Allen, 1966; Azfar & Murrell, 2009; Lim & Butcher,
1996; Pine, 1995). Their summary also covers the second
route for detecting meaningless data: post-hoc analysis of
the data collected in the survey. While the first route is reac-
tive (Lavrakas, 2008), the second route identifies anomalies
in the responses’ means, variance, and correlation structure.
Paradata collected during the survey allows for a third path
that is often available, even if the researcher did not consider
meaningless data a problem a-priori.

The academic community is just beginning to establish
standards on how to identify and handle potentially prob-
lematic records (Osborne, 2013). In spite of the signifi-
cant threats that meaningless records pose to scholarly re-
search, their identification in web-based surveys has mostly
been subject to practitioners (Bhaskaran & LeClaire, 2010;
Rogers & Richarme, 2009). But when data cleaning is based
on untested assumptions, removing data may render new bi-
ases (Bauermeister et al., 2012; Harzing, Brown, Köster, &
Zhao, 2012). A researcher may even face the accusation of
data manipulation, if data cleaning is not argued on system-
atic research and the cleaned data fits the model better than
the original data. With a clear focus on the non-reactive in-
dicators (paradata and post-hoc analyses of data), this paper
asks (RQ 1):

Which non-reactive data quality indicators are the most
efficient ones in identifying records of meaningless data in
an Internet survey?

Nichols et al. (1989) suggest to differentiate between care-
less responding and faking. To give consideration to differ-
ent kinds of meaningless data, a secondary research question
(RQ 2) is:

Which are the most efficient quality indicators to identify
specific types of meaningless data?

Literature provides two studies that empirically test non-
reactive indicators to identify careless cases in Internet sur-
veys. Both studies’ questionnaires include one or more ex-
tensive personality inventories with 300 and 400 items, re-
spectively. Johnson (2005) focuses on the distributions of
four quality indicators in a large sample (N = 23076). An el-
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bow criterion identifies clear cut-points in the distributions of
a straightlining index and the number of missing responses.
Two further indices for inter-item correlation do not show
such clear cut points. Notably, Johnson (2005, p. 119) found
the different consistency measures to identify mostly inde-
pendent sets of cases as being meaningless.

Meade and Craig (2012) include bogus items and self-
reports on response quality in the questionnaire. The arti-
cle compares indices from seventeen quality indicators and
finds them to correlate only low to moderately (N = 438).
Based on the results from latent cluster analysis, Meade and
Craig (2012) argue that correlation measures that detect in-
consistent answers, bogus items, and a diligence scale are
most efficient in identifying careless respondents.

Johnson (2005), Meade and Craig (2012) provide valuable
insights into the distribution of data quality indicators and
the relation of different indicators. Yet, both studies do not
employ an external criterion for careless responses. The con-
clusion that a response is careless is based on data structure
and response anomalies – assuming that the indicators actu-
ally predict careless responding. To test this assumption, and
therefore, to determine the predictive validity of the indica-
tors, this study employs an experimental-like design: Some
respondents are asked for careless and fraudulent responses,
and indicators compete to identify their records.

3 Non-Reactive Data Quality Indicators

This paper distinguishes five classes of non-reactive data
quality indicators. (1) The percentage of missing data is
important for data cleaning in general (Barge & Gehlbach,
2012; Börkan, 2010; Kwak & Radler, 2002; Shin, Johnson,
& Rao, 2012). Unanswered questions are a significant lim-
itation for nearly any kind of data analysis and can render a
record unusable. Internet surveys can automatically probe or
reject missing answers to ensure complete data sets (Franzén,
2011; Krosnick & Fabrigar, 2003; K. C. Schneider, 1985;
Schuman & Presser, 1980). Yet, such filtering may obfus-
cate cases in which a person just leafs through the question-
naire. Regarding the quality of answers, missing data may be
of ambivalent informative value. Unmotivated respondents
likely skip questions (Barge & Gehlbach, 2012), but highly
motivated respondents could as well express an “I do not feel
qualified to answer this question” by omitting the answer.

In printed questionnaires, (2) patterns in matrix-style
questions, such as a Likert question battery (“scale”), are the
most obvious indicator for suspicious data. Annoyed respon-
dents typically paint straight vertical lines (the same response
option is chosen for each item of a scale, also known as
straightlining, (Schonlau & Toepoel, 2015), diagonal lines,
and a combination of both (figure 1). Such patterns do not
necessarily render the response invalid, but it seems likely
that the respondents had the pattern in mind rather than the
battery items.

The (3) distance from the sample means is a straightfor-
ward measure to identify respondents giving atypical an-
swers. There is a high face validity of removing outliers, if
the sample shows a clean normal distribution and single cases
or small groups cause “peaks” or lie far outside the limits
of three or four standard deviations. Respondents who click
the first option for every item of a scale, for example, can
cause such an outlier group (figure 2). Outliers may indicate
meaningless data, but Bhaskaran and LeClaire (2010) argue
that outliers may as well be valid answers from atypical re-
spondents. Removing outliers will directly affect a sample’s
variance and means.

The (4) correlation structure within the answers (consis-
tency) is a chimera. On the one hand, answers about the same
construct shall be consistent and therefore highly correlated.
The same is expected for measures on related or dependent
constructs. This renders inconsistent answers suspicious of
being invalid answers. On the other hand, differentiation be-
tween similar but non-identical items might rather indicate
the respondent’s cognitive effort (Krosnick & Alwin, 1988).
Vice versa, straightlining results in very high consistency
if scales do not contain reversed items. Kurtz and Parrish
(2001) argue that valid responses also may seem inconsistent
and Sniderman and Bullock (2004) argue that inconsistent
answers may simply indicate that the respondent is not famil-
iar with the issue under research. In such a case, inconsistent
response behavior may just indicate loaded question word-
ing and weak attitudes (Klirs & Revelle, 1986), if not even
the attitude itself is inconsistent (Ajzen, 1988; Katz, 1968;
Kuhn, 1991). Last but not least, data cleaning based on cor-
relations may interfere with hypothesis testing. If only those
respondents are selected for analysis who show a correlation
one seeks to test, this is clearly a violation of prudence.

When using computer-assisted survey modes, (5) comple-
tion time is routinely available, for example, measured per
question (CATI) or per questionnaire page (web-based sur-
vey). Survey completion time is predicted by the personality
trait reliability (Furnham, Hyde, & Trickey, 2013) and cor-
relates to (less) measurement artifacts (Malhotra, 2008) and
increased attention (Revilla & Ochoa, 2014). Completion
time is no quality indicator per se: Many reasons can cause a
respondent to complete a 15-minute questionnaire in 5 min-
utes. Filter questions may have hidden substantial parts of
the questionnaire, or the respondent may be an expert who
can respond very quickly. If the interview was face-to-face
or via telephone, the interviewer will have an idea of the rea-
sons, but the response codes from a self-administered ques-
tionnaire provide little clues.

If no legitimate explanation can be found for increased
completion speed (rushing), then we must assume that the
respondent did not answer carefully or did even not read
the questions. Notably, research on interviewer-administered
surveys originally focused on response latencies as a mea-
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Figure 1. Response patterns observed in a Likert-like scale on elaboration. Items 2
and 9 were reversed. Overall scale consistency was α = 0.85, N = 11201.

Figure 2. Anomalies in the distribution of attitudes measured in a bi-polar scale.
Means from a 7-point scale with 16 items (N = 11032, see studies 1 and 2 for
sample details). The peaks at the scale’s middle and extremes are likely caused by
straightliners.

sure for attitude availability, and found that a longer latency
indicates low-quality data (Draisma & Dijkstra, 2004). A
general downside of completion times is their large interper-
sonal variation (Fazio, 1990; Meade & Craig, 2012, p. 447;
Yan & Tourangeau, 2008), which may outweigh variation in
the respondents’ effort. Leiner and Doedens (2010), for ex-
ample, point out that completion time does not predict test-
retest reliability, except for extreme cases. The duration be-
tween starting and finishing a questionnaire comprises time
to read, think, and respond, but also time for technical pro-
cessing (Internet transmission, server processing, also see
Stieger & Reips, 2010), and break times that are not actively
spent on the questionnaire, but with leaving the room, check-
ing e-mails, social media, and so on. Technical delays typi-
cally become negligible when pages ask for more than three
or four responses, but breaks may introduce substantial arti-
facts.

Practical research will often employ a sixth class of indi-
cators: meaning and plausibility. If the questionnaire asks

for 23 online services, and a respondent reports to use each
with the highest possible frequency, the record will appear in
the outlier analysis and it most likely contains meaningless
data. If the respondent reports an age of 118 years, this is
probably not correct, but may be a typo. An age of 99 years
may be a statement agains disclosing personal data. Open-
ended text questions often provide rich information to better
understand the respondent, and they may support the deci-
sion of whether to remove a record from the data set or not.
Nonetheless, meaning and plausibility can hardly be gener-
alized and standardized throughout different surveys, which
is the reason for excluding content-specific indicators from
this paper.

4 Method

To test the indicators’ efficiency in identifying cases of
meaningless data, four studies were conducted. Their de-
sign follows an experimental logic so far as respondents
were assigned into (two) groups that received different treat-
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ments. Similar to a design employed by Kemper and Menold
(2014) to research interview data fabrication, respondents
in the “low-quality” group were explicitly asked to produce
meaningless data. The success of the studies depends on
whether the participants follow this instruction. If the re-
spondents self-reported that they had not followed it (manip-
ulation check), their records were removed from analyses.
The “high-quality” group completed the questionnaire nor-
mally. The experimental outcome variables, technically, are
the data quality indicators as introduced above. But to better
fit practical application, the analysis logic is reversed: Anal-
yses do not test whether there was an effect of the treatment
on the indicators, but if those indicators allow the researcher
to tell the high- and low-quality groups apart.

4.1 Treatment

The aim was to elicit meaningful answers from the high-
quality group (HQ) and meaningless data from the low-
quality group (LQ). The treatment started with the invitation:
The HQ group was invited to a survey on “public opinion”
(studies 1 and 2), “stress” (study 3), or “communication with
managers” (study 4). The LQ group was invited to a study on
“poor survey data” (studies 1 and 2) or an “uncommon study”
(studies 3 and 4). The first page of the questionnaire then
gave away more information. The questionnaire instructions
in the HQ group asked the respondents to give their personal
opinions but included no appeal to answer the questions par-
ticularly carefully, except for a subsample in study 3.

In the LQ group, the instructions explained that unlike in
other surveys, this questionnaire expects them not to give
qualified answers. Then eye-catching red, large friendly let-
ters (studies 1 and 2, with repetition on the next page) or
a yellow box (studies 3 and 4, only once) gave the exact
instruction on how to complete the questionnaire. We as-
sume that all respondents had previous experience with not
being motivated to do something, so the introduction for the
LQ group asked them to put themselves in such a situation.
The LQ group’s instructions in studies 3 and 4 said: “Please
imagine, you had no interest in the subsequent questions, but
your only interest is to attend the lottery.” Studies 1 and 2
were more exploratory: One our of three instructions was
chosen randomly to provoke different kinds of meaningless
data (rushing, careless responding, intended faking). Studies
3 and 4 then focused on careless responding.

The instructions in studies 3 to 4 also announced a ques-
tion at the questionnaire’s end—the manipulation check—
that, unlike the other questions, would require an honest and
careful answer. The manipulation check was then preceded
by another eye-catching instruction to answer this question
honestly and carefully.

4.2 Participants

To collect the data in a realistic situation, and to avoid
wasting the respondents’ valuable efforts, all studies were
coordinated with other research projects. While the respon-
dents in the HQ group actually participated in an academic
survey, additional participants in the LQ group did the same
questionnaire under the “meaningless data” condition.

Participants for the studies were randomly drawn from the
SoSci Panel (for sample sizes see table 1, below), an aca-
demic access panel whose participants receive no compen-
sation for completing questionnaires (Leiner, 2016a). The
topic of study 4 required to invite only pool respondents who
identified themselves as employees (age median 42 years),
whereas the demographics of the studies 1 to 3 resemble the
pool’s demographics (40-50% employees, 35-39% students,
80-88% matriculation standard and above, age median 28-
36 years, 52-62% female). In the pilot studies 1 and 2 there
was a time lag between the original survey (HQ group) and a
second sample forming the LQ group, which imposes restric-
tions on group comparability—although these are of minor
relevance, compared to traditional experiments. In studies
3 and 4, all respondents were invited at the same time, and
assigned randomly to the experimental conditions.

4.3 Questionnaires

The questionnaires were designed by the respective re-
searchers in distinct research projects (Beckert, Koch, &
Jakubowitz, 2018; Leiner, 2016b; E. E. Schneider, Schön-
felder, Wolf, & Wessa, 2017), and amended by few questions
to allow for analyses on meaningless data. The question-
naires’ contents are very different and there is some variation
in question formats (see below), which avoids overestimating
specific indicators in the subsequent analyses. Studying the
quality of answers is only possible if the questionnaires meet
methodological standards. The SoSci Panel’s terms of use
support this objective as they demand sufficient pretesting,
and questionnaires undergo a peer review prior to the survey.

4.4 Manipulation Check

Records were used for analyses regardless of whether
optional questions were answered (see table 1 for details
about forced-choice/optional questions), but only if the re-
spondents clicked through all pages of the respective ques-
tionnaire. In the pilot studies 1 and 2 only respondents
in the LQ group were asked to complete a manipulation
check, in studies 3 and 4 all respondents were asked for
an honest rating of how they completed the questionnaire.
The manipulation check contained two bipolar items per LQ
group sub-condition in studies 1 and 2 (6-point response for-
mat), and two items in studies 3 and 4 (“answered superfi-
cially/thoroughly”, “hardly/completely read the questions”,
4-point response format). According to the manipulation
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check, several respondents in the LQ group were too careful
for this kind of a study. In studies 1 and 2 records were re-
moved from the LQ group if respondents reported that they
had rudely violated the experimental instructions (table 1).
For example, if they had given particularly correct and care-
ful answers (average ≥ 5 of 6), while they should have re-
sponded carelessly, or they had answered slowly and thought
about questions when they should have rushed. In studies
3 and 4, records were removed from both, the HQ and LQ
groups, if the average rating given in the two self-report items
was below the scale’s middle or above, respectively.

4.5 Measures

The goal of this study was to find those quality indica-
tors that could separate “good” from “bad” records. Five
categories of non-reactive data quality indicators were intro-
duced above (missing data, response patterns, distance from
the sample means, correlation structure, completion time),
and we computed a series of indicators for each category.

To quantify the (A) amount of missing data, we must dis-
tinguish compulsory from optional questions, and questions
offering a “don’t know” (DK) option from those that do not.
Open-ended text inputs where a response is not necessarily
expected (e.g., inputs for “other” and collection of arguments
or word associations) need special attention. One strategy is
to exclude such variables when computing indices for miss-
ing data, another strategy is to weight each “miss” with the
probability that the variable is answered by the overall sam-
ple (the quotient of cases where the variable was answered
and those where it was not). Both strategies were employed,
whereas any answer—meaningful or not—counted as an an-
swer. Multiple-choice checkbox questions that allow none,
one, or multiple options to be checked, were excluded from
the indices: In the same way as forced-choice questions, they
cannot not be answered, unless there is a minimum of op-
tions to check. From a practical point of view, it does not
matter whether such variables are excluded from the index
or not, because their inclusion does not add variance to the
index, only changes the absolute percentages of missing re-
sponses. The percentage of DK responses was then used as
third indicator for data quality, as choosing the DK option
could indicate a lack of motivation or understanding (Shoe-
maker, Eichholz, & Skewes, 2002, p. 195).

Matrix-style item batteries (scales) are analyzed to find
(B) visual response patterns. Reversed items that had been
re-coded during data collection were re-reversed so that the
response code of every item resembled the column in the ma-
trix (1=first response option from left, 2=second from left,
etc.). A series of indicators for visual patterns was tried, and
an obvious one was skipped: The number of straightlined
(short-)scales, i.e., scales where each item received the same
response. This indicator strongly depends on the number of
item batteries and their length, and provides little distinc-

tion. More differentiation is provided by the “longest string”
(Johnson, 2005, p. 109), which is the length of the longest
sequence of the same answer within an item battery. To ac-
count for other patterns, mathematical functions and algo-
rithms were employed to compute indices (Baumgartner &
Steenkamp, 2001; Jong, Steenkamp, Fox, & Baumgartner,
2008; Van Vaerenbergh & Thomas, 2012). For each indica-
tor, the index was computed for every matrix-style question
battery separately, and then these partial indices were aver-
aged.

First, the standard deviation (SD) was chosen to indi-
cate straightlining with minor deviations (Barge & Gehlbach,
2012). If the respondent checks options in a nearly straight
line, the SD is close to zero, regardless if the response format
is a 5, 6, or 7-point scale. Second, an algorithm was created,
giving one point if two subsequent items receive the same
answer (detecting straightlining), one point if the change be-
tween subsequent items is the same like the recent change
(detecting diagonal lines), and half a point if the change is the
same as the next-to-recent change (detecting left-right click-
ing). No more than one point is given per item, and the point
sum is divided by the number of items (k) minus one, result-
ing in a value between 0 and 1. Third, pretests with man-
ufactured patterns show that the absolute second derivation
(d) of response values (ri) is sensitive to straight, diagonal,
and zigzag lines:

d = mean(abs(diff(diff(r))))

=

∑k−2
i=1 |r

′′
i |

k − 2

=

∑k−2
i=1 |ri+2 − 2ri+1 + ri|

k − 2

Two indicators are based upon the (C) distance from
the sample means, effectively identifying atypical records
(outliers). One indicator is the absolute z-scored re-
sponse per item, averaged over all scale items. Inter-case
z-standardization levels the items’ different standard devi-
ations and toughens the index against missing responses.
The other indicator is the Mahalanobis distance (Johnson,
2005; Mahalanobis, 1936), which is a multivariate measure.
Missing responses pose a significant challenge for the Ma-
halanobis distance, therefore, variables with more than 20%
item non-response are excluded, and the covariance matrix is
computed pairwise.

The (D) correlation structure puts the focus on records
that influence correlations between variables in an atypical
way. The even-odd consistency (Johnson, 2005; Meade &
Craig, 2012), as the first indicator, requires the scale batter-
ies being half-split into even and odd items. An index value
(mean) is computed for each half set of items after recoding
reversed items. This procedure results in two series (even
and odd) of k index values per respondent, where k is the
number of scale questions. The within-subject correlation
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coefficient between these series is a combined measure of
consistent responding within the scales and differentiating
between the scales. Another measure for intra-scale con-
sistency is inspired by the idea of using regressions (Burns
& Christiansen, 2011; Jandura et al., 2012): Within each
scale battery, linear regression models predict every scale
item’s response based on the responses received for the other
scale items. The absolute residuals for each item are aver-
aged per scale. To create an index of scale inconsistency,
the average scale residuals are again averaged. A large index
of residuals then indicates arbitrary responding. Note, that
only intra-scale consistency is used as an indicator. Resid-
uals from an all-dataset-model (inter-measure consistency)
were not tested, as such an indicator is prone to increase type
I errors in hypotheses testing when used for cleaning data.

The (E) completion time (also known as response time)
was server-side recorded for each page in the questionnaire,
with the pages usually containing several questions and/or
items. In studies 1 and 2 some pages (the instructions and
the manipulation check) showed different contents, depend-
ing on the experimental condition; these were removed from
analyses. The same would be necessary if filter questions
were to vary the content substantially. The first indicator then
is the absolute time spent to complete all (relevant) pages.
The second indicator is the same, but after replacing outlier
times by the typical completion time for the respective page.
As the distribution of completion times is heavily skewed
(e.g., skewness = 12, kurtosis = 151 for the overall comple-
tion time in study 1), the per-page medians serve as typical
completion time, and an outlier is defined as taking 3/1.34
times the interquartile range (IQR) longer than the median
completion time (this would be 3 SD, if the distribution was
normally distributed). The third indicator is an index of rel-
ative completion speed: For each page, the sample’s median
page completion time is divided by the individual completion
time, resulting in a speed factor. A factor of 2 means that the
respondent has completed a page twice as fast as the typical
respondent. An average speed factor per respondent is com-
puted after the page factors are clipped to a maximum value
of 3. This avoids disqualifying respondents who incidentally
skip a single page. The limit of 3 is based on trials with the
data from studies 1 and 2. Therefore this measure’s efficiency
is possibly overestimated for those two studies

Although this paper is about non-reactive indicators, stud-
ies 3 and 4 also include few (F) reactive indicators to put the
non-reactive indicators’ performance into perspective. Study
3 employs an instructional manipulation check (IMC, Op-
penheimer, Meyvis, & Davidenko, 2009, p. 868) and a vari-
ant of the IMC that is passed more easily (figure 3). Both
variants aim to indicate whether the instructions have been
read and understood. Study 4 includes either the easier IMC
variant, or bogus items like “I am currently filling out a ques-
tionnaire” (Hargittai, 2009; Meade & Craig, 2012), or in-

structed response items like “please select «fully disagree» in
this line” (DeSimone et al., 2015). In the latter both condi-
tions, three such items were placed in different scale batter-
ies.

An indicator’s effectiveness is quantified by its capabil-
ity to correctly identify the records from the LQ group (true
positive). Given the indicator’s distribution for the over-
all sample, a threshold/cut-off value (percentile) is calcu-
lated for every indicator that identifies (predicted positive)
as many records as there are records in the LQ group. The
primary performance criterion then is the percentage of LQ
records that have been correctly identified by the chosen cut-
off value. This metric is also known as sensitivity, true pos-
itive rate, or hit rate. An ideal indicator has a sensitivity
of 100%; it identifies all LQ records and none of the HQ
records. The distribution of some indicators lacks differ-
entiation (many records have the same indicator value) and
does therefore not allow for a cut-off value that identifies
the exact number of records. In that case, a larger number
(over-identification) of records is identified as predicted pos-
itive, and the sensitivity is linearly corrected for that over-
identification. While the sensitivity gives an impression for
practical application, it depends on the relation of the LQ
and HQ group sizes, and is specific for the chosen cut-off

value. Therefore, the area under the curve (AUC, Fawcett,
2006; Hanley & McNeil, 1982) is calculated as a secondary
criterion, describing the indicators’ accuracy, taking chances
and varying cut-off values into account. The fact that there is
no manipulation check for the HQ groups in studies 1 and 2
causes us to underestimate the sensitivity and AUC but does
not change the indicators’ relative ranking.

5 Pilot (Study 1)

Studies 1 and 2 were conducted with the same question-
naire about “public opinion”. This questionnaire starts with
polling opinions on public issues (allowing “don’t know” but
no missing data), and then asks detailed questions on one of
these issues (attitudes, relation to values, ambivalence, elabo-
ration, uncertainty) mostly by means of five short multi-item
scales, presented in a matrix layout (see Leiner, 2016b for
the questionnaire). A significant amount of formally miss-
ing data was generated by open-ended questions asking for
arguments pro and contra the issue (Cappella, Price, & Nir,
2002). In Study 1 the detail questions (the second part of
the questionnaire) were about the same political issue for all
respondents.

The LQ group was subdivided to cover three possible ori-
gins of meaningless survey data: (1) rushing, only in study 1,
(2) careless responding, and (3) intended faking (Nichols et
al., 1989), with two possible treatment instructions for each
sub-condition (Appendix A.2). These six instructions were
randomly assigned to the respondents.
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Figure 3. Simplified version of the instructional manipulation check (S-IMC). In-
structions in a survey are often repetitive. Just screening such instructions seems
a sufficient strategy, and does not necessarily reduce data quality. The simplified
IMC therefore gives the instruction away in the first line. The questionnaire allows
to uncheck the radio buttons, in case that the instruction is read only after answering
has been started. The figure is a translation from the German version employed in
the questionnaire.

5.1 Results

After removing records from the LQ group that have failed
the manipulation check, 475 records with meaningless data
had to be distinguished from 621 mostly meaningful records
(table 1). The resulting random chance to correctly identify a
record from the LQ group is 0.43, which is also the baseline
for the indicators’ sensitivity as listed in table 2.

In the overall sample, not separated by sub-condition, the
indicators based on completion times are most successful in
identifying records from the LQ group. These indicators
identify about 66% of the LQ records, which, for compari-
son, corresponds to Nagelkerke’s pseudo R2 of .26 when un-
derstood as binomial regression (completion time with out-
liers replaced). The scales’ even-odd consistency and the
weighted non-response are considerably less efficient. For
the latter, indicators based on item non-response, a good part
of the drop can be attributed to a lack of differentiation: Near
the cut-off value, many records share the same non-response
rate, so far too many records exceed the cut-off value (over-
identification). The other indicators barely exceed random
chance or indicate the LQ records even worse than chance,
such as the number of DK responses and the simple distance
from the sample mean AUC < 0.5).

When it comes to different kinds of meaningless data (sub-
conditions), the LQ groups are smaller while the HQ group
remains the same. Therefore, random chance decreases. As
shown in table 2 (right columns), the careless responding
sub-condition reflects the indicators’ performance observed
for the overall sample. In the rushing sub-condition, comple-
tion time is the only relevant indicator. This suggests that the
manipulation failed: Doing a questionnaire as fast as possi-
ble (as the rushing instruction asked for) does not necessarily
provoke meaningless responses. Rushing is more likely one
possible outcome of careless responding than its cause. Con-
sequently, the rushing sub-condition is not used for the sub-

sequent studies. In the faking sub-condition, completion time
performs much worse than in the other two sub-conditions.
The weighted non-response is the only indicator to identify
faked records. Yet, its fair performance may be an artifact:
The participants in the faking sub-condition were instructed
not to disclose any true information about themselves (Ap-
pendix A.2), which might be understood as not answering at
all. Looking at this pragmatically, intended faking is virtually
invisible with the indicators applied in study 1.

6 Heterogeneous Data (Study 2)

Study 2 used the same questionnaire as study 1, but re-
spondents were randomly assigned to one of 17 different po-
litical issues in the second questionnaire part. The samples
in studies 1 and 2 already have substantial variance in age
and location, but not in education. The variation triggered in
study 2 increases heterogeneity in response behavior like we
would expect, for example, in a representative sample.

6.1 Results

The HQ group in study 2 is much larger (nHQ = 10, 580)
than in study 1. As there is some probability to have mean-
ingless data in the HQ group as well, we must understand the
efficiency presented in table 3 as a conservative estimate. Not
a single indicator can identify a substantial part of the faked
records in the heterogeneous data from study 2, including the
non-response rate that had shown a fair performance in study
1. We also find differences regarding careless responding:
While completion time is, again, the most efficient indica-
tor, (in)consistent responding cannot identify LQ records in
study 2. On the other hand, effortless response patterns can
play their strengths in study 2, nearly closing up to the sensi-
tivity of completion time. The fact that this respectable sen-
sitivity is not accompanied by a similarly convincing AUC
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Table 3
Indicator sensitivity in Study 2 per sub-condition

Careless Intended
Data Quality Indicator responding faking

Item non-response (irrelev. variables excluded) 0.033 0.008-

Item non-response (weighted) 0.031 0.008-

DK responsesa 0.101 0.069
Straightlining (longest string) 0.050 0.040
Straightlining (avg. within scale SD) 0.262+ 0.073
Patterns (algorithmic) 0.252 0.106
Patterns (second derivation) 0.246 0.073
Average Item Distance from Sample Mean 0.041 0.024
Mahalanobis Distance from Sample Mean 0.139 0.114
Even-odd consistency (split-half scales) 0.000- 0.016
Intra-scale residuals (inconsistency) 0.082 0.114
Absolute completion time 0.266++ 0.033
Absolute completion time (outliers replaced) 0.254++ 0.024
Relative completion speed (speed index) 0.246++ 0.041
Random chance 0.011 0.011
(nLQ : nHQ) (122:10580) (123:10580)

For intended faking (right column), the AUC does not exceed 0.624. Due to the large sam-
ple, over-identification was not an issue
a Except for DK responses (22% / 16%).
- Below random chance, + AUC ≥ 0.7, ++ AUC ≥ 0.8, +++ AUC ≥ 0.9.

suggests that the strength of effortless patterns lies in identi-
fying a rather specific part of careless responding.

7 Replication I (Study 3)

Study 3 employed a questionnaire on stress percep-
tion, physical condition, and stress-related behaviors (E. E.
Schneider et al., 2017). The questionnaire includes scales
with considerably more items than studies 1 and 2. The
longest scale consisted of 30 items that were presented on
two pages but analyzed as one scale to obtain the pattern and
consistency indicators (when treated as two scales, the in-
dicators’ performance would improve slightly). DK options
are not offered by this questionnaire. To allow for compari-
son of non-reactive and reactive indicators, two instructional
manipulation checks (the original IMC, and a simplified ver-
sion) were included in the questionnaire.

The LQ group (nLQ = 368) was asked to imagine that
they had no interest in the questionnaire and only to fill it
out to enter a lottery for a 25 e voucher. In response to
concerns that respondents may answer “too careful” in the
LQ group, an announcement was included that one would
afterward have the option to complete the questionnaire care-
fully. These records did not become part of the HQ group.
Respondents in the HQ group could also enter a lottery. In
study 3, the respondents from the HQ group (nHQ = 851)
were assigned to two different conditions: They were either
instructed to attentively read the questions and complete the

questionnaire very carefully (nH1 = 413) or were not given
such an instruction (nH2 = 438). The instructions in the LQ
and HQ groups, if given, were labeled “important advice”
and highlighted visually.

7.1 Results

The instructional manipulation check (IMC) can correctly
identify 365 out of 368 LQ records (99%). This seems a
compelling rate, but the IMC also identifies 347 of 852 HQ
records (41%) as meaningless data. According to other stud-
ies with respondents from the same access panel, it is very
unlikely that more than 5% of the HQ records actually con-
tain meaningless data. Such an over-sensitive indication is
not untypical for the IMC (Revilla & Ochoa, 2014). Table
4 accounts for the over-identification and therefore reports a
sensitivity of about 0.6 for the IMC, instead of 0.99. This is,
of course, only a theoretical value, since the IMC does not
provide any differentiation that would allow for not losing
substantial parts of the meaningful records.

Over-identification was better for the simplified IMC, but
even this version misidentified 30% HQ records, while 87%
of LQ records were identified correctly. The completion time
that showed above-average performance in studies 1 and 2,
and also performs best in study 3, achieves an identifica-
tion rate similar to the IMC (87% for the relative completion
speed) while losing much fewer records from the LQ group
(6%). This suggest following Aust et al. (2012, no. pg) who
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Table 4
Indicator efficiency in Study 3

LQ v. HQ no instruction LQ v. attentive instruction

Data Quality Indicator Sensitivity AUC Sensitivity AUC

Item non-response (exclusion) 0.375- 0.231 0.385- 0.205
Item non-response (weighted) 0.163- 0.239 0.160- 0.209
Straightlining (longest string) 0.484 0.614 0.522 0.640
Straightlining (within-scale SD) 0.625+ 0.712 0.630 0.691
Patterns (algorithmic) 0.633 0.695 0.639+ 0.711
Patterns (second derivation) 0.641+ 0.712 0.663+ 0.715
Avg. Item Distance 0.318- 0.306 0.361- 0.339
Mahalanobis Distance 0.622 0.664 0.628 0.669
Even-odd consistency 0.394- 0.410 0.399 0.390
Intra-scale residuals 0.571 0.611 0.579 0.615
Absolute completion time 0.883+++ 0.944 0.883+++ 0.951
Abs. completion time (outliers) 0.894+++ 0.959 0.897+++ 0.964
Relative completion speed 0.897+++ 0.961 0.905+++ 0.966
IMC (solved perfectly) 0.574 0.689 0.609+ 0.715
IMC (clicked title) 0.578 0.697 0.612+ 0.725
Simplified IMC 0.690+ 0.772 0.743++ 0.802
Random chance 0.457 0.500 0.471 0.500
(nLQ : nHQ) (368:438) (368:413)

The LQ group (nLQ = 368) was compared either to an HQ group that received no instruction how to
complete the questionnaire or to an HQ group that received an attentive instruction.
- Sensitivity below random chance, + AUC ≥ 0.7, ++ AUC ≥ 0.8, +++ AUC ≥ 0.9.

state that the applicability of the IMC is “limited to studies
in which data quality is dependent on the careful reading of
instructions.”

Results, when controlled for random chance, do not
show systematic differences between the HQ group’s sub-
conditions employed in study 3. Records from the LQ group
are no easier to identify if the HQ group was instructed to
complete the questionnaire carefully, than if they were not.

8 Replication II (Study 4)

Study 4 employed yet another questionnaire, researching
interpersonal communication in organizations (Beckert et al.,
2018; Breitsohl & Steidelmüller, 2018). Only employees
having a supervisor were allowed for this study. The instruc-
tion for LQ group respondents was to imagine that they had
no interest in the questionnaire, but only wanted to attend
the lottery. They were explicitly asked not to complete the
questionnaire carefully. Like in study 3 an option was an-
nounced to complete the questionnaire carefully, afterwards,
and again, these respondents did not become part of the HQ
group.

Both, the HQ and LQ groups were split into three condi-
tions that employed different reactive quality indicators. The
questionnaire either contained a simplified IMC, or three bo-
gus items (items with only one possible response option), or

three instructed response items (items saying which response
option to check) spread throughout three of six scales (5 to
24 items). A fourth sub-condition without any reactive qual-
ity indicators was excluded from the analyses for its different
overall number of items.

8.1 Results

Although a different issue was presented to a different
sample in study 4, the overall indicator performance is simi-
lar to the previous studies (table 5). Again, completion time
is the most effective non-reactive indicator. The IMC, a re-
active indicator, again is disproportionately strict—but not
the newly included reactive indicators: Instructed response
items perform similarly good as completion time, and the
bogus items can outperform any other indicator. Only three
bogus items are sufficient to correctly identify 92% of the
meaningless records.

9 Discussion

If participants take the time to plausibly falsify a question-
naire (faking), we are virtually unable to recognize this from
the non-reactive indicators applied in studies 1 and 2. This
finding was replicated with data from another online survey
(Bergwinkl et al., 2018) that is not presented in this paper,
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Table 5
Indicator efficiency in Study 4

Over-
Data Quality Indicator Sensitivity identification AUC

Item non-response (weighted)a 0.431 +24.9% 0.628
Straightlining (longest string) 0.399 +24.0% 0.571
Straightlining (within-scale SD) 0.567+ - 0.711
Patterns (algorithmic) 0.486 - 0.633
Patterns (second derivation) 0.559+ +0.3% 0.759
Avg. Item Distance 0.134- - 0.227
Mahalanobis Distance 0.321 - 0.437
Even-odd consistency 0.271- - 0.542
Intra-scale residuals 0.349 - 0.475
Absolute completion time 0.850+++ - 0.947
Abs. completion time (outliers replaced) 0.857+++ - 0.950
Relative completion speed 0.857+++ - 0.950
Simple Instructional Manipulation Checkb 0.384 +111.8% 0.631
Instructed Responsec 0.851+++ +3.1% 0.919
Bogus Itemsd 0.923+++ −1.1% 0.951
Random chance 0.307b,c,d 0.500
(nLQ : nHQ) (321:723)

a The performance of weighted and non-weighted item non-response was nearly identical.
Statistics on reactive indicators (end of the table) are based on subsets with N = b343, c330,
d323 (random chance b 0.297, c 0.335, d 0.297).

- Sensitivity below random chance, + AUC ≥ 0.7, ++ AUC ≥ 0.8, +++ AUC ≥ 0.9.

researching the perception of transgender persons. The ques-
tionnaire had been answered by a substantial number of re-
spondents who had publicly stated that they would try and
disturb the survey (survey trolls). As the malicious respon-
dents could reliably be identified by other means (timestamps
and the HTTP referer), the non-reactive indicators could be
tested. The distances from the sample means achieved the
best AUC with 0.73, which confirmed that the survey trolls
would have been successful in biasing the means, but also
that intended faking is barely identifiable by non-reactive in-
dicators. In this respect, interviews sophistically falsified by
respondents substantially differ from interviews falsified by
lazy interviewers (Menold & Kemper, 2014). The present
studies cannot tell if reactive indicators had performed bet-
ter, but there are reasonable doubts: Consciously intended,
motivated faking seems to involve a certain amount of atten-
tion to the questionnaire. A respondent making up coherent
responses will likely pass attention checks.

Much more promising are the results on careless respond-
ing: The response to the first research question (RQ1) is that
a substantial share of meaningless records can be identified
by completion time. This indicator class consistently shows
the best performance among the non-reactive indicators. A
lack of response variation (near-straightlining) also achieves
a respectable identification rate for careless responses in

studies 1 and 2. Yet, the replication of this good result fails
in studies 3 and 4 where different questionnaires are em-
ployed. The other classes of non-reactive indicators (item
non-response, untypical responses, and inconsistent answer-
ing within scales) are of little help in identifying meaningless
data.

Studies 3 and 4 also employ reactive indicators to allow
direct comparison to the non-reactive indicators. Instructed
response items identify careless records similarly good as
completion time. Bogus items outperform completion time,
although this paper cannot address the question, whether this
outstanding performance can be generalized: Bogus items
were employed only in a sub-sample of only one study.

10 Implications and Recommendations

Two recommendations can be derived from these results.
The first is, to make use of completion times to identify
meaningless data in web-based surveys. At least when the
questionnaire does not require respondents to look up in-
formation or is otherwise more quickly to complete for ex-
perts. The integration of multiple indicators is beyond the
scope of this paper but could improve the identification of
meaningless data. The second recommendation is to reduce
reliance on post-hoc analyses by, for example, sprinkling a
few bogus items throughout different scale batteries of the
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questionnaire. As an orientation: Study 4 used three items
“I’m currently filling out a questionnaire”, “I have never
ever used a computer”, and “My supervisor was born on
February 30th.” (note, that the questionnaire in study 4 was
about the respondent’s supervisor). Negative effects of such
items have been discussed (Curran, 2016; Goldsmith, 1989),
yet Breitsohl and Steidelmüller (2018) present empirical ev-
idence that these bogus items have little effect on response
behavior.

The identification of meaningless data is part of a larger
data cleaning process (Appendix B), and an important deci-
sion is what to do with records that have been identified as
meaningless? The answer depends on the survey. Losing
records to deletion has much worse implications in a rep-
resentative sample than in a convenience sample, and yet it
could be the preferable choice. And even when the data is
from a convenience sample, there is no data cleaning with-
out side effects: Completion times are independent of most
constructs measured in the questionnaires, but still correlate
to some of them. Data not presented here shows a moderate
correlation between completion time and political interest in
studies 1 and 2, for example. On the contrary, what do we
gain by removing meaningless records? This paper did not
discuss to what degree meaningless data distorts the results.
Greszki, Meyer, and Schoen (2015) as well as Moran and
Cutler (1997) argue that those responses may not affect the
results at all. Preliminary results for the above studies sug-
gest that it largely depends on the research question and ques-
tionnaire design. Meaningless responses may only increase
statistical noise or may cause substantial biases and type I
errors.

Even the best available non-reactive indicators identify
only a fraction of the problematic records, and the present
findings on bogus items need replication. Therefore, it is still
an uncertain diagnosis, whether a questionnaire was com-
pleted carefully or not. If there are arguments to remove
probably meaningless records, this means to also remove
some valid questionnaires. The amount of valid data that is
lost depends on the percentage of problematic records in the
data set.

Regarding the question for a definite cut-off value (DeSi-
mone et al., 2015, p. 179), this paper can only give a rough
direction. In the above studies, records were designed to
be either meaningful or meaningless. In general, we face a
broad continuum between completely meaningless answers
and painstaking accuracy. The results for the IMC (studies 3
and 4) and the lack of fully inconsistent (“random”) response
behavior suggest that some average attention is much more
typical for online survey respondents than utmost diligence
or completely meaningless responding. Facing this contin-
uum, it might be a good strategy to focus on the most careless
records, assuming that these threaten data quality the worst.

The average relative completion speed is a good candidate

to screen for meaningless data, as it allows comparison be-
tween different questionnaires. Its cut-off to distinguish the
LQ from the HQ group in studies 1, 3, and 4 is about 1.3
(study 2 is excluded here, because even a small percentage
of careless records in the exceedingly large HQ group biases
the cut-off value). This cut-off was calculated to estimate the
potential of the indicator. A pragmatic recommendation is to
use a much more lenient cut-off of 2.0 to identify particu-
larly suspicious records. For those, we must assume that the
respondents have not read the questions at all. Depending on
the questionnaire and sample, one may assess additional in-
dicators beyond the scope of this paper, such as the presence
of meaningful open-ended responses.

One restriction, of course, is crucial before removing
records with a relative speed index above 2.0: If the ques-
tionnaire asks for facts or knowledge instead of opinions,
then completion time is not a valid indicator for meaningless
data. Experts are obviously faster in giving facts than non-
experts who must select the information from the filing cab-
inet. This does not mean that the experts’ information would
be meaningless. The same applies to Internet newcomers and
frequent users: the latter will do a web-based questionnaire
faster, but do not necessarily answer less carefully.

11 Limitations

The manipulation employed in studies 1 to 4 can provoke
meaningless data only to a limited degree: Respondents from
the LQ groups often “failed” to respond carelessly. At the
same time, there may be some careless responding in the
HQ groups as well. This causes predominantly conserva-
tive estimates of indicator efficiency. Also, some liberties
were taken regarding group assignment in studies 1 and 2:
The HQ group (the reference group in both studies) and the
LQ groups were invited separately at different points of time.
This limitation has been addressed in studies 3 and 4. Finally,
this study includes neither self-reports nor scales designed to
measure inconsistent or faked responding. Studies 3 and 4
give some impression on how effective reactive measures for
data quality could be, but do not cover the full range of such
measures.

12 Conclusion

Meaningless data is a complex issue. Different motiva-
tions and behaviors of the respondents cause disperse out-
comes: Some respondents give inconsistent answers, others
skip items, reduce differentiation or follow further response
styles (Van Vaerenbergh & Thomas, 2012). Yet, none of
these patterns is characteristic of the majority. The closest
thing to a common characteristic of careless responding is the
motivation to save time: Completion times were found to be
a useful indicator of meaningless data throughout four stud-
ies. But in summary, the accuracy of isolated non-reactive
indicators is limited. A direction might be to address the
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complexity of different response behaviors by using multi-
ple non-reactive indicators at the same time. First attempts
suggest a non-linear combination so that each indicator only
identifies particularly abnormal cases in its own respect.

This paper leaves several questions unanswered: In which
settings are reactive indicators, such as bogus items, a bet-
ter replacement for non-reactive indicators? To what degree
does the removal of meaningless records affect the results’
quality? Shall we accept the possible removal of carefully
completed records? And what are the ethical implications of
evaluating metadata that respondents don’t know about?

Collecting survey data through the Internet is more im-
portant for the social sciences than ever before, but this inter-
view mode is still facing substantial challenges. Not only in
view of what became known as the replication crisis in the
social sciences, it is probably good advice to seek a better
understanding of problematic data and its impact on research
results.
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Appendix A

Table A1
Cross-correlation between different data quality indicators (study 2)

Indicator 1.a 1.b 2.a 2.b 3.a 3.b 4.a 4.b 5.a 5.b

1.a Missing Data (absolute) .75 .06 .07 −.04 −.08 .04 −.01 .10 .22
1.b Missing Data (weighted) .75 .11 .13 −.02 −.11 .01 −.04 .18 .28
2.a Straightlining (within scale SD) .06 .11 .78 −.37 −.67 −.11 −.71 .12 .17
2.b Patterns (second derivation) .07 .13 .78 −.22 −.58 −.15 −.68 .13 .19
3.a Avg. Item Dst. f. Sample Mean −.04 −.02 −.37 −.22 .44 −.37 .31 −.05 −.07
3.b Mahalanobis Dst. f. Spl. Mean −.08 −.11 −.67 −.58 .44 .07 .86 −.11 −.17
4.a Even-odd consist: (split-half) .04 .01 −.11 −.15 −.37 .07 .13 −.01 −.02
4.b Intra-scale residuals (incons.) −.01 −.04 −.71 −.68 .31 .86 .13 −.09 −.13
5.a Fast Completion (absolute time) .10 .18 .12 .13 −.05 −.11 −.01 −.09 .80
5.b Fast Completion (index) .22 .28 .17 .19 −.07 −.17 −.02 −.13 .80

N = 10901. The table gives rank correlations (Spearman), as the absolute value of an indicator and its distribution is irrelevant
for removal by cut-off (threshold).

Table A2
Instructions in studies 1 and 2

Sub-condition Instruction

Rushing (1)a Please complete this questionnaire as fast as possible.

Rushing (2)a Please try and reach the questionnaire’s end as quickly as possible.

Careless responding (1) Please take as little care as possible in doing this questionnaire. Do this questionnaire
deliberately carelessly.

Careless responding (2) Please imagine that you’re not interested in the questions, but your only interest is to
attend the lottery.

Intended faking (1) Please imagine that you’re not interested in the questions, but your only interest is to
attend the lottery – yet make your answers look authentic.

Intended faking (2) Please disclose as little as possible about you and your opinion.

The instructions, like the questionnaire, were in German. a The “rushing” instructions were only employed in study 1, not in
study 2.
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Appendix B
Practical Application – Data Cleaning

The identification of meaningless data and the choice of how
to handle such records is part of a larger data cleaning pro-
cess. Step 1 of this process usually removes ineligible cases
where respondents are not part of the population under re-
search. In step 2 records may be removed for which impor-
tant questions have not been answered: dropouts and records
with substantial item non-response. The analytic value of in-
complete cases is usually limited to estimating self-selection
biases and the identification of problematic questions. Step
3 is the removal of multiple submissions by the same re-
spondents (Bauermeister et al., 2012; Bowen et al., 2008;
Konstan et al., 2005) or submissions for the same analy-
sis unit from different respondents (data doublets). Mul-
tiple submission is often considered a minor problem, be-
cause doing the same survey twice is very unattractive in
non-/low-incentivised, lengthy Internet surveys (Birnbaum,
2003, p. 372; Göritz, 2004). Should a study provoke multi-
ple submissions, various techniques help with their identifi-
cation (Musch & Reips, 2000). Data doublets are rarely an
issue when the research units are respondents (Slomczynski,
Powalko, & Krauze, 2017), but studies researching organiza-
tions (Hardeman, 2013) or households typically need dedu-
plication and merging strategies to cope with heterogeneous
reports on the same unit. Step 4 might identify and handle
cases with meaningless data, which is the focus of this pa-
per. Depending on the applied statistic methods, step 5 is to
remove extreme outliers that would disproportionally skew
statistical analyses and/or remove outlier responses from oth-
erwise valid cases (for a discussion “to remove or not to re-
move” records in representative samples see Osborne, 2013,
p. 165). The steps’ order may vary throughout studies, and
data cleaning may include fewer or further steps.
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