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Population structure is a key determinant of the efficiency of sampling plans and estimators.
Variables in many establishment populations have structures that can be described by simple
linear models with a single auxiliary variable and a variance related to some power of that
auxiliary. If a working model can be devised that is a good approximation to the population
structure, then very efficient sample designs and estimators are possible. This study compares
alternative strategies of (i) selecting a pilot study to estimate the variance power and using that
estimate to select a main sample and (ii) selecting only a main sample based on an educated
guess about the variance power. We also examine a number of sampling plans, including
probability proportional to size, deep stratification based on a measure of size, and weighted
balanced sampling. Population totals are estimated by best linear unbiased predictors, general
regression estimators, and some other choices often used in practice.
Keywords: best linear unbiased predictor, deep stratification, general regression estimator,
measure of heteroscedasticity, optimal sample, robust variance estimation, weighted balance

1 Introduction

Estimating totals is often an objective in samples of busi-
nesses and other types of establishments. Regardless of
whether one uses a design-based or model-based approach to
sampling and estimation, one factor that can affect the vari-
ance and bias of estimated totals is the superpopulation struc-
ture. We consider cases where an analysis variable’s variance
is proportional to some power of an auxiliary variable. This
type of structure is often present in establishment or account-
ing populations where quantitative variables like revenues or
capital assets are collected. The purpose of this paper is to
compare alternative ways of estimating that structure and the
impact of those alternatives when estimating population to-
tals using a model-based approach.

Various strategies conceivable in this situation include:
(1) selection of a relatively small, pilot sample to make pre-
liminary structural parameter estimates, (2) selection of a
larger, main sample based on either pilot results or educated
guesses about population parameters, and (3) use of either
a model-based or design-based estimator of the total. For
various single-stage sample designs, sample sizes, and esti-
mators, we compare alternative strategies for estimating val-
ues of the variance power for simulated population data. The
strategies’ effects on estimates of totals and their variances
are then evaluated.

This paper is organized into five sections. After the in-
troduction, Section 2 contains descriptions of our superpopu-
lation model and generated populations and related practical
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applications. Section 3 includes our simulation setup details,
while results are discussed in Section 4. Conclusions and
limitations are in Section 5.

2 Superpopulation Model and
Generated Populations

The populations we study can be described by a fairly
simple model structure introduced in section 2.1. This struc-
ture fits a variety of real populations, examples of which are
presented. For the simulations, we generated some artificial
populations that mimic real ones as discussed in section 2.2.
Using generated populations allows us to compute nearly
optimal estimators based on parameters that are under our
control. These estimators serve as a basis of comparison to
more realistic ones for which estimators of unknown quanti-
ties must be used.

2.1 Model Theory
Given a study variable Y and an auxiliary variable X , we

consider a superpopulation with the following structure:

EM (yi|xi) = β0 + β1xi

varM (yi|xi) = σ2xγi (1)

The xi’s are assumed to be known for each unit i in the finite
population. In related literature, the exponent γ in model
(1)’s conditional variance has been referred to as a measure
of heteroscedasticity (Foreman 1991), or coefficient of het-
eroscedasticity (Brewer 2002). Applications using models
like (1) include companies using “cost segregation” to report
depreciable assets on their U.S. Internal Revenue Service
Corporate Income Tax Form (e.g., Allen and Foster 2005 and
Strobel 2002) and comparing inventory data values versus
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actual values (e.g., Roshwalb 1987 and Godfrey, Roshwalb
and Wright 1984). The current U.S. tax law allows busi-
nesses to depreciate capital assets over the life of the asset.
Depreciation is recorded as an operating expense and will
reduce a business’s tax bill. Cost segregation is the process
of separating different depreciable assets into different cate-
gories by years. For example, buildings can be depreciated
over a 39-year period; smaller items, like cash registers and
shelving, over a 5-year period. Other asset classes are 7-year
and 15-year. The result of cost segregation can be a gain
in the company’s short-term deduction reported on their tax
return, which creates a larger amount of cash flow.

Figure 1 gives x-y plots for five real populations that have a
structure like that of model (1). The upper left panel shows
the U.S. dollar value of 39-year depreciable assets for a set
of stores plotted versus total cost of assets for the stores.1
In the upper right is a plot of patient discharge data for the
hospital population in Valliant, Dorfman and Royall (2000).
U.S. county employment data are plotted in the second row
left panel (see Census Bureau 2007). The fourth plot shows
the number of students in New York state public schools ver-
sus the number of teachers in each school (National Center
for Education Statistics 2007). The last is a plot of expen-
ditures versus number of inpatient beds for a subset of the
sample from the 1998 Survey of Mental Health Organiza-
tions (SMHSA 2007). The red line in each panel is a non-
parametric smoother (lowess) showing that x-y relationships
can be reasonably described by linear models.

Each panel of Figure 1 shows the estimate of γ in model
(1), calculated using the algorithm described later in section
3.4. The range of γ estimates is about 0.6 to 2, which is fairly
common in these types of populations.

The variance parameter γ is of interest since, in some pop-
ulations, having a reasonable γ estimate can be used to pro-
duce nearly optimal sample designs and estimators of totals
along with their variances. First, the selection probabilities
that minimize the anticipated variance of the general regres-
sion (GREG) estimator under (1) are proportional to xγ/2

i
(Särndal, Swensson and Wretman 1992, Sec. 12.2). Second,
if the model is

EM (yi|xi) = βγ/2xγ/2
i + βγxγi

varM (yi|xi) = σ2xγi , (2)

then a weighted balanced sample, defined below in (3),
will minimize the error variance of the best linear unbi-
ased predictor (BLUP) of the finite population total of Y, i.e.
EM

(
T̂ − T

)2
will be minimized where T̂ is the BLUP and

T is the total (Theorem 4.2.1 Valliant, et al. 2000). The
key requirement of that theorem is satisfied when EM (yi|xi)
is proportional to a linear combination of both

√
varM (yi|xi)

and varM (yi|xi), as is the case in (2). The optimal, weighted
balanced sample under model (2) has

x̄(γ/2)
s = x̄(γ)

/
x̄(γ/2) (3)

where x̄(γ/2)
s is the sample mean of xγ/2

i , and x̄(γ) and x̄(γ/2) are
the population means of xγi and xγ/2

i . However, this type of
sample will not be optimal under model (1), since EM (yi|xi)
does not contain xγ/2

i or xγi .
Weighted balanced samples can be selected in various

ways. Chauvet and Tillé (2006) and Tillé (2006) give some
efficient algorithms. In this study, we used a less sophisti-
cated rejective method described in section 3.2.

Model (2), called the minimal model (Valliant et al.
2000:100), is associated with the conditional variance,
varM(yi|xi) = σ2xγi . If (1) were unknown, but the intercept is
small, then working model (2) may be a reasonable starting
place to determine a sample size.

2.2 Generated Populations
We created four unstratified versions of the population

described in Hansen, Madow and Tepping (1983, denoted
HMT hereafter) that follow model (1). In an HMT pop-
ulation, x has a gamma distribution with density, f (x) =
(x/25) exp(−x/5); y also has a gamma density conditional on
x:

g(y; x) =
[
bcΓ (c)

]−1 yc−1 exp(−y/b)

where

b = (5/4d)xγ(8 + 5x)−1,

c = (1/25) x−γ (8 + 5x)2, and
d= 1/4 when γ = 3/4 and 1/2 when γ = 2.

With this structure we have
(
β0, β1, σ

2
)

= (1/10, 1/16, 1/256)

when γ = 3/4 and
(
β0, β1, σ

2
)

= (2/10, 1/8, 1/64) when
γ = 2.

Figure 2 shows the X,Y values for each generated popula-
tion of size 10,000, while smaller populations of size 200 are
shown in Figure 3. These populations are similar to some
of the real ones in Figure 1 and give us test cases where all
parameters are known.

The first population in Figure 2 has a relatively strong de-
pendence between yi and xi, while the second one has a much
weaker relationship. The smaller populations in Figure 3
were designed to resemble those encountered in accounting
applications. In a cost segregation problem, xi is typically the
total monetary value of total capital assets in a store while yi
is the value of 5-year, 7-year, 15-year, or 39-year assets. A
depreciation class that accounts for a large part of total as-
sets will have a strong relationship between yi and xi, shown
in Figure 3(a), while a smaller asset class tends to have a
weaker relationship like the one in Figure 3(b).

There is often a huge incentive to use optimal samples and
estimators in the applications we consider due to high data
collection costs. In a cost segregation study, for example,
experts such as lawyers, engineers, and accountants may be

1 To protect confidentiality, the source of the store data cannot
be revealed. The asset values have also been perturbed while main-
taining the original structure.
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Cost Segregation Data

γγ̂ == 2.026
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γγ̂ == 1.547
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Figure 1. Five real populations of Stores, Hospitals, Counties, Schools and Mental Health Organizations.

needed to assign capital goods to depreciation classes. Time-
consuming assessments may have to be done on-site at es-
tablishments plus travel and personnel costs can be high; so,
the smaller the sample size that yields desired precision, the
better (e.g., Rotz, Joshee, and Yang 2006).

3 Simulation Setup

This section describes the details of our simulation study,
including working models, sample designs, simulation
strategies, and the method of estimating γ. The working
model is the one used for sample design planning and esti-
mation, but may be misspecified in the mean function, the
variance function, or both.

An important practical consideration is how sensitive dif-
ferent estimators and sampling plans are to model misspeci-
fication. Note that all the populations in Figures 2 and 3 have
a small non-zero intercept, which resulted in some model-
based estimators being biased in the earlier HMT study.

3.1 Models

Using the Valliant et. al (2000) notation, we use
M (δ0, δ1, . . . , δJ : v) to denote the polynomial model Yi =∑J

j=1 δ jβ jx
j
i + εiv

1/2
i with δ j equal to 1 or 0 depending on

whether the term x j
i is in the model or not. The errors

εi are independent and identically distributed with mean 0
and variance σ2 and vi is an unknown variance parameter.
We are specifically interested in vi ∝ xγi . By extension,
M(xγ/2, xγ : xγ) denotes the model in (2).

We based estimators of totals on the four working models
listed below:

M(1, 1 : xγ), or
EM(yi|xi) = β0 + β1xi
VarM(yi|xi) = σ2xγi

(4)

M(xγ/2, xγ : xγ), or
EM(yi|xi) = β1xγ/2i + β2xγi
VarM(yi|xi) = σ2xγi

(5)
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Figure 2. Generated Large Populations (N=10,000)

M(0, 1 : xγ), or
EM(yi|xi) = β1xi
VarM(yi|xi) = σ2xγi

(6)

M(0, 1 : x), or
EM(yi|xi) = β1xi
VarM(yi|xi) = σ2xi

(7)

Model (4) is the correct working model, i.e., the one equiva-
lent to model (1). Model (5) is also the minimal model noted
earlier in (2), which may be a reasonable starting place to
determine a sample size and an efficient sampling plan.

Model (6) is a special case of model (1) with a zero inter-
cept. Model (7), the ratio model, corresponds to the special
case of (6) with γ = 1 in the variance structure. Estimators
generated from models (5), (6), and (7) do have model biases
under (4), which will increase their mean square errors when
averaged over all of the samples that are possible under each
design plan.

3.2 Sample Designs

We consider four without replacement (wor) sample de-
signs:
(1) srswor: simple random sampling without replacement.
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Figure 3. Generated Small Populations (N=200)

(2) ppswor: the Hartley-Rao (1962) method with probabili-
ties of selection proportional to a measure of size (MOS).

(3) ppstrat: strata are formed in the population by cumulat-
ing an MOS and forming strata with equal total size. A
simple random sample of one unit is selected from each
stratum.

(4) wtd.bal: weighted balanced sampling. ppswor samples
using an MOS are selected that satisfy particular condi-
tions on the population and sample moments of xi.

Next, we denote a sampling plan that uses probability pro-
portional to a particular MOS by pp (MOS ). Weighted bal-
anced samples were selected by a rejective algorithm based
on probability proportional to size sampling. A pp (

√
xγ)

sample satisfies the balance condition (3) in expectation since

Eπ

[
x̄(γ/2)

s

]
= x̄(γ)

/
x̄(γ/2)

where Eπ denotes expectation with respect to repeated
sampling. The rejective algorithm consists of three steps:

(i) Select a pp (
√

xγ) sample s by the method of Hartley-
Rao (1962);

(ii) Calculate the balance measures
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ek (s) =
∣∣∣∣√n

[
x̄(k)

s − Eπ

(
x̄(k)

s

)] /
skx

∣∣∣∣ (k = γ/2, γ),

where skx

/√
n is the standard error of x̄(k)

s in repeated pp
(
√

xγ) with-replacement sampling; and

(iii) Determine whether ek (s) ≤ 0.125 for k = γ/2, γ.
If so, the sample was considered to have weighted
balance and was retained; if not, steps (i) and
(ii) were repeated until ek (s) ≤ 0.125. Using the
0.125 cut point leads to rejecting about 90% of
samples.

The rejective sampling algorithm defined by (i)-(iii) above
is denoted wtd.bal(

√
xγ). Three types of MOS were used

for weighted balanced sampling: γ = 1/2, γ equal to the
true value used to generate a population, and γ equal to the
estimated value from a pilot study.

As noted in section 2.1, the selection probabilities that min-
imize the anticipated variance of the GREG under model (1)
are proportional to

√
xγ. When the MOS is

√
xγ, the ppstrat

design approximates optimal pp (
√

xγ) selection and wtd.bal
(
√

xγ) sampling. The design ppstrat is also similar to “deep
stratification” (e.g, Bryant et al. 1960; Cochran 1977:124-
126; Sitter and Skinner 1994), which is used in accounting
applications (Batcher and Liu 2002). More specific details
on these designs are given in pages 66-67 of Valliant et al.
(2000).

3.3 Strategies

The strategies we examined consisted of (i) selecting a
pilot study to get a preliminary estimate of γ followed by
a main sample or (ii) only selecting a main sample. Both
options were crossed with the possibility of rounding γ̂ to
the nearest one-half or using the original estimate. Rounding
γ̂ is one plausible method for limiting the effect of unstable
point estimates of the variance parameter. Thus, our main
comparisons concern four strategies:

A: draw a small pp (
√

x) pilot sample, estimate γ, select
a main sample using pp (

√
xγ̂), ppstrat (

√
xγ̂), and wtd.bal

(
√

xγ̂) samples, and construct estimates using the pilot esti-
mate, γ̂.

B: draw srswor, ppswor (
√

x), ppstrat (
√

x), and wtd.bal
(
√

x) main samples only, estimate γ in each, and construct
estimates using that γ̂.

C: strategy A, rounding γ̂ to the nearest one-half.
D: strategy B, rounding γ̂ to the nearest one-half.

Note that, in strategy A, using the pilot γ̂ is necessary to
construct the GREG, defined in section 3.5, with its appro-
priate selection probabilities.

There is no srswor used for strategies A and C. Also, B and
D correspond to assuming γ = 1 for selecting the ppswor,
ppstrat, and wtd.bal samples. The γ = 1 specification does

not match our population γ’s, but will be a reasonable ad-
vance choice for sampling in many populations. We consider
the rounding in C and D to see if reducing variability in the
γ̂’s leads to improved estimates of totals and their variances.
The estimates, γ̂’s, described above, are used in some of our
estimates of totals and variances, as described in sections 3.5
and 3.6.

The combinations of pilot and main sample sizes are:

Pilot sample Main sample
Population size size

Small 10 25, 50
Large 10 50, 100
Small No pilot 25, 50
Large No pilot 50, 100

3.4 Estimation of γ
When the expected value, EM (yi|xi), is specified correctly

and the model is fit by ordinary least squares (OLS), the
squared residual can be used to estimate the unknown model
variance. In particular, we define ri = yi − x′i β̂, where xi

is the vector of x’s in the working model and β̂ is the OLS
estimate of the associated model parameters. Then EM(r2

i )
is an approximately unbiased estimate of varM(yi |xi ). When
varM(yi |xi ) = σ2xγi , this leads to the following algorithm
(e.g., see Roshwalb 1987):
(a) Fit the model EM (yi|xi) = x′iβ by OLS and obtain the

residuals.
(b) Regress the log of the squared residuals on log (x), i.e.

log(r2
i ) = α + γ log(xi) using OLS.

(c) Fit the model EM (yi|xi) = x′iβ by weighted least squares
with weights, 1

/
xγ̂i using γ̂ from step (b). Obtain the

residuals.
(d) Repeat steps (b) and (c) until the relative change in γ̂ is

small.
For the probability samples, an option would be to fit the

models in the algorithm by sample-weighted least squares;
we did not pursue that here although in practice it may be a
reasonable step to account for an informative design. We also
experimented with fitting the nonlinear model r2

i = σ2xγi + εi
but this led to severe convergence problems in many samples,
and this method was discarded.

3.5 Estimation of Totals
We consider three kinds of estimators for totals: the

Horvitz-Thompson (HT) estimator, best linear unbiased pre-
dictors (BLUP), and general regression estimators (GREG).
These were selected to span the design- and model-based
choices that are of theoretical and practical interest. The HT
estimator is given by

T̂π =
∑

s

yi/πi,
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where πi is the probability of selection for unit i and s is the
set of sample units. In weighted balanced samples, we used
the same value of πi as appropriate for ppswor samples. This
is, of course, not necessarily the actual selection probability
because of the restrictive nature of balanced samples. This
approach was also used for the GREG estimators computed
from weighted balanced samples.

The general form of the BLUP estimator is

T̂ =
∑

s

yi +
∑

r

x′i β̂,

where r is the set of nonsample units, x′i β̂ is the prediction
for yi (i ∈ r) using the working model, and β̂ is estimated
using the sample units (i ∈ s). For example, the BLUP using
the correct model (1) has

β̂ =
(
X′sV

−1
ss Xs

)−1
X′sV

−1
ss ys, (8)

where Xs is an n×2 matrix with rows (1, xi), V ss = diag(xγi ),
and ys is the n-vector of sample data values. The BLUP for
a well-fitting model has the advantage of being very efficient
compared to other options.

The general form of the GREG estimator is

T̂GR =
∑

s

giyi/πi,

where gi = 1+
(
X − X̂π

)′
A−1xi/vi is the “g-weight” for unit i

(Särndal et al. 1992), where A = X′sΠ
−1V−1

ss Xs, X̂π is the HT
estimate for the population total of X, and Π = diag (πi). The
main advantages of the GREG are its approximate design-
unbiasedness, even if the working model is wrong, and its
high efficiency if the working model is correct.

We combined these estimators with the four working
models, true value of γ, and estimates of γ to form
eight estimators of totals. We use notation for esti-
mated totals that parallels the earlier notation for mod-
els. In particular, T̂ (δ0, δ1, . . . , δJ : v) denotes the BLUP
under M(δ0, δ1, . . . , δJ : v) while T̂GR(δ0, δ1, . . . , δJ : v) is the
GREG under that model and whatever sample design is
used. For model (4), we have T̂ (1, 1 : xγ), T̂ (1, 1 : xγ̂),
and T̂GR(1, 1 : xγ̂). All three of these are model-unbiased
under (4), and, therefore, design/model-unbiased in the
sense that EπEM(T̂ −T ) = 0, where Eπ denotes the expec-
tation with respect to a given sample design. T̂GR(1, 1 : xγ̂)
and the other GREGs mentioned below are approximately
design-unbiased (regardless of underlying model) as long
as correct selection probabilities are used. The estimators
T̂ (xγ̂/2, xγ̂ : xγ̂) and T̂GR(xγ̂/2, xγ̂ : xγ̂) correspond to model
(5), while T̂GR(0, 1 : xγ̂) is for model (6); all three estima-
tors are model-biased under (4). T̂π and T̂GR(0, 1 : x), which
do not involve γ, are the seventh and eighth estimators con-
sidered. Each of these is also model-biased under (4). The
ratio estimator, T̂ (0, 1 : x), is approximately design-unbiased
only under srswor. T̂π and T̂GR(0, 1 : x) are (approximately)

design-unbiased in any probability sampling plan if the cor-
rect selection probabilities are used to construct the estima-
tors. Note that wtd.bal(

√
xγ) sampling is theoretically opti-

mal only for T̂ (xγ/2, xγ : xγ) under model M(xγ/2, xγ : xγ). For
other estimators, like T̂ (0, 1 : x), the ratio estimator, wtd.bal
(
√

xγ) or wtd.bal(
√

x) sampling can give biased, inefficient
estimates. Note that the true γ is not available in any real sit-
uation; the estimator T̂ (1, 1 : xγ) has the smallest theoretical
error variance of any estimator under model (1) and is used
as a standard of comparison for the other choices.

3.6 Variance Estimation
There are a number of alternative design- and model-based

choices for variance estimation. The ones used in our simu-
lation are described in this section. For the HT estimator, the
variance estimator is:

v0

(
T̂π

)
=

(
1 −

n
N

) n
n − 1

∑
s

 yi

πi
−

1
n

∑
s

yi

πi

2

.

This variance expression assumes with replacement sam-
pling, but uses the finite population correction adjustment
1 − n/N to approximately account for wor sampling.

For the BLUP estimators, we used a robust leverage-
adjusted variance estimate:

vD

(
T̂
)

=
∑

s

a2
i r2

i

1 − hii
+

∑
r xγ̂i∑
s xγ̂i

∑
s

r2
i ,

where hii = x′i
(
X′sV

−1
ss Xs

)−1
xi/vi is the leverage for unit i,

ai = 1′r Xr

(
X′sV

−1
ss Xs

)−1
xi/vi , and ri = yi − x′i β̂ with β̂ de-

fined in the associated working model. The second term in
vD accounts for variability in the population units that are not
in the sample.

For the GREG’s, we include variance estimators with the
following form (e.g., see Valliant 2002, expression 2.4)

vD,GR(T̂GR) =

(
1 −

n
N

)∑
s

g2
i r2

i

π2
i (1 − hii)

with ri = yi − x′i B̂, B̂ =
(
X′sΠ

−1V−1
ss Xs

)−1
X′sΠ

−1V−1
ss ys, and

hii = x′i
(
X′sV

−1
ss Π−1Xs

)−1
xi/ (viπi). Since the ratio estimator

is a special case of a GREG, the particular form of vD,GR was
used for its variance estimator.

Note that vD and vD,GR can both be affected by the use of
an estimate of γ, since γ̂ enters in both the leverages and the
residuals. The exception to this is the ratio estimator, where
γ is set to 1.

The same variance estimators were used for all sample de-
signs, except for the ppstrat design-based variances for the
HT and GREG estimators. In ppstrat, one sample unit is
selected per stratum. Thus, adjacent strata had to be col-
lapsed to estimate a variance. That is, successive pairs of
sample units were formed, variances were calculated within
each stratum, and strata variances were cumulated to give a
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stratified version of v0. Since all of our working models were
specified over all strata, vD was used for samples selected us-
ing ppstrat sampling in estimating the variance of the BLUP.

We summarize our simulation factors, the number of levels
for each factor, and the associated levels in Table 1.

4 Simulation Results

Results from the simulations are summarized in this sec-
tion. Since the results are extensive, we mainly present sum-
mary statistics graphically, including estimates of γ, relative
biases of estimated totals, root mean square errors, and con-
fidence interval properties. For each combination of simula-
tion parameters described in sections 3.2 and 3.3, we selected
1,000 samples.

4.1 γ Estimates

Since we are interested in the practicality of the various pro-
cedures, it is worth noting some of the numerical difficulties
that can arise when estimating γ. Generally, the iterative pro-
cedure described in section 3.4 converged and produced rea-
sonable answers. However, four different problems occurred
during the simulations:
(1) The procedure produced negative γ estimates;
(2) γ̂ diverged to positive or negative infinity;
(3) The procedure did not diverge but did not converge to an

estimate;
(4) The procedure converged to an unreasonably large γ̂.

These are well-known phenomena in numerical analysis
(Gentle 2002), but it is worthwhile to understand them in
more depth for this simple problem. Problems (1), (3), and
(4) occurred for all four populations, while (2) only occurred
for the small ones. We illustrate (1)-(3) with examples.

Example 1: Negative γ̂ The first example is a pp (
√

x) pi-
lot of size 50 selected from the large population with γ = 3/4.
The x-y sample plot, shown in Figure 4, does not appear to
be problematic, but this is an apparently innocuous configu-
ration of sample data that can still lead to convergence prob-
lems. The “problems” associated with this type of sample
are that the population units with larger xi’s are missing and
the variability in the yi’s is greater for smaller values of xi
than larger ones. This resulted in the estimate of γ becoming
negative by the fifth iteration of the program (see Figure A.1
in Appendix A).

Example 1 also resulted in problem (3): the iterative pro-
gram did not converge to a solution within 100 iterations.
This problem, which also occurred for positive estimates of
γ in some samples, is shown in Figure 5. Estimates oscillate
within a fairly narrow range of negative values but do not
converge.

For all strategies, if γ̂ ≤ 0, γ̂ was forced to 1, which corre-
sponds to pp (

√
x) sampling. Rejected alternatives included

forcing γ̂ = 0, implying homoscedasticity, or dropping these
samples, both of which are unrealistic in practice. As an il-
lustration of the extent to which this was necessary, Table
B.1 in Appendix B shows the number of these occurrences
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 Figure 4. Sample Plot of Problem Example 1
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 Figure 5. Estimates of γ for the first 100 iterations, Problem Ex-

ample 1

for the γ = 3/4 population (there were less than 5 cases for
each strategy for the γ = 2 population). In this table, strategy
A and B’s numbers are the number of negative γ̂’s. For C and
D, the numbers include cases where small positive γ̂’s were
rounded down to zero. The numbers in parentheses are the
number of negative γ̂’s. The rounding used for C and D leads
to fewer negative estimates than in A and B, but rounding
does not offer overall improvement, as discussed in a later
section. Strategies B and D produced fewer negative γ̂’s than
A and C since B and D use 50 and 100 units, as opposed
to pilot samples of size 50 in A and C. Also, depending on
the strategy, there were considerably more negative γ̂’s using
model (5) or (6) compared to using (4).

The percentage of samples in Table B.1 with γ̂ reset to 1
range from 0.07% for (M(1, 1 : xγ), B, srswor, main n=100)
to 42.6% for (M(xγ/2, xγ : xγ), C, ppswor, pilot n=10). None
of the sampling methods – ppswor, ppstrat, wtd.bal – is less
prone to the problem than the others.

Example 2: Diverging γ̂ Our second example, a pp(
√

x)
pilot of size 10 from the small population with γ = 3/4,
shows problem (2). The x-y plot, in Figure 6, looks well-
behaved, but this, again, is deceptive.

The combination of points with small x’s together with the
three largest x’s results in divergence. After the first five iter-
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Table 1: Simulation Factors, Number of Levels (#), and Levels, by Simulation Factor

Factor # Levels Levels

Population sizes 2 200
10,000

γ 2 3/4
2

Strategies 4 A pilot/no rounding γ̂
B main sample γ̂

C - pilot/rounding γ̂
D - main sample/rounding γ̂

Sample designs 4 srswor (B, D)
ppswor
ppstrat
wtd.bal

Sample sizes 2
Pilot sample size/ Main Small populations: 10/25, 50
sample size combinations (A, C) Large populations: 10/50, 100
Main sample size (B, D) Small populations: 25, 50

Large populations: 50, 100
Estimators of Totals 9 T̂π, T̂BLU (0, 1 : x), T̂GREG(0, 1 : x), T̂BLU (0, 1 : xγ̂),

T̂BLU (1, 1 : xγ), T̂BLU (1, 1 : xγ̂), T̂BLU (xγ̂/2, xγ̂ : xγ̂),
T̂GREG(1, 1 : xγ̂), T̂GREG(xγ̂/2, xγ̂ : xγ̂), T̂GREG(0, 1 : xγ̂)

Variance estimators 1 v0

(
T̂π

)
, vD

(
T̂
)
, or vD,GR(T̂GR)
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 Figure 6. Sample Plot of Problem Example 2

ations (see Figure A.2 in Appendix A), γ̂ becomes progres-
sively more negative until iteration ten, when the estimate is
negative infinity. Figure 6 shows the estimates for the first
9 iterations. In the simulations, the number of iterations was
limited and negative γ̂’s were treated as previously described.

To resolve problem (4) for all strategies, if γ̂ > 3 (includ-
ing infinity), then it was forced to equal 3 to avoid unrea-
sonably large γ̂’s. Table B.2 contains the number of these
occurrences for the (Large, γ = 2) population; there were
none of these cases for the γ = 3/4 population. Strategies B
and D produced many fewer large γ̂’s than A and C. Round-
ing in C and D also produced fewer large γ̂’s because only a
main sample is used for them. Model (6) also produced fewer
large γ̂’s than model (4), but noticeably more than model (5)
for strategies A and C, which use pilot studies.
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 Figure 7. Estimates of γ for the first 9 Iterations, Problem Example

2

The percentages of pilot samples in Table B.2 where γ̂ was
reset to 3 range from 0% when n=100 for several sample de-
signs for working models M(xγ/2, xγ : xγ) and M(0, 1 : xγ) to
39.0% for strategies A and C with pilots of n=10 and wtd.bal
samples). As in Table B.1, none of the sampling methods –
ppswor, ppstrat, wtd.bal – seems noticeably better for avoid-
ing this problem.

Clearly, the small sized pilots (A and C) are more prone to
unrealistic estimates of γ than are the larger main samples
(B and D). This is no surprise, but does call attention to a
risk associated with pilots or with drawing extremely small
samples from populations similar to the ones we used. Figure
8 is a set of boxplots of γ̂’s for main samples of size n= 50
from the (Small, γ = 3/4) population for Strategies B and
D. The characteristics of the distribution of the γ̂’s across the
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1,000 simulated samples are different for the (Small, γ = 2)
population and the large population, but Figure 8 gives some
of the flavor of what may be experienced in practice. The
horizontal reference line is drawn at 3/4, which is the target.
If estimation of γ were the main goal, then a good strategy
would have the box centered at 3/4, would have a short in-
terquartile range, and few, if any, outliers.

Strategy D has a median γ̂ of 1 for all sample designs
and estimators due to rounding and resetting of negative es-
timates to 1. Thus, rounding introduces a bias into γ̂, as
might be expected. Simple random sampling produces more
extreme estimates for each working model than the other
plans. Even when the working model correctly contains an
intercept and x, the median γ̂ is not equal to 3/4, although
the interquartile range is usually among the smallest for the
M(1, 1 : xγ) model. On the whole, attempts to estimate the
variance parameter in (Small, γ = 3/4) were not particularly
effective. This is generally consistent with the suggestion
of Brewer (2002) that extremely large sample sizes may be
needed to get good estimates of γ.

4.2 Relative Biases and RMSEs of Estimated Totals
Our primary focus is how estimating γ̂ effects estimates of

totals and their variances. First, consider the biases of esti-
mated totals. We summarize the results here without show-
ing detailed tables or graphics. The empirical relative bias
(relbias) of an estimator is defined as

relbias
(
T̂
)

= 100
1000∑
k=1

(
T̂k − T

) /
(1000T )

where T̂k is one of the estimated totals from simulation sam-
ple k. Relbiases in the two large populations and in (Small,
γ = 3/4) were all less than 1.4% in absolute value. The
range in relbiases in the (Small pop, γ = 2) population was
-2.7% for (T̂

(
xγ̂/2, xγ̂ : xγ̂

)
, D, srswor, n=25) to 2.9% for

(T̂ (1, 1 : xγ), D, srswor, n=25). Although these relbiases
are relatively large, both are within simulation error of zero.
They are also indicative of the fact that srswor is an ineffi-
cient sampling plan in these types of populations.

A basic summary statistic for an estimated total is the root
mean square error defined as

RMS E
(
T̂
)

=

√√√1000∑
k=1

(
T̂k − T

)2
/
1000.

To explore which factors were important in determining
mean square errors (i.e., RMSE2), we regressed RMSE2 on
factors with levels defined by:

• Population (4 levels),
• Strategy (A, B, C, D),
• Sample Design (srswor, ppswor, ppstrat, wtd.bal),
• Estimator (the eight choices in section 3.5),
• Two-way interactions of Population, Strategy, Sample

Design, and Estimator.

Since RMSE2 is an average of 1,000 observations, it ex-
pected to be roughly normally distributed. Main sample size
acts as a blocking factor and is, naturally, a significant pre-
dictor of RMSE2. Separate regressions were run for main
samples sizes of 25, 50, and 100.

Based on the F-test for comparing a reduced model to
a full model (e.g., see Searle 1971:116-120), the (Sample
Design)*(Estimator) and (Strategy)*(Estimator) interactions
could all be eliminated, yielding a model of the form

RMS E2 = Population Strategy
(Sample Design) Estimator
Population*Strategy
Population*(Sample Design)
Population*Estimator
Strategy*(Sample Design)
Strategy*Estimator

The same reduction occurred for each of the samples sizes
of 25, 50, and 100. The message from this analysis is that
describing differences in root mean square errors is a fairly
complex process. Graphical summaries will be the easiest to
understand.

The theoretically best estimator of the total in each of the
populations is T̂ (1, 1 : xγ). Although not necessarily optimal,
weighted balanced sampling, as defined in (3), should be ef-
ficient for this estimator because of its close relationship to
pp

(
xγ/2

)
sampling. The optimal estimator uses the true value

of γ and working model (1). One of our simulation choices
was T̂ (1, 1 : xγ) with wtd.bal (

√
x) sampling. This method

of sampling is not necessarily the most efficient but should
be one of the smaller variance choices in the study. Thus, we
computed the precision of an estimator of the total relative to
that of [T̂ (1, 1 : xγ), wtd.bal (

√
x)] by taking the ratio of the

root mean square errors (RMSEs), that is

RMS E(T̂ )
/
RMS E

[
T̂ (1, 1 : xγ),wtd.bal(

√
x)

]
.

Separate ratios were computed for the different main sam-
ple sizes of 50 and 100 for the large populations and 25 and
50 for the small populations. This allows for a relative com-
parison between strategies and estimators, for a given sample
size.

Figures 9-12 are dotplots of root mean square error ratios
for the various (Estimator, Strategy, Sample Design) combi-
nations for each of the four populations. Vertical reference
lines are drawn at 1. All RMSEs in the left column of each
Figure are divided by the same RMSE for T̂ (1, 1 : xγ) in
wtd.bal (

√
x) samples for the main size in that column (i.e.,

n = 50 in Figures 9-10 and n= 25 in Figures 11-12. Likewise,
the right-hand column RMSEs are divided by the RMSE for
T̂ (1, 1 : xγ) in wtd.bal (

√
x) samples of size n= 100 in Fig-

ures 9-10 and n= 50 in Figures 11-12. In the row labels of
these and subsequent figures, g.hat denotes γ̂. Some general
observations are:
(a) ppswor (

√
x) and srswor can be poor compared to the

optimal estimator, T̂ (1, 1 : xγ). This is true for both the large
and small populations.2

2 The combination (HT, srswor) is omitted in the figures because
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Figure 8. Boxplots of γ̂’s for main samples of size n= 50 from the (Small, γ = 3/4) population for Strategies B and D.

(b) When no pilot sample is selected (B or D), wtd.bal sam-
pling is often the best method. This is true even for the
GREG estimators. The exception is the (Small, γ = 2) popu-
lation where ppstrat (

√
x) is most efficient, but the difference

from wtd.bal is only 5% or less.
(c) When a pilot is selected (A or C) from the less vari-

able γ = 3/4 populations, γ estimated, and the main sample
selected based on γ̂, this is often worse in terms of higher
RMSEs than directly selecting the main sample using

√
x as

the MOS (B or D) in ppswor, ppstrat, or wtd.bal.
(d) ppstrat is competitive with wtd.bal, particularly in B

and D which use
√

x as the MOS. In A and C for (Large pop,
γ = 2), ppstrat

(
xγ̂/2

)
is usually more efficient than wtd.bal(

xγ̂/2
)

when the main sample is 100. The same is true in A
and C for (Small pop, γ = 2) at either main sample of 25 or
50.

(e) Rounding γ̂ to the nearest (C and D) typically is
ineffective in reducing RMSEs. In some cases, rounding
makes things somewhat worse (see Small pop, γ = 3/4 for
T̂ (xγ̂/2, xγ̂ : xγ̂) at n= 25 with ppstrat or wtd.bal).

(f) For the smaller sample size in either the Large or Small
populations with no pilot selected, weighted balanced sam-
pling with

√
x as the MOS is quite efficient.

(g) When the BLUP and GREG are based on the correct
working model, M(1, 1 : xγ) but with estimated γ, the BLUP
usually has smaller RMSE. In contrast, when the wrong
working model is used, T̂GR(xγ̂/2, xγ̂ : xγ̂) can be more ef-
ficient than T̂ (xγ̂/2, xγ̂ : xγ̂).

4.3 Confidence Interval Properties

The coverage of confidence intervals (CIs) depends on sev-
eral factors, including the bias of an estimated total and con-
sistency of the variance estimator. In this application, CI
coverage is effected by using the estimated γ̂ in some of the

sampling plans, in the T̂ ’s, and in their variance estimators.
Using γ̂ is a type of adaptive procedure whose variability is
not reflected in variance estimation. In adaptive procedures,
confidence intervals typically do not cover at the proper rates.
For example, in stepwise regression, the usual standard error
estimates are well-known to be too small (Hurvich and Tsai
1990, Zhang 1992), leading to confidence intervals that cover
at less than nominal rates and significance tests with inflated
Type I error levels.

Figures 13-14 are dotplots of the empirical proportions
of 95% confidence intervals that covered the population
totals in the simulations for the (Small, γ = 3/4) and (Small,
γ = 2) populations. Findings were similar for the Large
population. CIs using a particular T̂ were computed using
the corresponding variance estimate described in section
3.6. The general form of the CIs was T̂ ± 1.96

√
v, where

v is a variance estimate described in Section 3.6. Marginal
increases in coverage rates could have been obtained by
using t-intervals, particularly when n = 25. Summary
observations are:

(a) In wtd.bal samples, there is a tendency for CIs to cover
more than 95% of the time for the less variable, (Small,
γ = 3/4) population for the ratio, HT, and T̂ (xγ̂/2, xγ̂ : xγ̂)
estimates. This occurs since weighted balance is not a theo-
retically appropriate design for these estimators.

(b) In the high variance (Small, γ = 2) population, cov-
erage with (srswor, B or D) is generally among the lowest,
although over 90% in all cases. This is another reflection that
srsworis a poor design for these populations.

(c) Coverage rates generally increase for n = 50 compared
to n= 25 for all strategies and estimators in (Small, γ = 2)

its RMSE ratios were far larger than the others; inclusion would
have distorted the scales.



COMPARING SAMPLING AND ESTIMATION STRATEGIES IN ESTABLISHMENT POPULATIONS 37

RMSE ratio: Large pop, g=0.75
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Figure 9. Root mean square error ratios for the various (Estimator, Strategy, Sample Design) combinations for the (Large, γ = 3/4)
population.

RMSE ratio: Large pop, g=2
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Figure 10. Root mean square error ratios for the various (Estimator, Strategy, Sample Design) combinations for the (Large, γ = 2)
population.
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RMSE ratio: Small pop, g=0.75
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Figure 11. Root mean square error ratios for the various (Estimator, Strategy, Sample Design) combinations for the (Small, γ = 3/4)
population.

RMSE ratio: Small pop, g=2
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Fig. 12 
Figure 12. Root mean square error ratios for the various (Estimator, Strategy, Sample Design) combinations for the (Small, γ = 2 )
population.
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95% CI coverage: Small pop, g=0.75
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Figure 13. Empirical proportions of 95% confidence intervals that covered the population totals for the (Small, γ = 3/4) population.

95% CI coverage: Small pop, g=2
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Figure 14. Empirical proportions of 95% confidence intervals that covered the population totals for the (Small, γ = 2) population.
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Table 2: Coefficients of variation (CV) and ratios of CV’s to smallest CV of estimated totals from Strategy A with pilot samples of 10 and
main samples of 50 and Strategy B with samples of 50 from the Hospitals population.

Sample Ratio to
Strategy Design Estimator CV (%) smallest

A wtd bal Ratio T̂ (0, 1 : x) 3.0 1.00
A wtd bal HT T̂π 3.1 1.01
A ppswor HT T̂π 3.2 1.04

B ppstrat GREG T̂GR(0, 1 : xγ̂); Ratio T̂ (0, 1 : x); GREG T̂GR(1, 1 : xγ̂);
GREG T̂GR(xγ̂/2, xγ̂ : xγ̂); BLUP T̂ (1, 1 : xγ); HT T̂π 3.2 1.05

B wtd
bal

GREG T̂GR(1, 1 : xγ̂); Ratio T̂ (0, 1 : x); GREG T̂GR(0, 1 : xγ̂) ;
BLUP T̂ (1, 1 : xγ) ; 3.2 1.05

A ppstrat Ratio T̂ (0, 1 : x) ; HT T̂π ; 3.2 1.06
B wtd bal GREG T̂GR(xγ̂/2, xγ̂ : xγ̂) ; HT T̂π ; 3.2 1.06
A ppstrat GREG T̂GR(xγ̂/2, xγ̂ : xγ̂) 3.2 1.07
A wtd bal BLUP T̂ (1, 1 : xγ) 3.3 1.07
A ppswor Ratio T̂ (0, 1 : x) 3.3 1.08
A ppstrat GREG T̂GR(0, 1 : xγ̂); BLUP T̂ (1, 1 : xγ) 3.3 1.09
B ppswor BLUP T̂ (1, 1 : xγ) 3.4 1.10
A wtd bal GREG T̂GR(xγ̂/2, xγ̂ : xγ̂); GREG T̂GR(0, 1 : xγ̂) 3.4 1.10
B ppstrat BLUP T̂ (xγ̂/2, xγ̂ : xγ̂) 3.4 1.11
B ppswor GREG T̂GR(1, 1 : xγ̂) 3.4 1.12
A ppswor GREG T̂GR(0, 1 : xγ̂); Ratio T̂ (0, 1 : x) 3.4 1.12
A ppstrat GREG T̂GR(1, 1 : xγ̂) 3.4 1.13
B ppswor GREG T̂GR(xγ̂/2, xγ̂ : xγ̂); GREG T̂GR(0, 1 : xγ̂) 3.5 1.15
B wtd bal BLUP T̂ (xγ̂/2, xγ̂ : xγ̂) 3.5 1.15
A ppstrat BLUP T̂ (1, 1 : xγ̂) 3.5 1.15
A ppswor BLUP T̂ (1, 1 : xγ) 3.5 1.16
A wtd bal GREG T̂GR(1, 1 : xγ̂); BLUP T̂ (1, 1 : xγ̂) 3.7 1.20
B ppswor BLUP T̂ (xγ̂/2, xγ̂ : xγ̂) 3.7 1.22
B ppswor BLUP T̂ (1, 1 : xγ̂) 3.8 1.25
B ppstrat BLUP T̂ (1, 1 : xγ̂) 3.9 1.27
B wtd bal BLUP T̂ (1, 1 : xγ̂) 3.9 1.27
A ppswor GREG T̂GR(1, 1 : xγ̂); BLUP T̂ (1, 1 : xγ̂) 4.0 1.32
A ppswor GREG T̂GR(xγ̂/2, xγ̂ : xγ̂) 4.2 1.37
B ppswor HT T̂π 4.7 1.53

and many combinations in (Small, γ = 3/4). This is expected
due to large sample theory.

(d) Rounding of γ̂ improved coverage somewhat for ppswor
when a pilot was used (A and C). For example, see T̂GR(1, 1 :
xγ̂) in both populations and main sample sizes. However,
the improvement is only about 1 percentage point and is not
significant.

(e) Rounding has little effect when no pilot is used (B and
D).

(f) Coverage using the BLUP T̂ (1, 1 : xγ̂) with an estimated
γ is less than with T̂ (1, 1 : xγ). The difference in coverage
is larger when a pilot is selected. The loss when only a
main sample is used is minimal. For example, coverage with
T̂ (1, 1 : xγ̂) is 90% in (Small, γ = 2, A, n=25, wtd.bal)
but with T̂ (1, 1 : xγ) is 92.7%. In (Small, γ = 2, B, n=25,
wtd.bal) the same comparison is 90.9% versus 91.7%.

As an illustration with a real population, we compared esti-
mated totals and sampling plans in the Hospitals population
in Figure 1. This population has N = 393 units. The two

best-fitting models for Hospitals, among several alternatives,
are M(x, x2 : x2) and M(x1.6/2, x1.6 : x1.6). We used Strategies
A and B where

√
Beds was the MOS in ppstrat, ppswor, and

wtd.bal. For Strategy A we used pilot samples of size 10 and
main samples of size 50 while for B we used main samples
of size n = 50. For each strategy we selected 1,000 samples.

Table 2 shows the coefficients of variation (CV’s) for es-
timated totals using the estimators in section 3.5, sorted in
ascending order. The CV’s are a convenient way of gaug-
ing relative precision. The “true” value of γ was taken to
be 1.62, the estimate for the full population using model (1).
The three best combinations do use a pilot study but their
results are within simulation error of several of the Strategy
B choices that use only a main sample. Thus, selecting a
pilot sample is not worthwhile in this population.

Among the strategy B combinations, the ppstrat and
wtd.bal plans are the most efficient. When strategy B sam-
ples are selected by ppstrat or wtd.bal, a number of estima-
tors have CV’s of about 3.2%, despite there being several
different models underlying these estimators. The GREG’s
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T̂GR(1, 1 : xγ̂), T̂GR(0, 1 : xγ̂), and T̂GR(xγ̂/2, xγ̂ : xγ̂) in pp-
strat are among the most efficient. The BLUP’s where γ is
estimated, T̂ (xγ̂/2, xγ̂ : xγ̂) and T̂ (1, 1 : xγ̂), are somewhat
less efficient in both ppstrat and wtd.bal samples. As ex-
pected, srswor is extremely inefficient and is not shown in
Table 2. The worst combinations were strategy A coupled
with (ppswor, T̂ (xγ̂/2, xγ̂ : xγ̂)), (wtd.bal, T̂ (xγ̂/2, xγ̂ : xγ̂) ),
and (ppstrat, T̂ (xγ̂/2, xγ̂ : xγ̂)). Each of these combinations
had CV’s larger than 15% and were omitted from the table.

5 General Conclusions and
Limitations

We investigated some alternative strategies for sampling
and estimation in populations where there is one target vari-
able y, whose total is to be estimated, and one auxiliary x,
which is known for every unit in the population. The vari-
ance of y is known to increase as x increases, but the exact
form of the variance is unknown to the sampler. Modeling
the variance as VarM (yi|xi) = σ2xγi is assumed to be a good
approximation to reality. We studied four options that might
be considered for this type of problem: design of a pilot sam-
ple, design of a main sample, the method of sample selection,
and choice of an estimator.

We found little evidence that a pilot study designed to get
a preliminary estimate of γ would be worthwhile. For our
versions of the HMT population, the smaller pilot studies of-
ten resulted in samples where there were practical problems
in estimating γ. These included negative γ̂’s and ones that
diverged to either positive or negative infinity. In such cases,
a pilot study would simply be a waste of time and resources.

In the less variable (γ = 3/4) populations we studied, con-
ducting a pilot also did not result in lower root mean square
errors for the totals than the alternative of using only a main
sample with an educated guess about the size of γ. In the
more variable populations (γ = 2), there were some minor
gains in RMSE in some cases, e.g., when a small pilot (n =
10) was followed by a small main sample (n= 25). However,
this does not consider the extra cost of conducting a pilot.

Rounding γ̂ to the nearest half was not particularly helpful
or harmful in estimating totals. The more serious computa-
tional issue is that legitimate estimates of γ often could not be
obtained because of convergence problems. These problems
occurred regardless of the working-model/estimator used and
all methods of sample selection were affected. One method
of combating this might be to use a robust regression tech-
nique like least median of squares (Rousseeuw 1984) to esti-
mate γ. We did not pursue that here.

Among the sampling plans we considered, stratification
based on cumulative

√
xγ̂ or

√
x rules, denoted ppstrat here,

were both reasonably efficient. The use of wtd.bal sam-
ples based on γ̂’s was somewhat effective in reducing the
root mean square errors of totals but not substantially more
efficient than ppstrat, which can approximate an optimal
weighted balanced sample. In addition, poor estimates of
γ from a pilot will often rob wtd.bal of any theoretical effi-
ciency it might have. Weighted balanced sampling is most
useful when the sample size is small, tight control is needed

over the sample configuration in order to be most efficient,
and a reasonable advance guess about γ can be made to use
in the measure of size.

A good overall strategy for this type of problem appears to
be the following. Select a highly restricted probability pro-
portional to

√
x sample. This can be accomplished using the

ppstrat
(√

x
)

rule with one or two units selected per stratum.
Then, estimate the total with either a BLUP or a GREG es-
timator based on a reasonable model for the population at
hand. This general approach is similar to ones used by some
accounting firms (e.g., Rotz et al. 2006) that conduct cost
segregation studies.

Any simulation study is, of course, limited. We have at-
tempted to mimic real-life applications, but populations that
are less well-behaved than our HMT ones and the Hospital
population may yield different results.
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Appendix A: Iterative Gamma Estimate Plots
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 Figure A.1. First 8 Iterations of Gamma Estimation Program (Example 1)
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Appendix B: Frequency of Problematic Gamma Estimates
Table A.1: Number of Times γ̂ was reset to 1, Large γ = 3/4 Population.

Working Model/Main Sample Size

Sample
Strategy Design M(1, 1 : xγ) M(xγ/2, xγ : xγ) M(0, 1 : xγ)

n=50 n=100 n=50 n=100 n=50 n=100

ppswor 285 285 303 303 345 345
A, Pilot=10 ppstrat 263 263 252 252 326 326

wtd.bal 304 304 313 313 358 358

ppswor 52 156 117
A, Pilot=50 ppstrat N/A 68 N/A 146 N/A 123

wtd.bal 66 179 125

srswor 30 7 134 67 129 42

B ppswor 53 19 164 86 86 40
ppstrat 64 11 147 68 104 45
wtd.bal 66 12 172 97 116 54

ppswor 330 329 354 368 420 426
C, Pilot=10 ppstrat 327 327 331 331 402 402

wtd.bal 342 342 381 381 412 412

ppswor 136 345 253
C, Pilot=50 ppstrat N/A 164 N/A 235 N/A 263

wtd.bal 149 269 277

srswor 110 40 208 137 312 207

D ppswor 142 64 233 162 226 173
ppstrat 143 53 239 160 242 164
wtd.bal 171 57 261 182 256 144

Table A.2: Number of Times γ̂ was reset to 3, Large γ = 2 Population.
Working Model/Main Sample Size

Sample
Strategy Design M(1, 1 : xγ) M(xγ/2, xγ : xγ) M(0, 1 : xγ)

n=50 n=100 n=50 n=100 n=50 n=100

ppswor 359 359 158 158 211 211
A, Pilot=10 ppstrat 379 366 183 177 234 206

wtd.bal 390 376 170 160 224 201

ppswor 55 18 22
A, Pilot=50 ppstrat N/A 54 N/A 16 N/A 23

wtd.bal 66 24 27

srswor 43 5 5 1 15 4

B ppswor 53 7 24 3 43 4
ppstrat 77 10 16 1 25 3
wtd.bal 51 5 22 3 17 5

ppswor 324 324 126 126 165 165
C, Pilot=10 ppstrat 339 326 143 145 196 156

wtd.bal 390 308 170 127 224 158

ppswor 30 10 6
C, Pilot=50 ppstrat N/A 26 N/A 6 N/A 11

wtd.bal 33 10 13

srswor 23 1 3 0 3 0

D ppswor 24 2 10 1 13 0
ppstrat 39 1 6 0 6 0
wtd.bal 27 2 6 0 6 2
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