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Recent studies documented that survey data contain duplicate records. In this paper, we assess
how duplicate records affect regression estimates, and we evaluate the effectiveness of solutions
to deal with them. Results show that duplicates bias the estimated coefficients and standard er-
rors. The chances of obtaining unbiased estimates when data contain 40 doublets (about 5% of
the sample) range between 3.5% and 11.5% depending on the distribution of duplicates. If 7
quintuplets are present in the data (2% of the sample), then the probability of obtaining biased
estimates ranges between 11% and 20%. Weighting the duplicate records by the inverse of
their multiplicity, or dropping superfluous duplicates outperform other solutions in all consid-
ered scenarios in reducing the bias and the risk of obtaining biased estimates. However, both
solutions overestimate standard errors, reducing the statistical power of estimates. Our study
illustrates the risk of using data in presence of duplicate records and call for further research
on strategies to analyse affected data.
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1 Introduction

To achieve reliable results survey data must accurately
report respondents’ answers. Yet, sometimes they don’t.
The study of Slomczynski, Powałko, and Krauze (2017)
published in this issue of SRM investigated survey projects
widely used in social sciences, and reported a considerable
number of duplicate records in 17 out of 22 international
projects. Duplicate records are defined as records that are
not unique, that is records in which the set of all (or nearly
all) answers from a given respondent is identical to that of
another respondent.

Surveys in social sciences usually include a large num-
ber of questions, and it is unlikely that two respondents pro-
vide identical answers to all (or nearly all) substantive survey
questions (Hill, 1999). In other words, it is unlikely that two
identical records originate from the answers of two real re-
spondents. It is more probable that one record corresponds to
a real respondent and the second one is its duplicate, or that
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both records are fakes. Duplicate records can result from an
error or forgery by interviewers, data coders, or data pro-
cessing staff and should, therefore, be treated as suspicious
observations (American Statistical Association, 2004; Diek-
mann, 2005; Koczela, Furlong, McCarthy, & Mushtaq, 2015;
Kuriakose & Robbins, 2016; Waller, 2013).

1.1 Duplicate records in social survey data

Slomczynski et al. (2017) analyzed 1,721 national surveys
belonging to 22 comparative survey projects, with data com-
ing from 142 countries and nearly 2.3 million respondents.
The analysis identified 5,893 duplicate records in 162 na-
tional surveys from 17 projects coming from 80 countries.
The duplicate records were unequally distributed across the
surveys. For example, they appeared in 19.6% of surveys of
the World Values Survey (waves 1–5) and in 3.4% of surveys
of the European Social Survey (waves 1–6). Across survey
projects, different numbers of countries were affected. Lati-
nobarometro is an extreme case where surveys from 13 out
of 19 countries contained duplicate records. In the Americas
Barometer 10 out of 24 countries were affected, and in the In-
ternational Social Survey Programme 19 out of 53 countries
contained duplicate records.
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Even though the share of duplicate records in most sur-
veys did not exceed 1%, in some of the national surveys it
was high, exceeding 10% of the sample. In 52% of the af-
fected surveys Slomczynski et al. (2017) found only a sin-
gle pair of duplicate records. However, in 48% of surveys
containing duplicates they found various patterns of dupli-
cate records, such as multiple doublets (i.e. multiple pairs
of identical records) or identical records repeated three, four,
or more times. For instance, the authors identified 733 du-
plicate records (60% of the sample), including 272 doublets
and 63 triplets in the Ecuadorian sample of Latinobarometro
collected in the year 2000. Another example are data from
Norway registered by the International Social Survey Pro-
gramme in 2009, where 54 duplicate records consisted of
27 doublets, 36 duplicate records consisted of 12 triplets,
24 consisted of 6 quadruplets, 25 consisted of 5 quintuplets;
along with, one sextuplet, one septuplet, and one octuplet
(overall 160 duplicate records, i.e. 11.0% of the sample).

These figures refer to full duplicates. However, other re-
search analyzed the prevalence of near duplicates, that is
records which differ for only a small number of variables.
Kuriakose and Robbins (2016) analyzed near duplicates in
data sets commonly used in social sciences and showed that
16% of analysed surveys reported a high risk of widespread
falsification with near duplicates. The authors emphasized
that demographic and geographical variables are rarely falsi-
fied, because they usually have to meet the sampling frame.
Behavioral and attitudinal variables, on the other hand, were
falsified more often. In such cases, interviewers may only
copy selected sequences of answers from other respondents,
so that the correlations between variables are as expected,
and the forgery remains undetected.

1.2 Implications for estimation results

Duplicate records may affect statistical inference in var-
ious ways. If duplicate records introduce “random noise”,
then they may produce an attenuation bias, i.e. bias the es-
timated coefficient towards zero (Finn & Ranchhod, 2013).
However, if the duplicate records do not introduce random
noise, they may bias the estimated correlations in other direc-
tions. The size of the bias should increase with the number
of duplicate interviews, and it should depend on the differ-
ence of covariances and averages between the original and
duplicate interviews (Schräpler & Wagner, 2005).

On the other hand, duplicate records can reduce the vari-
ance, and thus they may artificially increase the statistical
power of estimation techniques. The result is the opposite of
the attenuation bias: narrower estimated confidence intervals
and stronger estimated relationships among variables (Kuri-
akose & Robbins, 2016). In turn, this may increase the statis-
tical significance of the coefficients and affect the substantive
conclusions.

The implications of duplicates for regression estimates

may differ according to the characteristics of the observa-
tions being duplicated. Slomczynski et al. (2017) suggested
that “typical” cases, i.e. the duplicate records located near
the median of a variable, may affect estimates less than “de-
viant” cases, i.e. duplicate records located close to the ties of
the distribution.

The literature on how duplicate records affect estimates
from regression analysis, and how to deal with them is virtu-
ally not existing. Past studies focused mainly on strategies to
identify duplicate and near-duplicate records (Elmagarmid,
Ipeirotis, & Verykios, 2007; Hassanzadeh & Miller, 2009;
Kuriakose & Robbins, 2016; Schreiner, Pennie, & New-
brough, 1988). However some studies analyzed how inten-
tionally falsified interviews (other than duplicates) affected
summary statistics and estimation results. Schnell (1991)
studied the consequences of including purposefully falsified
interviews in the 1988 German General Social Survey (ALL-
BUS). The results showed a negligible impact on the mean
and standard deviation of variables. However, the falsified
responses produced stronger correlations between objective
and subjective measures, more consistent scales (with higher
Cronbach’s α), higher R2, and more significant predictors
in OLS regression. More recently, Schräpler and Wagner
(2005) and Finn and Ranchhod (2013) did not confirm the
greater consistency of falsified data. On the contrary, they
showed a negligible effect of falsified interviews on estima-
tion bias and efficiency.

1.3 Current analysis

Our study is the first analysis of how duplicate records
affect the bias and efficiency of regression estimates. We fo-
cus on two research questions: first, how do duplicates affect
regression estimates? Second, how effective are the possible
solutions? We use a Monte Carlo simulation, a technique
for generating random samples on a computer to study the
consequences of probabilistic events (Ferrarini, 2011; Fish-
man, 2005). In our simulations we consider three scenarios
of duplicate data:

Scenario 1. when one record is multiplied several times (a
sextuplet, an octuplet, and a decuplet),

Scenario 2. when several records are duplicated once (16,
40, and 79 doublets, which correspond to 2%, 5% and
10% of the sample respectively),

Scenario 3. when several records are duplicated four times
(7, 16, and 31 quintuplets, which correspond to 2%,
5% and 10% of the sample).

We chose the number of duplicates to mimic the results pro-
vided by Slomczynski et al. (2017). We also investigate how
regression estimates change when duplicates are located in
specific parts of the distribution of the dependent variable.
We evaluate four variants, namely:
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Variant i. when the duplicate records are chosen randomly
from the whole distribution of the dependent variable
(we label this variant “unconstrained” as we do not im-
pose any limitation on where the duplicate records are
located);

Variant ii. when they are chosen randomly between the first
and third quartile of the dependent variable (i.e. when
they are located around the median: this is the “typi-
cal” variant);

Variant iii. when they are chosen randomly below the first
quartile of the dependent variable (this is the first “de-
viant” variant);

Variant iv. when they are chosen randomly above the third
quartile of the dependent variable (this is the second
“deviant” variant).

We expect, consistently with the suggestion by Slomczynski
et al. (2017), that Variants iii and iv affect regression esti-
mates more than Variant i, and that Variant ii affects them
the least. Additionally, we repeat the whole analysis to test
the robustness of our findings by checking how the position
on the distribution of one of the independent variables affects
regression estimates.

For each scenario and variant we compute the follow-
ing measures to assess how duplicates affect regression es-
timates:

Measure A. percentage bias of coefficients;
Measure B. bias of the standard errors;
Measure C. risk of obtaining biased estimates, as measured

by Dfbetas;
Measure D. Root Mean Square Error (RMSE), which in-

forms about the efficiency of the estimates.

We consider five solutions to deal with duplicate records,
and we assess their ability to reduce the bias and the effi-
ciency loss:

Solution a. “naive” estimation, i.e. analysing the data as if
they were correct;

Solution b. dropping all the duplicates from the data;
Solution c. flagging the duplicate records and including the

flag among the predictors;
Solution d. dropping all superfluous duplicates;
Solution e. weighting the duplicate records by the inverse of

their multiplicity.

Finally, we check the sensitivity of our results to the sam-
ple size. Our basic analysis uses a sample of N = 1, 500,
because many nationally representative surveys provide sam-
ples of similar sizes. However, we also run the simulation for
samples of N = 500 and N = 5, 000 to check the robustness
of our results to the chosen sample sizes.

Table 1
Matrix of correlations used to generate the original data set.

variables x z t

x 1.00
z −0.04 1.00
t 0.09 −0.06 1.00

2 Method

To assess how duplicate records affect the results of OLS
regression we use a Monte Carlo simulation (Ferrarini, 2011;
Fishman, 2005). The reason is that we need an artificial data
set where the relationships among variables are known, and
in which we iteratively manipulate the number and distribu-
tion of duplicates. The random element in our simulation
is the choice of records to be duplicated, and the choice of
observations which are replaced by duplicates. At each iter-
ation, we compare the regression coefficients in presence of
duplicates with the true coefficients (derived from data with-
out duplicates) to tell whether duplicates affect regression es-
timates.

Our analysis consists of four steps. First, we generate the
initial data set. Second, we duplicate randomly selected ob-
servations according to the three scenarios and four variants
mentioned above. In the third step we estimate regression
models using a “naive” approach, i.e. treating data with du-
plicates as if they were correct (Solution a). In the same step
we also estimate regression models using the four alternative
solutions (b–e) to deal with duplicate records. Finally, we
compute the bias of coefficients and standard errors, the risk
of obtaining biased estimates, and the Root Mean Square Er-
ror to assess the effect of duplicates on regression estimates
and the effectiveness of the solutions. Figure 1 summarizes
our strategy.

2.1 Data generation

We begin by generating a data set of N = 1, 500 observa-
tions which contains three variables: x, z, and t. We create
the original data set using random normally distributed vari-
ables with a known correlation matrix (shown in Table 1).
The correlation matrix is meant to mimic real survey data
and it is based on the correlation of household income, age,
and number of hours worked as retrieved from the sixth wave
of the European Social Survey (2015).

We generate the dependent variable (y) as a linear function
of x, z, and t as reported in Equation 1:

yi = 5.36 − 0.04 · xi + 0.16 · zi + 0.023 · ti + εi (1)

where the coefficients are also retrieved from the sixth wave
of the European Social Survey. All variables and the error
term εi are normally distributed. The descriptive statistics
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one
original
data set,
(N=1500)

1.
1 observation duplicated
5, 7, and 9 times (sextu-
plet, octuplet, decuplet)

(2,500 replications)

2.
16, 40, and 79 ob-

servations duplicated
1 time (doublets)

3.
7, 16, and 31 obser-
vations duplicated 4
times (quintuplets)

i.
Unconstrained: ran-

domly drawn from the
overall distribution

ii.
Typical: ran-

domly drawn from
around the median

iii.
Deviant: randomly

drawn from the
upper quartile

iv.
Deviant: randomly

drawn from the
lower quartile

a.
“naive”

estimation

b.
excluding all

duplicates

c.
duplicates

flagged and
controlled for

d.
excluding
superflous
duplicates

e.
weighted by

the inverse of
multiplicities

(1 regression model per replication)

A.
Bias of co-
efficients

B.
Bias of stan-
dard errors

C.
Risk of ob-

taining biased
estimates

D.
RMSE

Data generation:

Scenarios:

Variants:

Solutions:

Measures of bias
and efficiency:

Figure 1. Diagram summarizing the empirical strategy.

of the generated data set are shown in the first four lines of
Table A1 in Appendix A.

2.2 Duplicating selected observations

In the second step we use a Monte Carlo simulation to
generate duplicate records, which replace for randomly cho-
sen original records, i.e. the interviews that would have been
conducted if no duplicates had been introduced in the data.
This strategy is motivated by the assumption that duplicate
records substitute for authentic interviews. Thus, if dupli-
cates are present, researchers do not only face the risk of
fake or erroneous information, but they also lose informa-

tion from genuine respondents. We duplicate selected ob-
servations in three scenarios (each comprising three cases)
and in four variants. Thus, overall we investigate 36 patterns
(3 · 3 · 4 = 36) of duplicate records. For each pattern we run
2,500 replications.

Scenario 1: a sextuplet, an octuplet, and a decuplet.
In the first scenario we duplicate one randomly chosen record
5, 7, and 9 times, thus introducing in the data a sextuplet,
an octuplet, and a decuplet of identical observations which
replace for 5, 7, and 9 randomly chosen original observa-
tions. These cases are possible in the light of the analysis by
Slomczynski et al. (2017) who identified in real survey data
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instances of octuplets. In this scenario the share of duplicates
in the sample is small, ranging from 0,4% for a sextuplet to
0,7% for a decuplet.

Scenario 2: 16, 40, and 79 doublets. In the second sce-
nario we duplicate sets of 16, 40, and 79 randomly chosen
observations one time, creating 16, 40, and 79 pairs of iden-
tical observations (doublets). In this scenario the share of
duplicates is 2,1% (16 doublets), 5,3% (40 doublets), and
10,5% (79 doublets). These shares are consistent with the
results by Slomczynski et al. (2017), as in their analysis
about 15% of the affected surveys had 10% or more duplicate
records.

Scenario 3: 7, 16, and 31 quintuplets. In the third sce-
nario we duplicate sets of 7, 16 and 31 randomly chosen ob-
servations 4 times, creating 7, 16 and 31 quintuplets. They
replace, for 28, 64, and 124 randomly chosen original records
respectively. In this scenario the share of duplicate records is
2,3% (7 quintuplets), 5,3% (16 quintuplets), and 10,3% (31
quintuplets).

To check whether the position of duplicates in the distri-
bution matters, we run each of the scenarios in four variants,
as presented in Figure 2.

Variant i (“unconstrained”). The duplicates and the
replaced interviews are randomly drawn from the overall dis-
tribution of the dependent variable.

Variant ii (“typical”). The duplicates are randomly
drawn from the values around the median of the dependent
variable, i.e. between the first and third quartile, and the re-
placed interviews are drawn from the overall distribution.

Variant iii and iv (“deviant”). In Variant iii the dupli-
cates are randomly drawn from the lower quartile of the de-
pendent variable; in Variant iv they are randomly drawn from
the upper quartile of the dependent variable. The replaced
interviews are drawn from the overall distribution.

To illustrate our data, Table A1 in Appendix A reports the
descriptive statistics of some of the data sets produced during
the replications (lines 5 to 45).

2.3 “Naive” estimation and alternative solutions

In the third step we run a “naive” estimation which takes
data as they are, and subsequently we investigate the four so-
lutions to deal with duplicates. For each solution we estimate
the following model:

yi = α + βx · xi + βz · zi + βt · ti + εi (2)

Solution a: “naive” estimation. First, we investigate
what happens when researchers neglect the presence of du-
plicate observations. In other words, we analyze data with
duplicate records as if they were correct. This allows us to
estimate the percentage bias, the standard errors, the risk of
obtaining biased estimates, and the Root Mean Square Error
resulting from the mere presence of duplicate records (see
Section 2.4).

Variant i: unconstrained

fY (y)

y

Variant ii: “typical”

fY (y)

y

Variant iii: “deviant”

fY (y)

y

Variant iv: “deviant”

fY (y)

y

Figure 2. Presentation of the Variants i–iv used in the Monte
Carlo simulation.
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Solution b: Drop all duplicates. In Solution b we drop
all duplicates, including the observations that may come
from true interviews. We consider such a case, because, if
records are identical on some, but not on all variables (most
likely, differences may exist on demographic and geograph-
ical variables to reflect the sampling scheme), then it is not
obvious to tell the original observations from the fake dupli-
cates. It is also possible that all duplicates are forged and
should be excluded from the data. Therefore, rather that
deleting the superfluous duplicates and retaining the original
records, we exclude all duplicate records from the data at the
cost of reducing the sample size.

Solution c: Flag duplicated observations and control
for them. This solution is similar to the previous one be-
cause we identify all duplicate records as suspicious. How-
ever, rather than dropping them, we generate a dichotomous
variable (duplicate = 1, otherwise = 0), and include it among
the predictors in Equation 2. Slomczynski et al. (2017) pro-
posed this solution as a way to control for the error generated
by duplicate records.

Solution d: Drop superfluous duplicates.
“[E]liminating duplicate and near duplicate observations
from analysis is imperative to ensuring valid inferences”
(Kuriakose & Robbins, 2016, p. 2). Hence, we delete
superfluous duplicates to retain a sample of unique records.
The difference compared to Solution b is that we keep one
record for each set of duplicates.

Solution e: Weight by the inverse of multiplicities.
Lessler and Kalsbeek (1992) proposed this method. We
construct a weight which takes the value of 1 for unique
records, and the value of the inverse of multiplicity for du-
plicate records. For example, the weight takes the value 0.5
for doublets, 0.2 for quintuplets, 0.1 for decuplets, etc. Sub-
sequently, we use these weights to estimate Equation 2.

2.4 The assessment of bias and efficiency

We use four measures to assess the consequences of du-
plicates for regression estimates, and to investigate the effi-
ciency of the solutions to deal with them.

Measure A: Bias of coefficients. This macro measure
of bias informs whether a coefficient is systematically over
or under estimated. It is computed as follows:

Bias of coefficients =

 β̂i − β

β

 · 100% (3)

where i indicates a specific replication, β is the true coef-

ficient from Equation 1, and β̂i is the average of estimated
coefficients (β̂i).

Measure B: Bias of standard errors. To test whether
duplicates artificially increase the power of regression es-
timates, we compute the average of the standard errors

(SE(̂βi)) for each scenario, variant, and solution. For ease
of interpretation, we express our measure as a percentage of
the standard errors estimated in the true model (see Equation
4).

Bias of S.E. =

SE(̂βi)
SE(β)

 · 100% (4)

Measure C: Risk of obtaining biased estimates. It is
possible to obtain biased estimates even if the average bias
is zero. This can happen if the upward and downward biases
offset each other. To assess the risk of obtaining biased es-
timates in a specific replication, we resort to Dfbetas, which
are normalized measures of how much specific observations
(in our case the duplicates) affect the estimates of regression
coefficients. Dfbetas are defined as the difference between
the estimated and the true coefficients, expressed in relation
to the standard error of the estimated coefficient (see Equa-
tion 5).

Dfbetai =
β̂i − β

SE(̂βi)
(5)

Dfbetas measure the bias of a specific estimation, thus, they
complement percentage bias by informing about the risk of
obtaining biased estimates. The risk is computed according
to Equation 6. We set the cutoff value to 0.5, i.e. we consider
the estimation as biased if the coefficients differ from the true
values by more than half standard deviation.1

xi =

1 if |Dfbetai| > 0.5,
0 otherwise.

(6)

Pr(Bias) = xi · 100%

Measure D: Root Mean Square Error (RMSE). Root
mean square error is an overall measure of the quality of the
prediction and it reflects both its bias and its dispersion (see
Equation 7).

RMSE =

√(
β̂i − β

)2

+
(
SE(β̂i)

)2
(7)

The RMSE is expressed in the same units of the variables
(in this case the β coefficients), and it has no clear-cut thresh-
old value. For ease of interpretation we express RMSE as
a percentage of the respective coefficients from Equation 1,
thus we report the normalized RMSE.

1This cutoff value is more conservative than the customary as-
sumed value of 2

√
N

, which, for N = 1, 500 leads to the threshold
value of 0.05.
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3 Results

3.1 Percentage bias

Table 2 shows the percentage bias of the coefficient βx for
the considered scenarios, variants, and solutions. The results
for the other coefficients are reported in Tables B1–B3 in Ap-
pendix B. The third column of Table 2 contains information
about the percentage bias for solution a, i.e. the “naive” esti-
mation.

Overall, the percentage bias takes values between nearly
zero (in Scenario 1 and in all Scenarios in Variant i) and about
7%. For βx it reaches the maximum values of 4% for 79 dou-
blets and 6% for 31 quintuplets. The maximum bias for βz

and βt is 5%–7%, and for the intercept it is 2.5%–4% (see
Appendix B).

The results show some regularities. First, number and
composition of duplicates matter. The bias systematically
increases with the share of duplicates in the data, and dupli-
cates consisting of quintuplets produce greater bias than du-
plicates consisting of doublets. Second, the choice of records
to be duplicated plays a role. The “unconstrained” variant
(Variant i), where duplicate cases are randomly selected, pro-
duces virtually no bias, even when the share of duplicates
reaches 10% of the sample. On the other hand, Variant ii pro-
duces similar bias as Variants iii and iv. In other words, con-
trary to our expectations, the duplication of “typical” records
produces a bias similar to the one induced by the presence
of “deviant” duplicates. Only randomly chosen duplicates
generate no bias. Third, although previous studies suggested
that duplicates may introduce “random noise” to the data,
thus leading to attenuation bias, we did not find the evidence
to support this expectation: depending on the Variant (ii–iv),
for each variable the presence of duplicates induces a mix of
overestimated and underestimated coefficients.

Among the four solutions to deal with duplicates, solu-
tions d and e, i.e. dropping the superfluous duplicates and
weighting by the inverse of multiplicity perform the best in
all Variants, reducing the bias to zero. On the other hand,
dropping all duplicates (solution b) and flagging duplicates
and controlling for them in the regression (solution c) per-
form poorly. Especially in Scenario 2 both these solutions
increase the bias of all coefficients; in Scenario 3 they reduce
the bias, but to a lesser degree than solutions d and e.

In sum, duplicates can systematically bias regression es-
timates if they are not randomly created. However, the bias
in our simulation did not exceed 10% of the true coefficients.
Moreover, dropping superfluous duplicates or weighting by
the inverse of their multiplicity are effective ways to reduce
the bias to zero.

3.2 Standard errors

To understand whether duplicates artificially increase the
statistical power of regression estimates, we inspect the av-

erage estimated standard errors, as shown in Table 3 for βx.
The results for other coefficients are presented in Tables C1–
C3 in Appendix C.

The results show, similarly to the case of percentage bias,
that duplicates in Variant i, i.e. randomly drawn from the
overall distribution (“unconstrained”), do not affect the es-
timates of the standard errors. In Variant ii, in which the
duplicates are located around the median of the dependent
variable, the estimated standard errors are biased downwards
by maximum 2%–3%, thus the confidence intervals are nar-
rower than in the true model. On the contrary, in Variants
iii and iv, i.e. the two “deviant” cases, duplicates lead to
standard errors biased upwards by maximum 2%–3%, and to
broader confidence intervals. Both effects are stronger when
data contain more duplicates, i.e. when data contain 79 dou-
blets or 31 quintuplets.

Among the considered solutions, flagging and controlling
for duplicates (Solution c) leads to systematically narrower
confidence intervals. This is especially worrisome because
the same solution produces the most biased coefficients. In
other words, this solution may result in biased and significant
coefficients, thus affecting the interpretation of the results.
The remaining three Solutions, b, d, and e, produce slightly
greater standard errors than the naive estimation. The rela-
tive performance of the solutions varies across specific coef-
ficients: for βx and βz Solution e works better than dropping
duplicates, but it overestimates the standard errors more than
dropping the duplicates for βt and the intercept.

Summing up, we find no evidence that the duplicates ar-
tificially increase the statistical power of the estimates if the
duplicates are created randomly. However, if duplicates are
chosen from the center of the distribution they may lead to
narrower confidence intervals, thus artificially increasing the
statistical power. On the other hand, duplication of “deviant”
cases reduces the power of estimates. In both cases the effect
is small, up to 3% of the true standard errors. Yet, the most
effective solutions to reduce the bias of coefficients, i.e. drop-
ping the superfluous duplicates and weighting by the inverse
of multiplicity, increase the estimated standard errors, thus
reducing the power of estimates.

3.3 Risk of obtaining biased estimates

While percentage bias informs about the average bias due
to duplicates, it is plausible that estimates in specific repli-
cations have upward and downward biases which, on aver-
age, offset each other. In other words, even with moderate
bias, researchers can obtain biased estimates in specific es-
timations. To address this issue we turn to the analysis of
Dfbetas.

Figure 3 shows box and whiskers diagrams of Dfbetas in
Scenarios 2 (upper panel) and 3 (lower panel) for Variant i,
i.e. when the duplicates are randomly drawn from the over-
all distribution of the dependent variable. We do not report
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Table 2
Percentage bias of the βx coefficient (as a percentage of βx).

Solution

(a) “Naive” (b) Drop (c) Flag (d) Drop (e) Weighted
estimation all and control superfluous regression

Scenario 1
Variant i: “unconstrained”

1 sextuplet −0.0 0.0 0.0 0.0 0.0
1 octuplet 0.0 −0.0 −0.0 −0.0 −0.0
1 decuplet 0.0 −0.0 −0.0 −0.0 −0.0

Variant ii: “typical”
1 sextuplet −0.3 0.1 0.1 0.0 0.0
1 octuplet −0.3 0.1 0.1 0.0 0.0
1 decuplet −0.5 0.1 0.1 0.0 0.0

Variant iii: “deviant”
1 sextuplet 0.3 −0.1 −0.1 −0.0 −0.0
1 octuplet 0.4 −0.0 −0.0 0.0 0.0
1 decuplet 0.6 −0.0 −0.0 0.0 0.0

Variant iv: “deviant”
1 sextuplet 0.2 −0.0 −0.0 −0.0 −0.0
1 octuplet 0.3 −0.0 −0.0 0.0 0.0
1 decuplet 0.3 0.0 0.0 0.0 0.0

Scenario 2
Variant i: “unconstrained”

16 doublets −0.0 −0.0 −0.0 −0.0 −0.0
40 doublets 0.0 0.0 0.0 0.0 0.0
79 doublets 0.0 0.1 0.0 0.0 0.0

Variant ii: “typical”
16 doublets −0.8 0.8 −0.7 −0.0 −0.0
40 doublets −2.1 2.1 −2.0 −0.1 −0.1
79 doublets −4.2 4.2 −4.1 −0.2 −0.2

Variant iii: “deviant”
16 doublets 1.0 −1.0 −2.8 0.0 0.0
40 doublets 2.3 −2.6 −7.1 0.0 0.0
79 doublets 4.5 −5.6 −14.4 0.3 0.3

Variant iv: “deviant”
16 doublets 0.6 −0.7 −2.1 0.0 0.0
40 doublets 1.5 −1.8 −5.6 0.0 0.0
79 doublets 2.9 −4.0 −11.4 0.1 0.1

Scenario 3
Variant i: “unconstrained”

7 quintuplets 0.1 −0.1 0.1 −0.0 −0.0
16 quintuplets 0.0 −0.1 0.0 −0.0 −0.0
31 quintuplets −0.0 −0.0 0.0 −0.0 −0.0

Variant ii: “typical”
7 quintuplets −1.4 0.4 −1.2 −0.0 −0.0
16 quintuplets −3.3 0.8 −3.1 −0.1 −0.1
31 quintuplets −6.3 1.6 −6.1 −0.1 −0.1

Variant iii: “deviant”
7 quintuplets 1.5 −0.4 −2.2 0.0 0.0
16 quintuplets 3.4 −1.0 −5.4 0.0 0.0
31 quintuplets 6.2 −2.0 −10.8 0.2 0.2

Variant iv: “deviant”
7 quintuplets 1.1 −0.3 −1.7 0.0 0.0
16 quintuplets 2.3 −0.7 −4.4 0.0 0.0
31 quintuplets 4.3 −1.3 −8.8 0.2 0.2
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Table 3
Average standard error of βx coefficient (expressed as a percentage of the true stan-
dard error of βx).

Solution

(a) “Naive” (b) Drop (c) Flag (d) Drop (e) Weighted
estimation all and control superfluous regression

Scenario 1
Variant i: “unconstrained”

1 sextuplet 100.0 100.2 100.0 100.2 99.9
1 octuplet 100.0 100.3 100.0 100.2 100.0
1 decuplet 100.0 100.3 100.0 100.3 100.0

Variant ii: “typical”
1 sextuplet 99.9 100.2 100.1 100.2 99.9
1 octuplet 99.8 100.3 100.1 100.2 100.0
1 decuplet 99.8 100.4 100.1 100.3 100.1

Variant iii: “deviant”
1 sextuplet 100.1 100.2 100.0 100.2 99.9
1 octuplet 100.2 100.2 100.0 100.2 100.0
1 decuplet 100.2 100.3 100.0 100.3 100.0

Variant iv: “deviant”
1 sextuplet 100.1 100.2 100.0 100.2 99.9
1 octuplet 100.2 100.2 100.0 100.2 100.0
1 decuplet 100.2 100.3 100.0 100.3 100.0

Scenario 2
Variant i: “unconstrained”

16 doublets 100.0 101.1 100.0 100.5 100.0
40 doublets 100.0 102.8 100.0 101.4 100.5
79 doublets 100.0 105.7 100.0 102.7 101.1

Variant ii: “typical”
16 doublets 99.6 101.5 99.7 100.5 100.2
40 doublets 99.0 103.8 99.1 101.3 100.9
79 doublets 98.0 107.8 98.1 102.6 102.0

Variant iii: “deviant”
16 doublets 100.4 100.7 99.1 100.5 99.9
40 doublets 100.9 101.8 97.6 101.4 100.0
79 doublets 101.7 103.5 95.1 102.9 100.3

Variant iv: “deviant”
16 doublets 100.4 100.7 99.0 100.6 99.9
40 doublets 100.9 101.7 97.3 101.4 99.9
79 doublets 101.8 103.3 94.4 102.9 100.1

Scenario 3
Variant i: “unconstrained”

7 quintuplets 100.0 101.2 100.0 100.9 100.6
16 quintuplets 100.0 102.8 100.0 102.2 101.5
31 quintuplets 100.0 105.6 100.0 104.4 103.2

Variant ii: “typical”
7 quintuplets 99.3 101.4 99.5 100.9 100.6
16 quintuplets 98.5 103.2 98.6 102.2 101.8
31 quintuplets 97.0 106.4 97.2 104.4 103.8

Variant iii: “deviant”
7 quintuplets 100.6 101.0 99.3 101.0 100.4
16 quintuplets 101.3 102.4 98.3 102.2 101.2
31 quintuplets 102.4 104.8 96.5 104.5 102.8

Variant iv: “deviant”
7 quintuplets 100.7 101.0 99.2 101.0 100.4
16 quintuplets 101.4 102.4 98.0 102.2 101.2
31 quintuplets 102.5 104.8 96.0 104.5 102.6



26 FRANCESCO SARRACINO AND MAŁGORZATA MIKUCKA

results for Scenario 1 because in this case the risk of obtain-
ing biased estimates is virtually zero. Results, however, are
detailed in Table 4. On the y-axis we report the Dfbetas, on
the x-axis we report the coefficients and the solutions. The
two horizontal solid lines identify the cutoff values of Dfbe-
tas (0.5) separating the replications with acceptable bias from
the unacceptable ones. The diagrams show that the range of
Dfbetas increases with the share of duplicates in the data,
and it is larger for quintuplets (Scenario 3) than for doublets
(Scenario 2).

The average probability of obtaining unbiased estimates
for all coefficients is shown in Table 4. Column a shows that,
in case of “naive” estimations, the risk of biased estimates
varies from 0,14% (Scenario 1, one sextuplet, Variant ii) to
about 58% (Scenario 3, 31 quintuplets, Variants iii and iv).
In Scenario 1 the risk is small, with 89%–99% probability of
obtaining unbiased estimates.

The results show three regularities. First, the risk of ob-
taining biased estimates increases with the share of dupli-
cates: it is 0.2%–0.7% (depending on the variant) for 16
doublets, but it grows to 14.0%–32.5% when 79 doublets
are included in the data. In Scenario 3 it grows from 3.0%–
20.2% for 7 quintuplets, to 43.0%–58.6% when data contain
31 quintuplets.

Second, when the duplicates constitute the same share of
the data, the risk of obtaining biased estimates is higher for
quintuplets than for doublets. For example, when duplicates
constitute 2% of the sample, the risk of obtaining biased es-
timates is below 1% if they are 16 doublets, but ranges be-
tween 3% and 20% (depending on the variant) for 7 quintu-
plets. When duplicates constitute 10% of the data, the risk
of obtaining biased estimates is 14%–32% in case of 79 dou-
blets, but 43%–58% for 31 quintuplets.

Third, the risk of obtaining biased estimates is the highest
in Variants iii and iv, i.e. when the duplicates are located
on the ties, and lowest in Variant ii, when the duplicates are
located around the median. For example, with 7 quintuplets,
the probability of obtaining biased estimates is about 3% in
Variant ii, but rises to about 20% in Variants iii and iv. For 31
quintuplets the risk is about 43% in Variant ii, but over 58%
in Variants iii and iv.

As in case of percentage bias, weighting by the inverse
of the multiplicity (Solution e), and dropping the superfluous
duplicates (Solution d) perform better than other solutions
(see Table 4 and Figure 3). In Scenario 2, when doublets con-
stitute about 5% of the data, these two solutions reduce the
probability of obtaining biased estimates from about 4% (in
Variants i and ii) or about 11% (Variants iii and iv) to under
1% in all cases. In case of 79 doublets, i.e when duplicates
constitute about 10% of the sample, the risk of obtaining bi-
ased estimates reduces to about 3%, independently from the
location of the duplicates, whereas it ranges between 14%
and 33% for the naive estimation. In Scenario 3, when quin-

tuplets constitute about 5% of the data, the risk of obtaining
biased estimates declines from 19%–43% (depending on the
variant) to about 2%. When quintuplets constitute about 10%
of the sample, solutions d and e decrease the risk of obtaining
biased estimates from 43%–59% to about 9%.

To sum up, weighting by the inverse of multiplicity and
dropping the superfluous duplicates are the most effective so-
lutions among the examined ones. Moreover, they perform
particularly well when the duplicates are located on the ties
of the distribution, i.e. when the risk of bias is the highest.

On the other hand, Solutions b (excluding all duplicates)
and c (flagging the duplicates) perform worse. Flagging du-
plicates and controlling for them (c) fails to reduce the risk
of obtaining biased estimates in both Scenarios 2 and 3. Ex-
cluding all duplicates (b) reduces the risk of obtaining biased
estimates in Scenario 3 (quintuplets), but it performs poorly
in Scenario 2: if the doublets are located on the ties, then
dropping all duplicate records decreases the probability of
obtaining unbiased estimates.

3.4 Root Mean Square Error

Table 5 shows the values of normalized RMSE for coeffi-
cient βx. Results for other coefficients are available in Tables
D1–D3 in Appendix D. Scores are overall small, reaching
about 9% of the βx coefficient, 15% of βz, 24% of βt, and 6%
of the intercept.

The RMSE captures both the bias and the standard errors,
thus it is not surprising that the results are consistent with
those presented in the sections above. First, RMSE increases
with the number of duplicates, and it is the highest for 79
doublets and 31 quintuplets. Second, the presence of ran-
domly duplicated observations (Variant i) has little effect on
the efficiency of the estimates, whereas the presence of “typ-
ical” (Variant ii) and “deviant” (Variant iii and iv) duplicates
reduces the efficiency of estimates.

Consistently with previous results, Solutions d and e, i.e.
dropping superfluous duplicates and weighting the data per-
form the best, reasonably reducing the RMSE values. In con-
trast to that, flagging the duplicates and controlling for them
(Solution c) performs poorly, and in some cases (especially
in Scenario 2, but for βx also in Scenario 3) it further reduces
the efficiency of the estimates.

3.5 Robustness

Varying sample size. By setting up our experiment, we
arbitrarily chose a sample size of N = 1, 500 observations
to mimic the average size of many of the publicly available
social surveys. To check whether our results are independent
from our choice, we repeated the experiment using two al-
ternative samples: N = 500 and N = 5, 000. In Figure 4
we report the results (DFbetas) for Scenario 2, Variant i. The
complete set of results is available upon request.
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Figure 3. Box and whiskers diagrams of Dfbetas in Scenario 2 and 3, Variant i. The duplicate records are randomly drawn
from the overall distribution. Box and whiskers show the distribution of Dfbetas (across 2,500 replications) for each of the
coefficients in the model and for the solutions a to e.

Notes: a: “Naive” estimation; b: Drop all duplicates; c: Flag and control; d: Drop superfluous duplicates; e: Weighted
regression. _cons: regression constant; x: βx; z: βz; t: βt.
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Table 4
Probability of obtaining unbiased estimates (Dfbetai < 0.5).

Solution

(a) “Naive” (b) Drop (c) Flag (d) Drop (e) Weighted
estimation all and control superfluous regression

Scenario 1
Variant i: “unconstrained”

1 sextuplet 99.2 100.0 100.0 100.0 100.0
1 octuplet 97.0 100.0 100.0 100.0 100.0
1 decuplet 94.4 100.0 100.0 100.0 100.0

Variant ii: “typical”
1 sextuplet 99.9 100.0 100.0 100.0 100.0
1 octuplet 99.7 100.0 100.0 100.0 100.0
1 decuplet 98.9 100.0 100.0 100.0 100.0

Variant iii: “deviant”
1 sextuplet 97.9 100.0 100.0 100.0 100.0
1 octuplet 94.7 100.0 100.0 100.0 100.0
1 decuplet 90.9 100.0 100.0 100.0 100.0

Variant iv: “deviant”
1 sextuplet 98.1 100.0 100.0 100.0 100.0
1 octuplet 94.5 100.0 100.0 100.0 100.0
1 decuplet 89.2 100.0 100.0 100.0 100.0

Scenario 2
Variant i: “unconstrained”

16 doublets 99.8 99.8 99.8 100.0 100.0
40 doublets 96.5 96.4 96.5 99.6 99.7
79 doublets 86.0 86.9 86.1 96.1 96.4

Variant ii: “typical”
16 doublets 100.0 100.0 100.0 100.0 100.0
40 doublets 96.3 96.8 96.6 99.6 99.7
79 doublets 77.1 80.5 78.0 96.1 96.5

Variant iii: “deviant”
16 doublets 99.3 99.2 96.6 100.0 100.0
40 doublets 88.5 86.8 68.3 99.6 99.7
79 doublets 66.5 60.7 44.1 96.8 96.9

Variant iv: “deviant”
16 doublets 99.3 99.0 97.4 100.0 100.0
40 doublets 89.2 87.1 63.7 99.7 99.7
79 doublets 67.7 61.2 25.9 96.8 96.9

Scenario 3
Variant i: “unconstrained”

7 quintuplets 89.2 99.7 91.0 99.9 99.9
16 quintuplets 71.9 96.4 72.4 98.0 98.2
31 quintuplets 55.7 87.3 56.4 91.2 91.8

Variant ii: “typical”
7 quintuplets 97.0 99.8 98.0 99.9 99.9
16 quintuplets 80.7 96.8 82.3 97.7 98.1
31 quintuplets 57.1 87.8 58.5 90.6 91.4

Variant iii: “deviant”
7 quintuplets 80.3 99.6 95.3 100.0 100.0
16 quintuplets 58.2 93.9 72.2 97.8 98.1
31 quintuplets 41.4 81.5 48.5 90.7 91.0

Variant iv: “deviant”
7 quintuplets 79.9 99.7 95.2 100.0 100.0
16 quintuplets 57.1 94.1 72.4 97.9 98.1
31 quintuplets 41.9 81.7 44.2 91.4 91.7
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Table 5
Normalized RMSE of the βx coefficient (in percentage).

Solution

(a) “Naive” (b) Drop (c) Flag (d) Drop (e) Weighted
estimation all and control superfluous regression

Scenario 1
Variant i: “unconstrained”

1 sextuplet 9.1 9.1 9.1 9.1 9.1
1 octuplet 9.1 9.1 9.1 9.1 9.1
1 decuplet 9.1 9.1 9.1 9.1 9.1

Variant ii: “typical”
1 sextuplet 9.1 9.1 9.1 9.1 9.1
1 octuplet 9.1 9.1 9.1 9.1 9.1
1 decuplet 9.1 9.1 9.1 9.1 9.1

Variant iii: “deviant”
1 sextuplet 9.1 9.1 9.1 9.1 9.1
1 octuplet 9.1 9.1 9.1 9.1 9.1
1 decuplet 9.1 9.1 9.1 9.1 9.1

Variant iv: “deviant”
1 sextuplet 9.1 9.1 9.1 9.1 9.1
1 octuplet 9.1 9.1 9.1 9.1 9.1
1 decuplet 9.1 9.1 9.1 9.1 9.1

Scenario 2
Variant i: “unconstrained”

16 doublets 9.1 9.2 9.1 9.1 9.1
40 doublets 9.1 9.4 9.1 9.2 9.1
79 doublets 9.1 9.6 9.1 9.3 9.2

Variant ii: “typical”
16 doublets 9.1 9.3 9.1 9.1 9.1
40 doublets 9.2 9.7 9.2 9.2 9.2
79 doublets 9.8 10.7 9.8 9.3 9.3

Variant iii: “deviant”
16 doublets 9.2 9.2 9.4 9.1 9.1
40 doublets 9.5 9.6 11.4 9.2 9.1
79 doublets 10.3 10.9 16.8 9.4 9.1

Variant iv: “deviant”
16 doublets 9.2 9.2 9.3 9.1 9.1
40 doublets 9.3 9.4 10.5 9.2 9.1
79 doublets 9.7 10.2 14.3 9.4 9.1

Scenario 3
Variant i: “unconstrained”

7 quintuplets 9.1 9.2 9.1 9.2 9.1
16 quintuplets 9.1 9.3 9.1 9.3 9.2
31 quintuplets 9.1 9.6 9.1 9.5 9.4

Variant ii: “typical”
7 quintuplets 9.2 9.2 9.1 9.2 9.2
16 quintuplets 9.6 9.4 9.5 9.3 9.3
31 quintuplets 10.9 9.8 10.8 9.5 9.4

Variant iii: “deviant”
7 quintuplets 9.3 9.2 9.3 9.2 9.1
16 quintuplets 9.8 9.4 10.5 9.3 9.2
31 quintuplets 11.2 9.7 13.9 9.5 9.4

Variant iv: “deviant”
7 quintuplets 9.2 9.2 9.2 9.2 9.1
16 quintuplets 9.5 9.3 9.9 9.3 9.2
31 quintuplets 10.3 9.6 12.4 9.5 9.3
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Figure 4. Box and whiskers diagrams of Dfbetas in Scenario 2, Variant i, for N = 500 and N = 5, 000. The duplicate
records are randomly drawn from the overall distribution. Box and whiskers show the distribution of Dfbetas (across 2,500
replications) for each of the coefficients in the model and for the solutions a to e.

Notes: a: “Naive” estimation; b: Drop all duplicates; c: Flag and control; d: Drop superfluous duplicates; e: Weighted
regression. _cons: regression constant; x: βx; z: βz; t: βt.
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Figure 4 shows that the dispersion of the estimates with
respect to the true values increases when the number of dupli-
cates increases. Neglecting the presence of duplicates creates
some problems when the share of duplicates reaches about
5% of the sample.

For N = 500 the probabilities of obtaining biased esti-
mates amount to 2% and 11.4% when the doublets constitute
5% and 10% of the sample respectively. For N = 5, 000 the
same probabilities are 3% and 13%. These values are fairly
in line with the results obtained for N = 1, 500 for Variant i
(3.5% and 14%).

Consistently with the results for N = 1, 500, weighting
by the inverse of the multiplicity or dropping all superfluous
duplicates are most effective in reducing the risk of obtaining
biased estimates. Our conclusion about the influence of du-
plicated records and the efficiency of the solutions does not
depend on sample size.

Typical and deviant cases defined on the basis of the
distribution of the x variable. To check the robustness of
our findings, we follow the same scheme to analyze how the
position of the duplicates on the distribution of the indepen-
dent variable x (rather than the dependent variable y) affects
regression estimates. Results are consistent with those pre-
sented above, and are available upon request.

4 Conclusions

Reliable data are a prerequisite for well grounded analy-
ses. In this paper we focused on the consequences of du-
plicate records for regression estimates. A review of the
literature shows that there are no papers dealing with this
topic. Yet, two recent independent studies by Slomczynski
et al. (2017) and by Kuriakose and Robbins (2016) raised the
awareness about the quality of survey data and they warned
about the possible consequences of ignoring the presence of
duplicate records. The two teams of researchers showed that
a number of widely used surveys is affected by duplicate
records to varying degrees. Unfortunately, little is known
about the bias and efficiency loss induced by duplicates in
survey data. Present paper partly fills this gap by address-
ing two research questions: first, how do duplicates affect
regression estimates? Second, how effective are the possible
solutions to deal with duplicates?

To this aim we created an artificial data set of N = 1, 500
observations and four variables with a known covariance ma-
trix. We adopted a Monte Carlo simulation with 2, 500 repli-
cations to investigate the consequences of 36 patterns (3 sce-
narios · 3 cases in each scenario · 4 variants) of duplicate
records. The scenarios included: (1) multiple duplications of
a single record: sextuplet, octuplet and decuplet; (2) multi-
ple doublets (16, 40, 79, corresponding to 2%, 5%, and 10%
of the sample); and (3) multiple quintuplets (7, 16, 31, cor-
responding to 2%, 5%, and 10% of the sample). The four
variants allowed us to investigate whether the reliability of

regression estimates changed when the duplicates were situ-
ated in specific parts of the data distribution: (i) on the whole
distribution, (ii) around the median, (iii) on the lower tie, and
(iv) on the upper tie of the distribution of the dependent vari-
able.

For each of the scenarios we run a “naive” estimation,
which ignored the presence of duplicate records. This al-
lowed us to investigate the consequences of duplicate records
for regression estimates. Specifically, we investigated the
percentage bias, the standard errors, the risk of obtaining bi-
ased estimates, and the root mean square error (RMSE) to
understand under which conditions, and to which extent the
presence of duplicates is problematic.

The results showed that duplicates may bias regression es-
timates when duplicate records are located in specific parts
of the distribution. In other words, the bias was null when
the duplicates were randomly drawn from the overall distri-
bution of the dependent variable (Variant i). Interestingly,
duplicating “typical” cases (Variant ii) was just as problem-
atic as duplicating “deviant” cases (Variants iii and iv). In
our simulation the bias was rather low: it reached the highest
value of about 7% when the data contained 31 quintuplets.
Overall, the bias increased with the share of duplicates in the
data, and it was higher for quintuplets than for doublets.

The presence of duplicates in the data affected also the
standard errors, and therefore the confidence intervals. Sim-
ilarly as in the case of the percentage bias, duplicates ran-
domly chosen from the overall distribution (Variant i) did not
affect standard errors. Duplicating “typical” cases (Variant
ii) biased the standard errors downwards, thus increasing the
statistical power of the estimates. On the contrary, the pres-
ence of “deviant” cases (Variants iii and iv) biased the stan-
dard errors upwards, thus producing less precise estimates.
The bias of standard errors was overall low (up to maximum
3%), and it was higher when more duplicates were present in
the data.

The presence of duplicates also affected the risk of ob-
taining biased estimates. We considered as biased the co-
efficients that departed by at least 0.5 standard errors from
the true value. The risk of obtaining biased estimates in-
creased with the share of duplicates in the data, reaching the
values between 44%–59% (depending on the Variant) when
31 quintuplets were present in the data. The risk was also
higher when the duplicates were located on the ties of the
distribution (Variants iii and iv), and it was the lowest when
the duplicates were located in the center of the distribution
(Variant ii). Also the pattern of duplicates mattered, with
quintuplets being more problematic than doublets.

The above results are interesting in the light of previous
studies which discussed the possible consequences of dupli-
cates for regression estimates. We found no evidence of at-
tenuation bias, which suggests that duplicates do not intro-
duce random noise in the data. Moreover, we did not find any
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bias when duplicates were located randomly on the overall
distribution. On the other hand, if the duplicates were lo-
cated in a specific part of the distribution, the bias was sys-
tematic. Moreover, we found that duplicates increased the
statistical power of estimates if the duplicated cases were lo-
cated in the center of the distribution. On the contrary, when
duplicates were located on the ties of the distribution, they
biased the confidence intervals upwards. We also found that
duplication of “typical” cases is as problematic as duplica-
tion of “deviant” cases. It may be even considered more
problematic because the bias produced by “typical” dupli-
cates is accompanied by narrower confidence intervals, i.e.
higher statistical significance. On the other hand, biased co-
efficients produced by “deviant” duplicates are accompanied
by broader confidence intervals.

The number and patterns of duplicate records used in this
analysis are consistent with those identified by Slomczynski
et al. (2017), and they can, therefore, be regarded as realistic.
Hence, our first conclusion is that although the bias and effi-
ciency loss related to duplicate records are small, duplicates
create a risk of obtaining biased estimates. Thus, researchers
who use data with duplicate records risk to reach misleading
conclusions.

The second goal of our analysis was to investigate the ef-
ficacy of four solutions to reduce the effect of duplicates on
estimation results. They included: (b) dropping all duplicates
from the sample; (c) flagging duplicates and controlling for
them in the estimation; (d) dropping all superfluous dupli-
cates; (e) weighting the observations by the inverse of the
duplicates’ multiplicity.

The techniques that performed the best are solutions d and
e, which basically reduced the bias of the coefficient to zero.
They also performed well in reducing the risk of obtaining
biased estimates. The downside is that these solutions bi-
ased upwards the estimated standard errors. Hence, although
dropping the superfluous duplicates or weighting the obser-
vations by the inverse of the duplicates’ multiplicity allow to
obtain unbiased coefficients, these solutions come at the cost
of decreasing the statistical power of estimates.

The solution which performed the worst was flagging du-
plicates and controlling for them in the estimation. It pro-
duced coefficients’ estimates that were more biased than
those obtained in the naive estimation. Additionally, it sys-
tematically underestimated the standard errors. This is a par-
ticularly worrisome combination because biased coefficients
were associated to a higher statistical confidence.

Hence, the second conclusion from our study is that
weighting the duplicates by the inverse of their multiplic-
ity or dropping the superfluous duplicates are the best so-
lutions among the considered ones. These solutions outper-
form all the others in reducing the percentage bias, in reduc-
ing the risk of obtaining biased estimates, and minimizing the
RMSE. Unfortunately, they are associated to larger standard

errors, and therefore to lower statistical power. Flagging du-
plicates and controlling for them is consistently a worst solu-
tion, and in some cases (especially for Scenario 2) it produces
a higher bias, narrower confidence intervals, higher risk of
obtaining biased estimates, and greater efficiency loss than
the “naive” estimation.

Our results do not depend on the sample size we chose
(N = 1, 500): they do not change whether we use a smaller
(N = 500) or a larger (N = 5, 000) sample. Similarly, the
results do not change if the variants are defined on the basis
of one of the independent variables in the regression rather
than the dependent one.

These are the first results documenting the effect of dupli-
cates for survey research, and they pave the road for further
research on the topic. For instance, our study considered an
ideal case in which the model used by researchers perfectly
fitted the relationship in the data, i.e. all relevant predic-
tors were included in the model. This is an unusual situa-
tion in social research. Second, our study did not account
for heterogeneity of populations. We analyze a case when
the relationships of interest are the same for all respondents.
In other words, we considered a situation without unmod-
eled interactions among variables. Third, in our model the
records which were substituted by duplicates (the interviews
which would have been conducted if no duplicates were in-
troduced in the data) were selected randomly. In reality this
is probably not the case, as these are likely the respondents
who are the most difficult to reach by interviewers. Plausi-
bly, the omitted variables, the heterogeneity of the popula-
tion, and the non-random choice of the interviews replaced
by the duplicates exacerbate the impact of duplicates on re-
gression coefficients. This suggests that our estimates of the
effect of duplicates on percentage bias, standard errors, risk
of obtaining biased estimates, and efficiency loss are in many
aspects conservative. Moreover, our study assumed that non-
unique records were duplicates of true interviews and not
purposefully generated fakes. Addressing these limitations
is a promising path for future research.

Overall, our results emphasize the importance of collect-
ing data of high quality, because correcting the data with
statistical tools is not a trivial task. This calls for further
research about how to address the presence of duplicates in
the data and for more refined statistical tools to minimize the
consequent bias of coefficients and standard errors, the risk
of obtaining biased estimates, and the efficiency loss.
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Appendix A
Descriptive statistics for the simulated data sets.

(see table A1 below)

Appendix B
Percentage bias for the remaining coefficients

(see tables B1–B3 below)

Appendix C
Standard errors for the remaining coefficients

(see tables C1–C3 below)

Appendix D
Root mean square error for the remaining coefficients

(see tables D1–D3 below)
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Table A1
Descriptive statistics for the initial data set and for exemplary simulated data sets.

N. of duplicates Variables mean sd min max obs missing

Initial data set
0 y 5.213 2.588 −3.878 14.02 1500 0
0 x 48.04 16.86 −14.13 99.64 1500 0
0 z 4.916 2.402 −3.839 13.99 1500 0
0 t 40.03 13.35 −5.743 90.41 1500 0

Scenario 1
1 sextuplet y 5.212 2.587 −3.878 14.02 1500 0
1 sextuplet x 47.99 16.83 −14.13 99.64 1500 0
1 sextuplet z 4.911 2.400 −3.839 13.99 1500 0
1 sextuplet t 40.01 13.33 −5.743 90.41 1500 0
1 sextuplet duplicates (flag) 0.00400 0.0631 0 1 1500 0

1 octuplet y 5.225 2.588 −3.878 14.02 1500 0
1 octuplet x 47.96 16.89 −14.13 99.64 1500 0
1 octuplet z 4.930 2.403 −3.839 13.99 1500 0
1 octuplet t 39.90 13.43 −5.743 90.41 1500 0
1 octuplet duplicates (flag) 0.00533 0.0729 0 1 1500 0

1 decuplet y 5.187 2.595 −3.878 14.02 1500 0
1 decuplet x 47.93 16.87 −14.13 99.64 1500 0
1 decuplet z 4.909 2.393 −3.839 13.99 1500 0
1 decuplet t 39.98 13.28 −5.743 90.41 1500 0
1 decuplet duplicates (flag) 0.00667 0.0814 0 1 1500 0

Scenario 2
16 doublets y 5.217 2.582 −3.878 14.02 1500 0
16 doublets x 48.06 16.92 −14.13 99.64 1500 0
16 doublets z 4.933 2.409 −3.839 13.99 1500 0
16 doublets t 40.00 13.32 −5.743 90.41 1500 0
16 doublets duplicates (flag) 0.0213 0.145 0 1 1500 0

40 doublets y 5.219 2.599 −3.878 14.02 1500 0
40 doublets x 48.18 16.81 −14.13 99.64 1500 0
40 doublets z 4.929 2.410 −3.839 13.99 1500 0
40 doublets t 39.94 13.44 −5.743 90.41 1500 0
40 doublets duplicates (flag) 0.0533 0.225 0 1 1500 0

79 doublets y 5.227 2.582 −3.878 14.02 1500 0
79 doublets x 47.99 16.94 −14.13 99.64 1500 0
79 doublets z 4.896 2.404 −3.839 13.99 1500 0
79 doublets t 40.01 13.42 −5.743 90.41 1500 0
79 doublets duplicates (flag) 0.105 0.307 0 1 1500 0

Scenario 3
7 quintuplets y 5.219 2.584 −3.878 14.02 1500 0
7 quintuplets x 48.09 16.87 −14.13 99.64 1500 0
7 quintuplets z 4.932 2.404 −3.839 13.99 1500 0
7 quintuplets t 39.81 13.47 −5.743 90.41 1500 0
7 quintuplets duplicates (flag) 0.0233 0.151 0 1 1500 0

16 quintuplets y 5.240 2.631 −3.878 14.02 1500 0
16 quintuplets x 48.08 16.71 −14.13 99.64 1500 0
16 quintuplets z 4.918 2.453 −3.839 13.99 1500 0
16 quintuplets t 39.91 13.44 −5.743 90.41 1500 0
16 quintuplets duplicates (flag) 0.0533 0.225 0 1 1500 0

31 quintuplets y 5.198 2.598 −3.878 14.02 1500 0
31 quintuplets x 48.15 16.61 −14.13 97.58 1500 0
31 quintuplets z 4.941 2.458 −3.839 13.99 1500 0
31 quintuplets t 39.71 13.39 −5.743 90.41 1500 0
31 quintuplets duplicates (flag) 0.103 0.304 0 1 1500 0
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Table B1
Percentage bias of the βz coefficient (expressed as a percentage of βz)

Solution

(a) “Naive” (b) Drop (c) Flag (d) Drop (e) Weighted
estimation all and control superfluous regression

Scenario 1
Variant i: “unconstrained”

1 sextuplet 0.0 0.0 0.0 0.0 0.0
1 octuplet 0.0 −0.0 −0.0 −0.0 −0.0
1 decuplet −0.1 −0.0 −0.0 −0.0 −0.0

Variant ii: “typical”
1 sextuplet −0.3 0.1 0.1 0.0 0.0
1 octuplet −0.3 0.0 0.0 −0.0 −0.0
1 decuplet −0.5 0.0 0.0 −0.0 −0.0

Variant iii: “deviant”
1 sextuplet 0.3 −0.0 −0.0 0.0 0.0
1 octuplet 0.2 −0.1 −0.1 −0.0 −0.0
1 decuplet 0.5 −0.0 −0.0 0.0 0.0

Variant iv: “deviant”
1 sextuplet 0.3 −0.0 −0.0 0.0 0.0
1 octuplet 0.4 −0.1 −0.1 −0.0 −0.0
1 decuplet 0.6 −0.0 −0.0 0.0 0.0

Scenario 2
Variant i: “unconstrained”

16 doublets 0.0 −0.1 0.0 −0.0 −0.0
40 doublets −0.0 0.0 −0.0 0.0 0.0
79 doublets 0.0 0.0 0.0 0.0 0.0

Variant ii: “typical”
16 doublets −0.9 0.9 −0.8 0.0 0.0
40 doublets −2.3 2.3 −2.2 −0.1 −0.1
79 doublets −4.7 4.6 −4.6 −0.3 −0.3

Variant iii: “deviant”
16 doublets 0.7 −0.7 −1.5 −0.0 −0.0
40 doublets 1.9 −1.9 −4.0 0.2 0.2
79 doublets 3.5 −4.1 −8.2 0.2 0.2

Variant iv: “deviant”
16 doublets 1.1 −1.1 −2.1 0.0 0.0
40 doublets 2.7 −2.8 −5.0 0.2 0.2
79 doublets 5.3 −6.0 −10.3 0.5 0.5

Scenario 3
Variant i: “unconstrained”

7 quintuplets 0.2 0.1 0.1 0.1 0.1
16 quintuplets −0.1 −0.2 −0.1 −0.2 −0.2
31 quintuplets 0.2 0.1 0.2 0.1 0.1

Variant ii: “typical”
7 quintuplets −1.5 0.4 −1.2 0.0 0.0
16 quintuplets −3.6 0.8 −3.3 −0.1 −0.1
31 quintuplets −6.8 1.9 −6.6 −0.0 −0.0

Variant iii: “deviant”
7 quintuplets 1.2 −0.3 −1.1 0.0 0.0
16 quintuplets 2.6 −0.8 −2.9 −0.1 −0.1
31 quintuplets 4.8 −1.5 −5.5 0.1 0.1

Variant iv: “deviant”
7 quintuplets 2.0 −0.5 −1.3 0.1 0.1
16 quintuplets 4.5 −1.2 −3.2 0.0 0.0
31 quintuplets 7.0 −2.1 −6.6 0.1 0.1
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Table B2
Percentage bias of the βt coefficient (expressed as a percentage of βt)

Solution

(a) “Naive” (b) Drop (c) Flag (d) Drop (e) Weighted
estimation all and control superfluous regression

Scenario 1
Variant i: “unconstrained”

1 sextuplet −0.1 −0.0 −0.0 −0.0 −0.0
1 octuplet 0.0 −0.0 −0.0 −0.0 −0.0
1 decuplet 0.1 0.0 0.0 0.0 0.0

Variant ii: “typical”
1 sextuplet −0.2 0.1 0.1 0.1 0.1
1 octuplet −0.3 0.1 0.1 0.0 0.0
1 decuplet −0.6 0.1 0.1 0.0 0.0

Variant iii: “deviant”
1 sextuplet 0.2 0.0 0.0 0.0 0.0
1 octuplet 0.3 −0.0 −0.0 0.0 0.0
1 decuplet 0.8 −0.1 −0.1 −0.0 −0.0

Variant iv: “deviant”
1 sextuplet 0.4 −0.0 −0.0 0.1 0.1
1 octuplet 0.4 −0.0 −0.0 0.0 0.0
1 decuplet 0.4 −0.1 −0.1 −0.0 −0.0

Scenario 2
Variant i: “unconstrained”

16 doublets −0.1 0.0 −0.1 −0.0 −0.0
40 doublets 0.2 0.1 0.2 0.1 0.1
79 doublets −0.2 −0.2 −0.1 −0.2 −0.2

Variant ii: “typical”
16 doublets −0.9 1.0 −0.8 −0.0 −0.0
40 doublets −2.4 2.2 −2.3 −0.2 −0.2
79 doublets −4.8 4.4 −4.7 −0.4 −0.4

Variant iii: “deviant”
16 doublets 0.9 −0.7 −1.9 0.1 0.1
40 doublets 1.9 −2.2 −5.2 0.0 0.0
79 doublets 3.7 −4.6 −10.7 0.3 0.3

Variant iv: “deviant”
16 doublets 0.9 −1.0 −2.1 −0.0 −0.0
40 doublets 2.6 −3.1 −5.8 −0.0 −0.0
79 doublets 5.0 −6.0 −11.0 0.3 0.3

Scenario 3
Variant i: “unconstrained”

7 quintuplets 0.0 −0.0 0.0 −0.0 −0.0
16 quintuplets −0.1 −0.0 −0.1 −0.0 −0.0
31 quintuplets 0.4 0.0 0.3 0.1 0.1

Variant ii: “typical”
7 quintuplets −1.6 0.3 −1.3 −0.1 −0.1
16 quintuplets −3.8 1.0 −3.6 −0.0 −0.0
31 quintuplets −7.2 1.6 −7.0 −0.3 −0.3

Variant iii: “deviant”
7 quintuplets 1.4 −0.3 −1.5 0.1 0.1
16 quintuplets 2.9 −0.8 −3.6 0.0 0.0
31 quintuplets 5.0 −1.6 −7.6 0.1 0.1

Variant iv: “deviant”
7 quintuplets 1.7 −0.4 −1.6 0.0 0.0
16 quintuplets 4.3 −1.1 −3.7 0.1 0.1
31 quintuplets 7.3 −2.3 −7.6 0.1 0.1
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Table B3
Percentage bias of the intercept (expressed as a percentage of the intercept)

Solution

(a) “Naive” (b) Drop (c) Flag (d) Drop (e) Weighted
estimation all and control superfluous regression

Scenario 1
Variant i: “unconstrained”

1 sextuplet −0.0 0.0 0.0 0.0 0.0
1 octuplet −0.0 −0.0 −0.0 −0.0 −0.0
1 decuplet −0.0 −0.0 −0.0 −0.0 −0.0

Variant ii: “typical”
1 sextuplet −0.0 −0.0 −0.0 −0.0 −0.0
1 octuplet −0.0 0.0 0.0 0.0 0.0
1 decuplet −0.0 −0.0 −0.0 −0.0 −0.0

Variant iii: “deviant”
1 sextuplet −0.1 0.0 0.0 −0.0 −0.0
1 octuplet −0.2 0.0 0.0 0.0 0.0
1 decuplet −0.3 0.0 0.0 0.0 0.0

Variant iv: “deviant”
1 sextuplet 0.2 −0.0 −0.0 −0.0 −0.0
1 octuplet 0.2 −0.0 −0.0 0.0 0.0
1 decuplet 0.3 −0.0 −0.0 0.0 0.0

Scenario 2
Variant i: “unconstrained”

16 doublets 0.0 −0.0 −0.0 −0.0 −0.0
40 doublets −0.0 −0.0 −0.0 −0.0 −0.0
79 doublets 0.0 0.1 0.0 0.0 0.0

Variant ii: “typical”
16 doublets −0.0 0.0 −0.0 −0.0 −0.0
40 doublets −0.0 0.1 −0.0 0.0 0.0
79 doublets −0.1 0.2 −0.0 0.0 0.0

Variant iii: “deviant”
16 doublets −0.5 0.5 0.1 −0.0 −0.0
40 doublets −1.2 1.2 0.3 −0.1 −0.1
79 doublets −2.5 2.4 0.7 −0.1 −0.1

Variant iv: “deviant”
16 doublets 0.5 −0.5 −0.8 0.0 0.0
40 doublets 1.3 −1.3 −2.0 0.0 0.0
79 doublets 2.5 −2.7 −4.1 0.1 0.1

Scenario 3
Variant i: “unconstrained”

7 quintuplets −0.0 −0.0 0.0 −0.0 −0.0
16 quintuplets 0.0 0.0 0.0 0.0 0.0
31 quintuplets −0.1 −0.0 −0.1 −0.0 −0.0

Variant ii: “typical”
7 quintuplets −0.1 0.0 −0.0 −0.0 −0.0
16 quintuplets −0.1 0.0 −0.1 −0.0 −0.0
31 quintuplets −0.2 0.1 −0.1 0.0 0.0

Variant iii: “deviant”
7 quintuplets −0.9 0.2 −0.2 −0.0 −0.0
16 quintuplets −1.9 0.5 −0.4 −0.0 −0.0
31 quintuplets −3.8 0.9 −0.8 −0.1 −0.1

Variant iv: “deviant”
7 quintuplets 0.9 −0.2 −0.5 −0.0 −0.0
16 quintuplets 1.9 −0.5 −1.2 0.0 0.0
31 quintuplets 4.0 −1.0 −2.2 0.1 0.1
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Table C1
Average standard error of βz coefficient (expressed as a percentage of the true stan-
dard error of βz).

Solution

(a) “Naive” (b) Drop (c) Flag (d) Drop (e) Weighted
estimation all and control superfluous regression

Scenario 1
Variant i: “unconstrained”

1 sextuplet 100.0 100.2 100.0 100.2 101.9
1 octuplet 100.0 100.3 100.0 100.2 102.0
1 decuplet 100.0 100.3 100.0 100.3 102.0

Variant ii: “typical”
1 sextuplet 99.9 100.2 100.1 100.2 101.9
1 octuplet 99.8 100.3 100.1 100.2 102.0
1 decuplet 99.8 100.4 100.1 100.3 102.1

Variant iii: “deviant”
1 sextuplet 100.1 100.2 100.0 100.2 101.9
1 octuplet 100.2 100.2 100.0 100.2 101.9
1 decuplet 100.2 100.3 100.0 100.3 102.0

Variant iv: “deviant”
1 sextuplet 100.1 100.2 100.0 100.2 101.9
1 octuplet 100.2 100.2 100.0 100.2 101.9
1 decuplet 100.3 100.3 100.0 100.3 102.0

Scenario 2
Variant i: “unconstrained”

16 doublets 100.0 101.1 100.0 100.5 102.0
40 doublets 100.0 102.8 100.0 101.4 102.4
79 doublets 100.0 105.7 100.0 102.7 103.1

Variant ii: “typical”
16 doublets 99.6 101.5 99.7 100.5 102.2
40 doublets 98.9 103.9 99.0 101.3 102.9
79 doublets 97.7 108.1 97.8 102.6 104.0

Variant iii: “deviant”
16 doublets 100.4 100.7 99.0 100.5 101.9
40 doublets 101.0 101.7 97.3 101.4 102.0
79 doublets 101.8 103.3 94.4 102.9 102.3

Variant iv: “deviant”
16 doublets 100.4 100.6 99.0 100.6 101.8
40 doublets 101.1 101.5 97.3 101.4 101.9
79 doublets 102.1 103.0 94.4 102.9 102.0

Scenario 3
Variant i: “unconstrained”

7 quintuplets 100.0 101.2 100.0 100.9 102.5
16 quintuplets 100.0 102.8 100.0 102.2 103.5
31 quintuplets 100.0 105.6 100.0 104.4 105.3

Variant ii: “typical”
7 quintuplets 99.3 101.4 99.4 100.9 102.7
16 quintuplets 98.3 103.2 98.4 102.2 103.8
31 quintuplets 96.6 106.5 96.8 104.3 105.9

Variant iii: “deviant”
7 quintuplets 100.7 101.0 99.2 101.0 102.4
16 quintuplets 101.5 102.4 98.1 102.2 103.3
31 quintuplets 102.7 104.7 96.1 104.5 104.7

Variant iv: “deviant”
7 quintuplets 100.8 101.0 99.3 101.0 102.4
16 quintuplets 101.7 102.3 98.1 102.2 103.2
31 quintuplets 103.0 104.7 96.2 104.5 104.6
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Table C2
Average standard error of βt coefficient (expressed as a percentage of the true stan-
dard error of βt).

Solution

(a) “Naive” (b) Drop (c) Flag (d) Drop (e) Weighted
estimation all and control superfluous regression

Scenario 1
Variant i: “unconstrained”

1 sextuplet 100.0 100.2 100.0 100.2 106.6
1 octuplet 100.0 100.3 100.0 100.2 106.6
1 decuplet 100.0 100.3 100.0 100.3 106.7

Variant ii: “typical”
1 sextuplet 99.9 100.2 100.1 100.2 106.6
1 octuplet 99.8 100.3 100.1 100.2 106.7
1 decuplet 99.8 100.4 100.1 100.3 106.7

Variant iii: “deviant”
1 sextuplet 100.1 100.2 100.0 100.2 106.5
1 octuplet 100.2 100.2 100.0 100.2 106.6
1 decuplet 100.2 100.3 100.0 100.3 106.7

Variant iv: “deviant”
1 sextuplet 100.1 100.2 100.0 100.2 106.5
1 octuplet 100.2 100.2 100.0 100.2 106.6
1 decuplet 100.2 100.3 100.0 100.3 106.7

Scenario 2
Variant i: “unconstrained”

16 doublets 100.0 101.1 100.0 100.5 106.7
40 doublets 100.0 102.8 100.0 101.4 107.1
79 doublets 100.0 105.8 100.1 102.8 107.8

Variant ii: “typical”
16 doublets 99.6 101.5 99.7 100.5 106.9
40 doublets 98.9 103.9 99.0 101.3 107.6
79 doublets 97.8 108.0 97.9 102.6 108.8

Variant iii: “deviant”
16 doublets 100.4 100.6 99.0 100.5 106.5
40 doublets 101.0 101.6 97.3 101.4 106.5
79 doublets 101.9 103.2 94.5 102.9 106.8

Variant iv: “deviant”
16 doublets 100.4 100.7 98.9 100.5 106.5
40 doublets 101.0 101.6 97.2 101.4 106.6
79 doublets 101.9 103.2 94.1 102.9 106.8

Scenario 3
Variant i: “unconstrained”

7 quintuplets 100.0 101.2 100.0 101.0 107.2
16 quintuplets 100.0 102.8 100.0 102.2 108.2
31 quintuplets 100.0 105.6 100.1 104.4 110.1

Variant ii: “typical”
7 quintuplets 99.3 101.4 99.4 100.9 107.4
16 quintuplets 98.3 103.2 98.4 102.2 108.6
31 quintuplets 96.7 106.5 96.9 104.4 110.7

Variant iii: “deviant”
7 quintuplets 100.7 101.0 99.3 101.0 107.1
16 quintuplets 101.5 102.3 98.1 102.2 107.9
31 quintuplets 102.7 104.7 96.1 104.5 109.4

Variant iv: “deviant”
7 quintuplets 100.7 101.0 99.2 101.0 107.1
16 quintuplets 101.5 102.4 97.9 102.2 108.0
31 quintuplets 102.6 104.7 95.7 104.5 109.5
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Table C3
Average standard error of the intercept (expressed as a percentage of the true stan-
dard error of the intercept).

Solution

(a) “Naive” (b) Drop (c) Flag (d) Drop (e) Weighted
estimation all and control superfluous regression

Variant i: “unconstrained”
1 sextuplet 100.0 100.2 100.0 100.2 103.9
1 octuplet 100.0 100.3 100.0 100.2 104.0
1 decuplet 100.0 100.3 100.0 100.3 104.1

Variant ii: “typical”
1 sextuplet 99.9 100.2 100.1 100.2 104.0
1 octuplet 99.8 100.3 100.1 100.2 104.0
1 decuplet 99.8 100.4 100.1 100.3 104.1

Variant iii: “deviant”
1 sextuplet 100.1 100.2 100.0 100.2 103.9
1 octuplet 100.2 100.2 100.0 100.2 104.0
1 decuplet 100.3 100.3 100.0 100.3 104.0

Variant iv: “deviant”
1 sextuplet 100.1 100.2 100.0 100.2 103.9
1 octuplet 100.2 100.2 100.0 100.2 104.0
1 decuplet 100.2 100.3 100.0 100.3 104.0

Scenario 2
Variant i: “unconstrained”

16 doublets 100.0 101.1 100.1 100.5 104.1
40 doublets 100.0 102.8 100.2 101.4 104.5
79 doublets 100.0 105.8 100.3 102.8 105.2

Variant ii: “typical”
16 doublets 99.6 101.5 99.7 100.5 104.3
40 doublets 98.9 103.9 99.2 101.3 105.0
79 doublets 97.8 108.0 98.2 102.6 106.1

Variant iii: “deviant”
16 doublets 100.5 100.6 99.0 100.5 103.9
40 doublets 101.1 101.5 97.4 101.4 104.0
79 doublets 102.1 103.0 94.6 102.9 104.3

Variant iv: “deviant”
16 doublets 100.4 100.7 99.0 100.5 103.9
40 doublets 101.0 101.7 97.2 101.4 104.0
79 doublets 101.8 103.3 94.3 102.9 104.1

Scenario 3
Variant i: “unconstrained”

7 quintuplets 100.0 101.2 100.0 100.9 104.6
16 quintuplets 100.0 102.8 100.1 102.2 105.6
31 quintuplets 100.0 105.6 100.3 104.4 107.4

Variant ii: “typical”
7 quintuplets 99.3 101.4 99.5 100.9 104.7
16 quintuplets 98.3 103.2 98.6 102.2 105.9
31 quintuplets 96.7 106.5 97.1 104.4 108.0

Variant iii: “deviant”
7 quintuplets 100.8 101.0 99.3 101.0 104.4
16 quintuplets 101.7 102.3 98.2 102.2 105.3
31 quintuplets 103.0 104.6 96.3 104.5 106.8

Variant iv: “deviant”
7 quintuplets 100.7 101.0 99.2 101.0 104.4
16 quintuplets 101.5 102.4 97.9 102.2 105.2
31 quintuplets 102.5 104.8 95.8 104.5 106.7
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Table D1
Normalized RMSE for the βz coefficient

Solution

(a) “Naive” (b) Drop (c) Flag (d) Drop (e) Weighted
estimation all and control superfluous regression

Scenario 1
Variant i: “unconstrained”

1 sextuplet 14.8 14.8 14.8 14.8 15.0
1 octuplet 14.8 14.8 14.8 14.8 15.1
1 decuplet 14.8 14.8 14.8 14.8 15.1

Variant ii: “typical”
1 sextuplet 14.7 14.8 14.8 14.8 15.0
1 octuplet 14.7 14.8 14.8 14.8 15.1
1 decuplet 14.7 14.8 14.8 14.8 15.1

Variant iii: “deviant”
1 sextuplet 14.8 14.8 14.8 14.8 15.0
1 octuplet 14.8 14.8 14.8 14.8 15.1
1 decuplet 14.8 14.8 14.8 14.8 15.1

Variant iv: “deviant”
1 sextuplet 14.8 14.8 14.8 14.8 15.0
1 octuplet 14.8 14.8 14.8 14.8 15.1
1 decuplet 14.8 14.8 14.8 14.8 15.1

Scenario 2
Variant i: “unconstrained”

16 doublets 14.8 14.9 14.8 14.8 15.1
40 doublets 14.8 15.2 14.8 15.0 15.1
79 doublets 14.8 15.6 14.8 15.2 15.2

Variant ii: “typical”
16 doublets 14.7 15.0 14.7 14.8 15.1
40 doublets 14.8 15.5 14.8 15.0 15.2
79 doublets 15.2 16.6 15.2 15.2 15.4

Variant iii: “deviant”
16 doublets 14.8 14.9 14.7 14.8 15.0
40 doublets 15.0 15.1 14.9 15.0 15.1
79 doublets 15.4 15.8 16.2 15.2 15.1

Variant iv: “deviant”
16 doublets 14.9 14.9 14.8 14.8 15.0
40 doublets 15.2 15.2 15.2 15.0 15.0
79 doublets 16.0 16.3 17.3 15.2 15.1

Scenario 3
Variant i: “unconstrained”

7 quintuplets 14.8 14.9 14.8 14.9 15.1
16 quintuplets 14.8 15.2 14.8 15.1 15.3
31 quintuplets 14.8 15.6 14.8 15.4 15.5

Variant ii: “typical”
7 quintuplets 14.7 15.0 14.7 14.9 15.2
16 quintuplets 14.9 15.3 14.9 15.1 15.3
31 quintuplets 15.8 15.8 15.7 15.4 15.6

Variant iii: “deviant”
7 quintuplets 14.9 14.9 14.7 14.9 15.1
16 quintuplets 15.2 15.1 14.8 15.1 15.2
31 quintuplets 15.9 15.5 15.2 15.4 15.5

Variant iv: “deviant”
7 quintuplets 15.0 14.9 14.7 14.9 15.1
16 quintuplets 15.7 15.2 14.8 15.1 15.2
31 quintuplets 16.7 15.6 15.7 15.4 15.4
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Table D2
Normalized RMSE for the βt coefficient

Solution

(a) “Naive” (b) Drop (c) Flag (d) Drop (e) Weighted
estimation all and control superfluous regression

Variant i: “unconstrained”
1 sextuplet 24.3 24.3 24.3 24.3 25.9
1 octuplet 24.3 24.4 24.3 24.4 25.9
1 decuplet 24.3 24.4 24.3 24.4 25.9

Variant ii: “typical”
1 sextuplet 24.3 24.4 24.3 24.3 25.9
1 octuplet 24.3 24.4 24.3 24.4 25.9
1 decuplet 24.2 24.4 24.3 24.4 25.9

Variant iii: “deviant”
1 sextuplet 24.3 24.3 24.3 24.3 25.9
1 octuplet 24.3 24.4 24.3 24.4 25.9
1 decuplet 24.4 24.4 24.3 24.4 25.9

Variant iv: “deviant”
1 sextuplet 24.3 24.3 24.3 24.3 25.9
1 octuplet 24.3 24.4 24.3 24.4 25.9
1 decuplet 24.4 24.4 24.3 24.4 25.9

Scenario 2
Variant i: “unconstrained”

16 doublets 24.3 24.6 24.3 24.4 25.9
40 doublets 24.3 25.0 24.3 24.6 26.0
79 doublets 24.3 25.7 24.3 25.0 26.2

Variant ii: “typical”
16 doublets 24.2 24.7 24.2 24.4 26.0
40 doublets 24.2 25.3 24.2 24.6 26.1
79 doublets 24.2 26.6 24.2 24.9 26.4

Variant iii: “deviant”
16 doublets 24.4 24.5 24.1 24.4 25.9
40 doublets 24.6 24.8 24.2 24.6 25.9
79 doublets 25.0 25.5 25.3 25.0 25.9

Variant iv: “deviant”
16 doublets 24.4 24.5 24.1 24.4 25.9
40 doublets 24.7 24.9 24.3 24.6 25.9
79 doublets 25.3 25.8 25.4 25.0 26.0

Scenario 3
Variant i: “unconstrained”

7 quintuplets 24.3 24.6 24.3 24.5 26.1
16 quintuplets 24.3 25.0 24.3 24.8 26.3
31 quintuplets 24.3 25.7 24.3 25.4 26.8

Variant ii: “typical”
7 quintuplets 24.2 24.6 24.2 24.5 26.1
16 quintuplets 24.2 25.1 24.2 24.8 26.4
31 quintuplets 24.6 25.9 24.5 25.4 26.9

Variant iii: “deviant”
7 quintuplets 24.5 24.5 24.2 24.5 26.0
16 quintuplets 24.8 24.9 24.1 24.8 26.2
31 quintuplets 25.5 25.5 24.6 25.4 26.6

Variant iv: “deviant”
7 quintuplets 24.5 24.5 24.2 24.5 26.0
16 quintuplets 25.0 24.9 24.1 24.8 26.2
31 quintuplets 26.0 25.5 24.5 25.4 26.6
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Table D3
Normalized RMSE for the intercept

Solution

(a) “Naive” (b) Drop (c) Flag (d) Drop (e) Weighted
estimation all and control superfluous regression

Scenario 1
Variant i: “unconstrained”

1 sextuplet 5.8 5.8 5.8 5.8 6.0
1 octuplet 5.8 5.8 5.8 5.8 6.0
1 decuplet 5.8 5.8 5.8 5.8 6.0

Variant ii: “typical”
1 sextuplet 5.7 5.8 5.8 5.8 6.0
1 octuplet 5.7 5.8 5.8 5.8 6.0
1 decuplet 5.7 5.8 5.8 5.8 6.0

Variant iii: “deviant”
1 sextuplet 5.8 5.8 5.8 5.8 6.0
1 octuplet 5.8 5.8 5.8 5.8 6.0
1 decuplet 5.8 5.8 5.8 5.8 6.0

Variant iv: “deviant”
1 sextuplet 5.8 5.8 5.8 5.8 6.0
1 octuplet 5.8 5.8 5.8 5.8 6.0
1 decuplet 5.8 5.8 5.8 5.8 6.0

Scenario 2
Variant i: “unconstrained”

16 doublets 5.8 5.8 5.8 5.8 6.0
40 doublets 5.7 5.9 5.8 5.8 6.0
79 doublets 5.8 6.1 5.8 5.9 6.0

Variant ii: “typical”
16 doublets 5.7 5.8 5.7 5.8 6.0
40 doublets 5.7 6.0 5.7 5.8 6.0
79 doublets 5.6 6.2 5.6 5.9 6.1

Variant iii: “deviant”
16 doublets 5.8 5.8 5.7 5.8 6.0
40 doublets 5.9 6.0 5.6 5.8 6.0
79 doublets 6.4 6.4 5.5 5.9 6.0

Variant iv: “deviant”
16 doublets 5.8 5.8 5.7 5.8 6.0
40 doublets 5.9 6.0 5.9 5.8 6.0
79 doublets 6.4 6.5 6.8 5.9 6.0

Scenario 3
Variant i: “unconstrained”

7 quintuplets 5.7 5.8 5.8 5.8 6.0
16 quintuplets 5.7 5.9 5.8 5.9 6.1
31 quintuplets 5.8 6.1 5.8 6.0 6.2

Variant ii: “typical”
7 quintuplets 5.7 5.8 5.7 5.8 6.0
16 quintuplets 5.7 5.9 5.7 5.9 6.1
31 quintuplets 5.6 6.1 5.6 6.0 6.2

Variant iii: “deviant”
7 quintuplets 5.9 5.8 5.7 5.8 6.0
16 quintuplets 6.2 5.9 5.7 5.9 6.1
31 quintuplets 7.1 6.1 5.6 6.0 6.1

Variant iv: “deviant”
7 quintuplets 5.9 5.8 5.7 5.8 6.0
16 quintuplets 6.1 5.9 5.8 5.9 6.1
31 quintuplets 7.1 6.1 5.9 6.0 6.1
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