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To maintain uninterrupted time series, surveys conducted by national statistical institutes are
often kept unchanged as long as possible. When a change is proposed to improve the methods,
it may affect the continuity of these series. It is important to minimise the impact so as to min-
imise the inconvenience for users. In this paper we set out the steps in an orderly transition,
provide practical guidance on how to minimise discontinuities, and review methods for dealing
with discontinuities if they arise so as to maintain a consistently-estimated series.
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1 Introduction

Many surveys run by official statistical organisations are
continuous, and a significant aspect of their value comes
from that continuity, sometimes over very long periods.
Methods, procedures and definitions applied in the survey
gradually become outdated, which makes change and im-
provement inevitable from time to time. This, however, may
affect the continuity of the time series of survey outputs and
make the statistics less suitable for users’ needs; in extreme
cases this may lead to poor policies or decision-making (for
one example see Chambers, Weale and Youll 2000). There-
fore it is important to minimise the impact of such changes,
and to maximise the utility of the information for the users.
Consultation with users and the presentation of findings and
results need to be considered throughout the transition. In
this paper we examine the statistical aspects of planning and
implementing a transition between methods in a survey, iden-
tify guidelines for this process, and apply them in some ex-
ample survey changes.

In an ideal transition process, the new approach is tested
to determine what its effect will be, before it is fully adopted
as part of the regular survey. In cases where the underlying
data remain the same, the differences can be investigated by
recalculation, for example the introduction of new editing,
imputation or estimation methods. Also a new economic ac-
tivity classification system in business surveys will generally
result in discontinuities in time series, which can be quanti-
fied using the same data with the addition of the new classifi-
cation. In these cases it may be appropriate on cost grounds
to evaluate the difference on a subsample and use this infor-
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mation to make inferences about the overall change (see for
example Clogg et al. 1991).

Where collection or capture procedures are affected,
however, the data are not consistent, and in these cases
we need an alternative approach to obtain information from
which to assess the impact of the change. A natural way to
evaluate the effect of the change in approach is to conduct
a field experiment where the regular and new survey design
are run concurrently. This allows us to estimate the main sur-
vey parameters under both survey designs and to test whether
these estimates are significantly different. A field experiment
also provides a safe method of transition, since the new ap-
proach is conducted with a full-scale sample before its formal
acceptance and implementation. Finally we have the imple-
mentation step and the need to estimate the discontinuity in a
production situation, and to use this estimate to produce con-
sistent series, for example by using a backcasting procedure.

The focus of this paper is twofold - first to describe the
methods appropriate to quantify the effect of a survey re-
design, particularly those for designing an experiment in a
survey context, and the constraints under which this type of
experiment can be carried out. We use examples from social
surveys to illustrate the approaches, although they are gen-
erally applicable to business surveys too, with appropriate
modifications for the characteristic differences in the sam-
pling structure of those surveys (Rivière 2002). We also con-
sider situations where an embedded experiment may not be
practical, and what can be achieved in these situations.

Second, we examine a range of approaches for dealing
with discontinuities which have been detected as part of a
change to the survey. Many of these approaches are ana-
lytical and require technical development, but we also cover
practical measures designed to ensure that the users are not
surprised by the changes, and know what to do to compensate
for differences in series within their own systems. From this
we deduce best practice for safely introducing appropriate
methods, and dealing with their effects.
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The structure of the paper expands these two parts: in
section 2 three examples of survey redesigns are discussed.
An overview of different methods that can be used to quan-
tify the effect of a survey redesign is given in section 3. One
of these methods is to conduct a parallel run by means of
an embedded experiment. The different aspects of this ap-
proach are further detailed in sections 4 and 5. In section
4 the methods for testing, the use of significance and power
measures, what can be deduced from tests, and some aspects
of design and analysis of experiments embedded in ongoing
sample surveys are reviewed. Section 5 discusses the sit-
uation in which a full-scale experiment is not possible. In
these situations it is important to maximise the opportunities
for understanding and assessing potential sources of discon-
tinuity from any piloting or field trials which may be taking
place. Two generic backcasting procedures for joining series
together are discussed in section 6 - a synthetic approach, and
time series methods. A numerical example is worked out in
section 7. In section 8 some general principles are set out for
keeping the quality as high as possible during transitions in
surveys, based on the discussions in earlier sections.

2 Examples

2.1 Dutch National Travel Survey
The Dutch National Travel Survey is a household sur-

vey. From 1985-1998 households were telephoned to collect
household level information. Subsequently each household
member was asked to keep a record of all the journeys for
one day in journey diaries, which were sent by mail. Under
this survey design, the response rates gradually dropped to
about 55%. To improve response rates, the National Travel
Survey was redesigned in 1998. To collect data, paper ques-
tionnaires were sent by mail (Paper-and-pencil interviewing
- PAPI). Households receive a household questionnaire and
journey diaries, which were substantially simplified com-
pared to the old questionnaires. Since the response rates
for PAPI surveys are generally low, all households were con-
tacted by telephone immediately after sending the question-
naires to motivate them to complete the questionnaires. The
interviewers also assisted the household members with the
completion of the questionnaires, or followed up incorrect or
incomplete questionnaires. If households did not respond,
they were contacted by telephone, or reminders were sent by
mail.

In 1998, the regular and the new designs were conducted
in parallel for one complete year. The objective of this exper-
iment was twofold. First, to test whether it was possible to
use this new design on a large scale in Statistics Netherlands’
fieldwork organization. The success of this new design de-
pended strongly on the capability of the fieldwork organi-
zation to keep close contact with the sampled households to
motivate them to participate in the survey. For a continuously
conducted survey with an average monthly sample size of
13,000 addresses it was not obvious in advance that this was
tenable. Second, this experiment was used to quantify dis-
continuities in the time series of the main parameters of the
National Travel Survey due to this redesign.

In 1998, the monthly sample size was 14,650 addresses.
The monthly sample was randomly divided into two subsam-
ples according to a completely randomized design. It would
have been more efficient if a randomized block design was
applied with strata as the block variable, see section 4. In the
first two quarters, the monthly subsample size assigned to
the regular design amounted to 13,000 addresses, and the re-
maining 1,650 addresses were assigned to the new approach.
During the last two quarters, the size of the subsample as-
signed to the new design was gradually raised to 13,000 ad-
dresses while the size of the subsample assigned to the regu-
lar design was gradually reduced to 1,650 addresses. During
this year enough experience was obtained to change safely to
this new design in 1999. With the new design a response rate
of more then 70% has been achieved.

2.2 Dutch Security Monitor

In this example two surveys, the Permanent Survey on
Living Conditions and the Population Police Monitor, are
integrated into one new survey, the Security Monitor. The
Permanent Survey on Living Conditions is a module-based
integrated survey combining various themes concerning liv-
ing conditions and quality of life. This survey has been con-
ducted by Statistics Netherlands since 1997. One of the mod-
ules is used to publish figures about justice and crime victim-
isation, and is called the Justice and Security module (JSM).
Parallel to this survey, the Population Police Monitor (PPM)
has been conducted since 1993 under the auspices of the
Ministry of Justice and the Ministry of Interior and Kingdom
Relations to publish figures about police performance, secu-
rity perception and crime victimisation. There was pressure
to produce consistent figures about the overlapping themes
of both surveys and to reduce response burden and costs, so
it was planned in 2004 that the JSM module of the Perma-
nent Survey on Living Conditions and the PPM would be
replaced by the Dutch Security Monitor (SM), which would
be conducted by Statistics Netherlands.

The PPM was a telephone interview survey of persons
aged 15 years or older with a non-secret permanent tele-
phone connection. From 1993-2001, it was conducted bian-
nually and from 2001-2006 annually in the first quarter of the
year. The sample size of the PPM varied between 25,000 and
52,000 persons. The JSM and the SM both use persons aged
15 years or older as the target population. In the JSM, inter-
viewers visited all the sampled persons at home and admin-
istered the questionnaire in a face-to-face interview (CAPI).
This was a continuously conducted survey with a yearly net
sample size of about 10,000 persons. The data collection of
the SM is based on a mixed mode design. Persons with a
non-secret permanent telephone connection are interviewed
by telephone (CATI), and other persons are interviewed face-
to-face. The data collection of the SM is also conducted in
the first quarter of the year.

In the changeover from the JSM to the SM, the question-
naire and the context of the survey changed since questions
from the JSM are skipped and new questions from the PPM
are added. The data collection period changed from a survey
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that is continuously conducted throughout the year to the first
quarter of the year. The data collection mode changed from a
uni-mode design via CAPI to a mixed mode design via CAPI
and CATI. The conversion from the PPM to the SM implied
major modifications in the questionnaire and context of the
survey. The target population changed from persons aged 15
years or older with a non-secret permanent telephone con-
nection to the entire population of all persons aged 15 years
and over. The data collection mode changed from CATI to a
mixed mode design via CAPI and CATI.

In the first quarter of 2005 a two-treatment experiment
was conducted to test the effect of the changeover from the
PPM to the SM on the most important parameter estimates
that originate from the PPM. A net sample size of about
52,500 persons was observed under the PPM and 5,500 per-
sons under the SM. Different parameters in the survey pro-
cess changed in this redesign. A consequence of the two-
treatment experiment is that all factors that changed in the
survey design are confounded. As a result one can only es-
timate the net effect of all the factors that changed simulta-
neously. In section 7.1, one of the most important param-
eters that originates from the PPM is analysed, satisfaction
with police performance. It is measured as the fraction of re-
spondents that have had contact with the police during the 12
months prior to the interview that were satisfied with police
performance.

For budgetary reasons, the JSM stopped at the end of
2004. This hampers a direct comparison between parameter
estimates of the JSM and the SM based on data observed in
the first quarter of 2005. Time series forecasts of the JSM
variables were made as the best possible substitute. In sec-
tion 7.2, a set of crime victimization parameters that origi-
nates from the JSM are analysed. These are the mean num-
ber of total offences against Dutch inhabitants during the 12
months prior to the interview and its breakdown over the cat-
egories violence, property, and vandalism offences.

2.3 Census test in England & Wales

A Census Test took place in 2007, to provide evidence
which will be used for decision-making for the population
census in England and Wales in 2011. Similar tests are used
by several NSIs (for example the US, Canada, New Zealand)
to examine the effects of different approaches ahead of the
full population census. The target of the 2007 test in England
& Wales was to examine the effect of different treatments for
delivery (hand delivery or postal delivery) and the effect of
the inclusion of a question on income, on the response rate.
The delivery method testing took place within five strata, de-
fined by expected response based on a model derived from
2001 Census data; the strata were formed by uneven division
of the national range of predicted responses, with one stra-
tum covering the 2% of areas with the lowest predicted re-
sponses. 100,000 households were covered, divided equally
between the five strata, but some additional control of vari-
ation between selected areas was built in through stratifica-
tion on area characteristics. Generalising from the results of
the Census Test is complicated because it is not possible to

replicate the Census conditions for the test - the Census is
compulsory, but the test is only voluntary, and this means
that they have very different response rates. The test also
takes place in only a restricted subset of regions (Local Au-
thorities in this case) which, although they exhibit a range
of characteristics, are chosen purposively. This means that
the experiment will not give quantitative estimates of the ex-
pected change in outcomes for the full Census, but will pro-
vide circumstantial evidence which is then available along-
side other evidence for making an appropriate decision on
which delivery method to choose, and whether or not to in-
clude an income question.

Constraints on the significance (5%) and power (95%)
for detecting a 2% difference in response were specified at
the beginning of the design stage, but it proved impossible to
meet these for separate tests within the five strata within the
resources available. By testing separately in the five strata it
is hoped to identify whether benefits are realisable by hav-
ing different strategies for delivery in different strata. Al-
though the treatments are applied to small areas (the primary
sampling units (PSU’s) within strata for the delivery method
treatment), we quote the sample sizes in terms of number of
households, since the PSU’s vary in size.

3 Quantifying the effect of a
survey redesign

It is well known that adjustments in the survey process
can affect survey characteristics such as response bias and
therefore have a systematic effect on the parameter estimates
of a sample survey. When an ongoing survey is changed,
it is not clear whether a change in the series is a result of
a real development or is induced by the redesign. Even if
no change in the series is observed, it is still possible that a
real development could be nullified by an opposite redesign
effect.

A general way to avoid confounding the autonomous
development with redesign effects is to conduct an exper-
iment embedded in the ongoing survey, where the regular
and new approaches are run concurrently for some period.
In an embedded experiment, the sample is randomly divided
into two (or more) subsamples according to an experimen-
tal design. In survey literature, such experiments are also
referred to as split-ballot designs or interpenetrating subsam-
pling, and date back to Mahalanobis (1946), but see also Fel-
legi (1964), Cochran (1977 section 13.15), Hartley and Rao
(1978), and Fienberg and Tanur (1987, 1988, 1989). Under
this approach, the subsamples can be considered as probabil-
ity samples from the target population. Therefore estimates
of the target parameters under the different treatments can
be obtained to compare the effects of the redesign and test
whether these parameter estimates are significantly different.

Experiments are particularly appropriate if the sample
data observed under the regular and the new approach are not
consistent. This is for example the case if the redesign affects
the questionnaire or the data collection procedure. In other
situations it might be possible to quantify the effect of a re-
design through recalculation using the sample data obtained
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under the regular approach, possibly completed with some
additional variables. For example the effect of a new clas-
sification system can be quantified using the data observed
under the regular survey, completed with a domain indicator
variable that is based on the new classification system. In this
case the difference induced by the introduction of a new clas-
sification system can be analysed with the standard sampling
theory for domain estimators, see for example Särndal et al.
(1992 Section 5.8 and 5.9). Also the effect of new coding
procedures might be established using a multiple imputation
approach to add the new variable to the regular survey (Clogg
et al. 1991).

Related to the experimental approach is two-phase sam-
pling (or double sampling) which can be used to adjust for
measurement error or some other types of differences in sur-
veys. The approach is generally to have a large sample, typi-
cally of a type of measurement that is cheap but not accurate.
From this large sample a smaller subsample is drawn with a
type of measurement that is expensive but accurate. Subse-
quently, the correlation between these variables is exploited
to improve the precision of the accurate measurement with
the sample size of the cheap measurement. There are nu-
merous examples of this technique - for introductory reviews
see Biemer and Stokes (1991), Groves (1989, Chapter 7) and
Särndal et al. (1992, Chapter 9). In our context this could
translate to a large sample on the existing methodology and
a small subsample on the new methodology. The major lim-
itation of this approach is that in the small subsample, data
are required under both the regular and the new survey. This
might be feasible in the case of new classifications or coding
procedures, for example, but will generally not be feasible in
the case of different data collection procedures or question-
naires.

Another major advantage of quantifying the effect of a
redesign through recalculation or conducting an experiment
is that it provides a safe method of transition from a regular
to a new design. If the new design turns out to be a failure,
the data obtained under the regular design can still be used
for publication purposes. This reduces the risk that there is
a period for which no reliable figures are available. In the
example of section 2.2, the experiment demonstrated that the
new design resulted in a discontinuity in the parameter “sat-
isfaction with police performance” of about 10%. This was a
reason for one of the main users, the Ministry of Interior and
Kingdom Relations, to continue the PPM in 2006.

Finally time series models, which will be developed in
section 6.2, can be used to quantify the effect of a redesign.
Time series models are appropriate to join series together,
particularly if there are sufficient observations available un-
der the new approach. This approach is also a second best
option to quantify discontinuities if a parallel run cannot be
conducted, for example because of budget constraints, as in
the case of the change over from the Dutch JSM to the SM
in section 2.2. Timeliness is the main drawback of this ap-
proach, since the effect of the redesign is estimated more ac-
curately as more data on the new design become available.

4 Field experiments for
evaluating survey changes

Randomized experiments are typically undertaken under
a clearly specified protocol, which sets out in advance what
is to be tested, decision rules for the test outcomes, the proce-
dures to be followed and the analysis to be undertaken. The
key decisions which need to be set out when an experiment
(whether or not part of a sample survey) is set up are:
• clear definitions of and a decision about the number of

treatment factors and treatment levels
• clear specification of the hypotheses about the main

effects and interactions between the different treatment
factors that need to be analysed
• dependent variables (parameters for which hypotheses

about treatment effects are tested)
• the differences between the parameter estimates, i.e.

the main effects and their interactions, that at least
should result in a rejection of the null hypothesis of
no treatment effects
• the power and significance levels to test these hypothe-

ses
• experimental design (randomisation of sampling units

over the treatments and level of randomisation)
• decisions concerning the use of the field staff in the

data collection of the experiment
• minimum required sample size
• the method of analysis including a decision whether a

design-based or model-based approach is applied
This results in the specification of the hypotheses to be tested.
The typical approach in design and analysis of experiments
is to pre-specify and quantify the objective of the experiment
to avoid unnecessary post hoc analysis. A general framework
and practical guidelines for this process of planning and con-
ducting experiments are given by Robinson (2000).

Before a large scale field experiment is planned to test
hypotheses about discontinuities, the survey process of the
redesign must be definite. This implies that pilots to test a
new approach strategy or questionnaire must precede field
experiments that are aimed to test differences in the target
parameters due to the survey redesign. It is perilous to com-
bine both purposes in the same experiment. The results of
the experiment might indicate that the new survey process
must be adjusted. In this stage of a survey redesign, however,
there is often no time and budget to conduct a new large scale
field experiment to investigate discontinuities of the revised
survey process.

The most straightforward approach is to split the sam-
ple into subsamples by means of a completely randomized
design (CRD). Generally this is not the most efficient design
available. The power of an experiment might be improved
by using sampling structures such as strata, clusters or in-
terviewers as block variables in a randomized block design
(RBD) (Fienberg and Tanur 1987, 1988). Unrestricted ran-
domization by means of a CRD might also result in practical
complications, like long travelling distances for interviewers.
This can be avoided by using small geographical regions as
a block variable.
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In the case of clustering it might be unattractive to ran-
domize ultimate sampling units over the treatments. There
might be practical objections to assigning respondents that
belong to the same household or that are interviewed by the
same interviewer, to different treatments in the experiment.
In such situations we can consider randomising clusters of
sampling units over the treatments, at the cost of reduced
power. See Van den Brakel (2008) for a detailed discussion.

The field staff also requires special attention in the plan-
ning and design stage of an experiment. To draw conclusions
that can be generalised to a situation were the new approach
is implemented as a standard, it is advisable to use the entire
or a representative sample of the field staff. Newly recruited
staff, on the other hand, might be precluded for this reason. It
is also advisable to provide sufficient training, to ensure that
the field staff has sufficient experience with the data collec-
tion under the new approach. One might also anticipate that
the data collected under the new approach in the first period
of the experiment cannot be used in the analysis, since the
interviewers must adapt to or gain sufficient experience with
the new methods.

From a statistical point of view it is attractive to use inter-
viewers as the block variable in an RBD, since this removes
the interviewer variance component from the analysis of the
experiment. A major drawback is that this implies that each
interviewer has to collect data under both the regular and the
new methodology, which might give rise to confusion. If it is
decided that interviewers are assigned to one treatment only,
then this must be done randomly to avoid one of the treat-
ments being systematically favoured with experienced inter-
viewers or handicapped with newly recruited staff. See Van
den Brakel and Renssen (1998) and Van den Brakel (2008)
for more details about issues concerning the field staff in em-
bedded experiments.

In each application the right trade-off between the num-
ber of treatments in one experiment and the accompanying
practical problems must be established carefully. Users gen-
erally expect that the effect of each separate factor that has
varied in the survey process can be quantified. This gener-
ally requires a factorial design, which is difficult to apply in
the fieldwork of a survey process, since the number of treat-
ment combinations grows rapidly. One solution is to con-
found higher order interactions with blocks or to apply frac-
tional factorial designs, see for example Montgomery (2001).
Confounding is a design technique for arranging a complete
factorial experiment in blocks, where the number of treat-
ment combinations within a block is smaller than the num-
ber of treatment combinations of the factorial experiment.
This requires that certain treatment effects, generally higher
order interactions, are indistinguishable from blocks. Such
design techniques might be used if interviewers are blocks
and it is necessary to reduce the number of treatment com-
binations assigned to each interviewer. In fractional factorial
designs, the number of treatment combinations is reduced
by running only a fraction of the complete factorial exper-
iment. Again this implies that higher order interactions are
not distinguishable from each other. These designs, however,
are highly balanced and generally hard to combine with the

fieldwork restrictions encountered in the daily practise of sur-
vey sampling. In practice it is usually necessary to combine
the factors that changed into one treatment and test the total
effect against the standard alternative in a two-treatment ex-
periment. This implies that the effects of all factors in the ex-
periment are confounded and cannot be separately estimated.

Another consideration is the minimum required sample
size. An indication is required about the size of the treatment
effects that should at least result in a rejection of the null
hypothesis at prespecified levels of significance and power.
Based on these, the minimum subsample sizes can be deter-
mined by an appropriate power calculation, see for example
Montgomery (2001). In survey sampling minimum sample
size requirements are generally based on significance level
requirements only (as in Cochran 1977, chapter 4). There-
fore, as an example, we give expressions for the minimum
sample size in the case of a two-treatment experiment in ap-
pendix A.

If we treat the Census test example of section 2.3 as a
survey experiment, we have two treatments for delivery and
two treatments for the inclusion or not of an income question,
in a fully factorial design. The level at which differences in
response are required are different for the two treatments. For
the delivery method treatment, discrimination within each
stratum of the five stratum breakdown is needed, to give in-
formation from which to choose delivery methods in differ-
ent types of areas. This therefore provides the tightest con-
straint. The original objective, for a detectable difference of
2% within each of the five detailed strata for the delivery
method would have required a PSU sample size sufficient to
give 120,000 households in each stratum (using formula (17)
in appendix A with equal subsample sizes). This 600,000
household sample size is however completely impractical.

For the income question test, only a single difference
over all strata is required. The constraints (2% difference,
95% power and 5% significance) for the income question
test would have been met by a test of 200,000 households.
With a sample size of 200,000 households over all strata, a
difference of 4.4% for the delivery method test within each
stratum could be detected. In the event resource constraints
meant that the test was only of 100,000 households.

In the example of section 2.2, the sample size assigned to
the regular sample, i.e. the PPM, was fixed in advance. The
net sample size of 5,500 persons for the experimental group,
i.e. the subsample assigned to the SM, was determined using
formula (16) in appendix A, requiring an overall significance
level of 5% and a power of 90% to detect a difference of
five percent points in the parameter satisfaction with police
performance and a difference of three in the mean number of
offences.

A design-based analysis procedure for experiments em-
bedded in sample surveys designed as CRD’s or RBD’s that
account for the sampling design and the weighting procedure
of the ongoing survey is proposed by Van den Brakel and Van
Berkel (2002), Van den Brakel and Renssen (1998, 2005)
and Van den Brakel (2008). In their approach the Horvitz-
Thompson estimator and the generalized regression estima-
tor are applied to derive approximately design unbiased esti-
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mators for the population parameters observed under the dif-
ferent treatments of the experiment. Furthermore, an approx-
imately design unbiased estimator for the covariance matrix
of the contrasts between the parameter estimates is derived.
This gives rise to a design-based Wald- or t-statistic to test
whether finite population parameter estimates observed un-
der different treatments or survey implementations are signif-
icantly different. These analysis procedures are implemented
in a software package, called X-tool, which is available as a
component of the Blaise survey processing software, devel-
oped by Statistics Netherlands (Statistics Netherlands 2002).

5 Practical restrictions of field
experiments

For many reasons, but often including resource con-
straints as in the Census Test example described above, it will
not always be possible to achieve the constraints of signifi-
cance and power simultaneously. In these cases we would
normally expect to relax one of these, and often it is the
power which is adjusted. The risk in testing a difference
on a low power is that an observed difference can be found
not to be significant, but a noticeable discontinuity can still
be found after implementation of the change in the regular
survey. This is particularly important if a cheaper approach
is tested which might result in an increased response bias.
The mismatch between the aim and the resources may, nev-
ertheless, be too great. There are several alternatives in such
situations.

(a) Increase the effective sample size by removing sam-
ple design constraints such as clustering and select an effi-
cient experimental design. As mentioned in section 4, it is
efficient to use homogeneous groups of sampling units as a
block variable since such designs increase the power of an
experiment. Fieldwork restrictions might make it attractive
to randomize clusters of sampling units over the different
treatments. For example all sampling units that belong to
the same household or that are assigned to the same inter-
viewer. This, however, will increase the variance of the treat-
ment effects and can be avoided by randomizing the ultimate
sampling units instead of clusters of sampling units over the
treatments. In the Census Test example, the treatments are
applied to whole postcodes. This reduces the effective sam-
ple size but has important operational benefits. Systems to
deliver questionnaires to whole postcodes are much simpler
than those to deliver questionnaires by hand to some ad-
dresses and by post to others.

(b) If there is insufficient field capacity, consider chang-
ing the experiment from a one-off to a parallel run which can
be managed over a longer period.

(c) If no large differences are expected, one might con-
sider using the data obtained under the alternative treatments
for the regular publication. In this case it is advisable to as-
sign relatively small fractions of the sample to the alternative
treatments and conduct the experiment over a longer period
to achieve the required sample size. If it turns out that the
differences are too large to use the data obtained under the
alternative treatments for the regular publication, then the

loss of accuracy in the regular figures remains limited. In
this situation the experiment can be terminated sooner, since
a smaller sample size is needed than was anticipated in ad-
vance.

(d) Restricting the experiment to the most important re-
search question(s). In example 2.2 the data collection mode
changed from a uni-mode to a mixed mode approach. From
this an additional research question arises, namely to quan-
tify the effects of the two data collection modes (telephone
and face-to-face interviewing) in the SM. This should con-
firm that the data obtained under different data collection
modes within the same sample are comparable in order to
preclude problems with data integrity. This requires, how-
ever, that a randomly selected part of the sampling units with
a non-secret permanent telephone connection are assigned to
the CAPI mode. As a result, the effective sample size to
quantify the effect of collecting data under the survey design
of the SM compared to the PPM or the Permanent Survey on
Living Conditions on the most important parameters would
be reduced. Therefore it was decided not to test this addi-
tional hypothesis and assume that the data obtained under
both modes can be combined in the generalized regression
estimator. The generalized regression estimator of the SM
accounts for different amounts of nonresponse bias under
both modes since the weighting model contains variables that
stratify the population into subpopulations with and without
a non-secret permanent telephone connection crossed with
region and age classifications. This estimation procedure
will, however, not correct for different amounts of response
bias between data collection modes.

(e) Assume that the discontinuities observed at the na-
tional level hold for subpopulations. In example 2.2 a re-
gional analysis comparable with the precision of the regu-
lar survey at the national level was out of the question. The
main objective of the PPM, however, is to estimate figures
about police performance at a regional level for 25 separate
police districts. Figures for these 25 police regions are based
on sample sizes that vary between 1,000 and 2,500 respon-
dents. Therefore it was decided to analyse mode effects at
the national level and assume that the observed differences
also held at regional levels. That is, it is assumed that there
is no interaction between region and treatment. This hypoth-
esis could not be rejected in this particular application. The
problem with this approach is that in these situations the ex-
periment does not have sufficient power to detect these in-
teractions. Under this assumption a reasonable precision for
the analysis of discontinuities for these regional figures was
achievable in spite of the relatively small sample size of the
experimental group. In section 7.1 we will apply this idea on
the observed differences of the parameter satisfaction with
police performance.

(f) Undertake the experiment, and analyse it to infer
which parameters have the largest effect on the estimates,
with less regard for whether this effect is significant. If the
factors detected in this way corroborate conceptions based
on experience, then it may well be valid to take the evi-
dence such as it is from the experiment and the experience
together in determining which approach to adopt. We would
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still expect this strategy to be better than deciding only from
experience what to do and needing to deal with any im-
pacts afterwards, and this is the strategy being adopted in
the UK Census test, where non-significant differences in de-
livery methods may be noted within each of the strata, but
if they have some correlation with the stratum characteristics
or with other evidence, they may give quite good evidence
for the impact of those methods.

6 Implementation of changes and
dealing with discontinuities

There are several ways to deal with observed disconti-
nuities. A conservative approach is to quantify the discon-
tinuities only for the period in which both approaches are
run concurrently (without extrapolation). This implies that
the autonomous development in the series is separated from
the effect of the redesign on the parameter estimates for this
period only. One example of this approach is for popula-
tion censuses, where the ‘survey repeats’ are typically so far
apart that a single period of overlap is the most that can be
achieved - see for example Clogg et al. (1991), where a sam-
ple of units is dual coded, and multiple imputation is used to
show the impact of a change in classification. Providing such
a one-time estimate of the change can in general be consid-
ered as a design-based and rather safe approach since the ob-
served effects are not extrapolated beyond the period where
both approaches were run concurrently. On the other hand,
this generally does not meet the users’ requirements, since
they often desire uninterrupted series for policy evaluation.

6.1 Synthetic correction methods
Other methods, which meet the requirement of maintain-

ing uninterrupted series, rely on a model to adjust the series
for the observed difference beyond the period where both ap-
proaches are run in parallel. Some models are available to
adjust the series observed under the regular design, to make
them comparable with the figures obtained under the new de-
sign, and these are discussed below. These procedures are in
this context also known as backcasting.

Let T denote the period where both approaches are run
concurrently by means of an experiment. Furthermore ŷR,T
and ŷN,T denote the design-based estimators for a parameter
observed under the regular and the new design respectively
at time T . The most straightforward approach is an additive
adjustment of the series, which is obtained with

ỹN,t = ŷR,t + (ŷN,T − ŷR,T ) ≡ ŷR,t + ∆̂T ,

for t = 1, ... ,T − 1, (1)

with ∆̂T = ŷN,T − ŷR,T . Model (1) implies that the correction
is independent of the value of ŷR,t. This might result in an
adjusted series that takes values outside the admissible range
of the parameter. To avoid (for example) negative values, a
multiplicative correction might be preferred:

ỹN,t = ŷR,t

ŷN,T

ŷR,T
, for t = 1, ... ,T − 1. (2)

This model assumes that the correction is proportional to the
value of ŷR,t, which is often a more plausible assumption than
the independence assumption required for an additive adjust-
ment.

Both adjustments (1) and (2) may be inappropriate for
certain parameters. For example fractions can only take val-
ues in the range [0,1]. Adjustment (2) can still result in ad-
justed parameter estimates that take values larger than one.
For the series of the police performance in example 2.2 the
following adjustment is proposed for fractions:

ỹN,t = ŷR,t + γ ∆̂T δ(ŷR,t), for t = 1, ... ,T − 1. (3)

Here δ(ŷR,t) is a damping factor that take values in the range
[0,1] and is defined as a function of ŷR,t , such that δ(ŷR,t) = 1
if ŷR,t = 1/2 and δ(ŷR,t) = 0 if ŷR,t = 1 or 0. From all
possible functions that satisfy these conditions, the following
quadratic form is chosen:

δ(ŷR,t) = 4ŷR,t(1 − ŷR,t). (4)

Since ŷR,t(1 − ŷR,t) is the population variance of an estimated
fraction, (4) has the attractive statistical interpretation that
δ(ŷR,t) is proportional to the population variance of ŷR,t. As
a result, the extent of the adjustment of a parameter esti-
mate with (3) depends on the precision of this parameter es-
timate. Small population variances for the parameter result
in smaller adjustments. Large population variances result in
larger adjustments, with a maximum at ŷR,t = 1/2. Finally γ
is chosen such that the equality in (3) holds exactly at time
T, i.e. ŷN,T = ŷR,T + γ ∆̂T δ(ŷR,T ). Inserting γ = 1/δ(ŷR,T ) in
(3) gives:

ỹN,t = ŷR,t + ∆̂T
ŷR,t(1 − ŷR,t)

ŷR,T (1 − ŷR,T )
, (5)

showing that the correction is proportional to the ratio of the
population variances of ŷR,t and ŷR,T .

Another property, which makes (3) appropriate for ad-
justing fractions is that the size of the adjustment is sym-
metric around ŷR,t = 0.5. For example, the adjustment for
ŷR,t = 0.1 is the same as ŷR,t = 0.9. This does not hold for
(2) since the adjustment under this model is proportional to
the value of ŷR,t. Variance approximations for series adjusted
with models (1), (2) or (5) are given in appendix B.

As mentioned in section 5, it might be necessary to use
the discontinuities observed at the national level to adjust se-
ries of parameter estimates for subpopulations. Let ŷr

R,t be
the estimate for the r-th subpopulation in period t, obtained
under the regular design. An additive adjustment for this se-
ries under the new design with the discontinuity observed at
the national level is obtained with

ỹr
N,t = ŷr

R,t + (ŷN,T − ŷR,T ) ≡ ŷr
R,t + ∆̂T ,

for t = 1, ... ,T − 1. (6)

In a similar way, a multiplicative adjustment is obtained
with

ỹr
N,t = ŷr

R,t

ŷN,T

ŷR,T
, for t = 1, ... ,T − 1. (7)
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Adjusting a series defined as fractions for subpopula-
tions can be obtained with

ỹr
N,t = ŷr

R,t + γ ∆̂T δ(ŷr
R,t) = ŷr

R,t + ∆̂T
ŷr

R,t(1 − ŷr
R,t)

ŷR,T (1 − ŷR,T )
. (8)

Variance approximations for (6), (7) and (8) are given in
appendix B.

Adjusting series according to models (1) - (8) is a syn-
thetic approach and will almost certainly result in biased es-
timates for the adjusted series, since strong model assump-
tions are used to extrapolate the observed difference outside
the period that both survey approaches run in parallel, or that
differences observed at the national level also hold for sub-
populations. This bias is not reflected in the variance ap-
proximations that are derived in appnedix B. These model
assumptions become more questionable as the time between
the adjusted parameter (t) and the moment of conducting the
experiment (T ) increases. Moreover it is very hard to vali-
date this assumption. Indeed in one recent example Soroka
et al. (2006) demonstrated that recalculating a series using
exact methods (an exact classification in their case) could
show substantial differences compared with using a linking
approach.

6.2 Consistency between adjusted series
Adjusting series according to (2), (5), (7) or (8) might

give rise to consistency problems. In the example of section
2.1, discontinuities are quantified for total travelling distance
and its breakdown over different subclasses. If such series
are adjusted according to (2), there is no guarantee that the
sum over the adjusted subclasses equals the adjusted total.
The same problem arises if fractions are adjusted according
to (5). After this adjustment, there is no guarantee that the
fractions sum to one. Consistencies between adjusted param-
eter estimates can be restored with a linear restriction estima-
tor. Let ỹN,t = (ỹN,t,1, ..., ỹN,t,q) denote a q-vector containing
the q adjusted parameter estimates for period t. These q pa-
rameters must obey a set of m linear restrictions. This prob-
lem comes down to minimizing (ỹ∗N,t − ỹN,t)

T V−1(ỹ∗N,t − ỹN,t),
subject to the constraint Rỹ∗N,t = c, with V the covariance
matrix of ỹN,t and R a m × q matrix that contains the linear
combinations of ỹ∗N,t that must satisfy the m restrictions of c.
Minimizing the Lagrangian function

(ỹ∗N,t − ỹN,t)
T V−1(ỹ∗N,t − ỹN,t) − λ(RỹN,t − c)

with respect to ỹ∗N,t and λ, gives

ỹ∗N,t = ỹN,t + VRT (RVRT )−1[c − RỹN,t], (9)

with covariance matrix

V(ỹ∗N,y) = V − VRT (RVRT )−1RV, (10)

see for example Knottnerus (2002, chapter 12). This
quadratic minimization approach is sometimes applied for

balancing estimates for national accounts (Stone, Champer-
nowne and Meade, 1942) and benchmarking monthly and
quarterly figures to annual totals (Denton, 1971). As long
as R does not contain redundant restrictions, RVRT is of full
rank, since V is positive semi definite.

In equation (9) the discrepancies [c − RỹN,t] are dis-
tributed over the values of ỹN,t such that imprecise elements
of ỹN,t receive larger adjustments than more precise elements
of ỹN,t. For example, let ỹN,t = (ỹN,t,+, ỹN,t,1, ỹN,t,2, ỹN,t,3) de-
note a vector that contains adjusted estimates for total trav-
elling distance (ỹN,t,+) and its breakdown over the distance
travelled by car (ỹN,t,1), by public transportation (ỹN,t,2), and
others forms of transportation (ỹN,t,3). It is required that
ỹN,t,+ = ỹN,t,1+ỹN,t,2+ỹN,t,3. If R = (1,−1,−1,−1) and c = (0),
then the four elements are adjusted, such that the largest ad-
justments are attributed to the most imprecise figures. If
it is required that the estimate for the total travelling dis-
tance remains unaffected, then take ỹN,t = (ỹN,t,1, ỹN,t,2, ỹN,t,3),
R = (1, 1, 1), and c = (ỹN,t,+). One could consider avoiding
this procedure by adjusting the three classes ỹN,t,1, ỹN,t,2, and
ỹN,t,3 separately and deriving the adjusted series for the total
from the sum over the adjusted classes. This is, however, not
an efficient procedure since the available information from
the experiment about the observed difference of the total is
not used. This approach also results in unnecessarily large
standard errors for the adjusted series for the total, particu-
larly if the total is estimated more precisely than the separate
classes. Furthermore, it follows directly from (10) that the
constrained estimator (9) has smaller variances than the sep-
arately adjusted series, since the restriction adds additional
information.

Constraining the separately adjusted series is particu-
larly important if they specify the distribution over a set of
categories. Let ỹN,t = (ỹN,t,1, ỹN,t,2, ỹN,t,3, ỹN,t,4, ỹN,t,5) denote a
vector containing five adjusted proportions, for example the
fraction of persons that is 1) very satisfied, 2) satisfied, 3)
not satisfied and not unsatisfied, 4) unsatisfied, and 5) very
unsatisfied with police performance. It is required that the
sum over the five categories is one, which can be achieved
with (9), by taking R = (1, 1, 1, 1, 1) and c = (1).

With the experimental approach, two estimates for a pa-
rameter are obtained, ŷR,T and ŷN,T . It might be attractive to
combine both figures, in a way that accounts for the uncer-
tainty of both parameter estimates. This can be accomplished
with linear restriction estimator (9), where

ŷT = (ŷN,T , ŷR,T )T , c = 0, R = (1,−1).

Under the assumption that the new survey process results
in less response bias, the difference between ŷR,T and ŷN,T
can be used as an estimate for the response bias in the mean
squared error of ŷR,T . This implies that the MSE for both
estimates can be approximated by

V1 = Var(ŷN,T ), V2 = Var(ŷR,T )+(ŷN,T − ŷR,T )2.
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After some algebra it follows that the two components of ŷ∗T
in (9) are both equal to:

ŷ∗T =
V2ŷN,T + V1ŷR,T

V1 + V2
.

This comes down to the regular way of pooling two esti-
mates using their accuracy measures as weights. The covari-
ance between ŷN,T and ŷR,T is neglected, which is reasonable
in many applications, since the variances are of order (1/n)
while the covariance is of order (1/N), where n denotes the
sample size and N the size of the target population.

6.3 Time series approach
As pointed out in section 3, time series models are par-

ticularly interesting to deal with discontinuities for different
reasons. They are appropriate to join series together and they
might be a second best option to quantify the effect of a re-
design in situations where there is no budget available to con-
duct a parallel run. As the survey proceeds, more data under
the new approach become available, which might be used
to obtain better estimates for the discontinuity through time
series modelling even in the case of a parallel run.

In section 6.3.1 time series models are developed for sit-
uations where there are no overlapping periods between the
regular and the new methodology. In section 6.3.2 bivariate
models are developed for the case where there is an over-
lap between the regular and new approach. The focus in
both sections is on structural time series models, although
ARIMA models might also be appropriate.

6.3.1 Time series models without overlapping periods
One possibility to account for discontinuities where the

regular and new approach are not conducted in parallel dur-
ing some period, is to model the moment that the survey is
redesigned explicitly in a time series model. This is gener-
ally referred to as intervention analysis. This approach as-
sumes that the time series model approximates the develop-
ment of the indicator reasonably well and that there is no
structural change in the trend or the seasonal component at
the moment that the new survey is implemented. If a change
in the real development of the indicator does coincide with
the implementation of the new survey, then the model will
wrongly assign this effect to the intervention variable which
is intended to describe the redesign effect.

One possibility is to use an augmented ARIMA model,
using for example, the REGARIMA tool in X12-ARIMA
(see Findley et al. 1998) or TRAMO in TRAMO-SEATS
(see Gomez and Maravall 2000). This approach includes a
dummy variable that incorporates auxiliary information on
the time and duration of the transition period from the regular
to the new design.

Another approach is to adopt a structural time series
model, where the series is decomposed into a trend, a sea-
sonal component, a component predicted with explanatory
variables, and an irregular component. Again the vector with
explanatory variables contains at least a dummy variable that

indicates the moment that the survey changed from the regu-
lar to the new design. This intervention variable measures a
change in level. Other forms of intervention variables can be
designed, for example to measure a change in slope (Durbin
and Koopman 2001, section 3.2) or to measure a gradual
change of level (Box and Tiao 1975). The standard (but
not the only) way to proceed is to write this model in state-
space form and obtain parameter estimates with the Kalman
filter (see for example Harvey 1989, or Durbin and Koopman
2001). The parameter estimate for the intervention variable
can be interpreted as the discontinuity in the series due to the
survey redesign.

Adjusting series independently form each other accord-
ing to univariate time series models will give rise to incon-
sistencies between the adjusted parameters. They can be
restored using the linear restriction approach (9) proposed
in section 6.2. Another possibility is to apply a multivari-
ate time series model and augment this model with an ad-
ditional restriction on the regression coefficients of the in-
tervention parameters. Let ŷt = (ŷt,+, ŷt,1, ..., ŷt,K) denote a
vector that contains K+1 estimates for the mean or the total
of a parameter. The first component, ŷt,+, is broken down
over K categories specified by the remaining estimates ŷt,k,
k = 1 ...K. These K+1 variables are subjected to the restric-
tion ŷt,+ =

∑K
k=1 ŷt,k for all t. For illustrative purposes, the

K+1 series are assumed to be the realisation of a stochas-
tic trend and an intervention variable only. The intervention
variable δt equals zero during the period that the series is ob-
served under the regular approach and equals one during the
period where the series is observed under the new approach.
The univariate structural time series model for the j-th com-
ponent of ŷt is defined as:

ŷt, j = Lt, j + β jδt + εt, j, (11)

with Lt, j a stochastic trend, β j the time independent re-
gression coefficients for the intervention variable which can
be interpreted as the discontinuity in the j-th series due to
the survey redesign and εt, j an irregular component with
E(εt, j) = 0 and Cov(εt, j, εt′, j) = σ2

ε j if t = t′ and zero other-
wise. The stochastic trend is modelled as

Lt, j = Lt−1, j + Rt−1, j + ηt,L j ,
Rt, j = Rt−1, j + ηt,R j ,

(12)

with Lt, j the stochastic level component and Rt, j the stochas-
tic slope component, and ηt,L j and ηt,R j irregular components.
It is assumed that E(ηt,L j) = E(ηt,R j) = 0, Cov(ηt,L j, ηt′,L j) =
σ2

L j if t = t′ and zero otherwise, Cov(ηt,R j, ηt′,R j) = σ2
R j if

t = t′ and zero otherwise, and Cov(ηt,L j, ηt′,R j) = 0 for all
t and t′. The model can be extended with a seasonal com-
ponent, explanatory variables and even an ARMA compo-
nent to remove remaining autocorrelation from the residuals
if necessary (see for example Durbin and Koopman 2001).
These K+1 univariate models can be put in one multivariate
model augmented with restriction ŷt,+ =

∑K
k=1 ŷt,k for all t. In

state space representation this model reads as:

ŷt = Ztαt + εt (13)
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αt = Tαt−1 + ηt (14)

The measurement equation (13) is the multivariate extension
of (11) and describes how the observed series depends on
a vector of unobserved state variables αt and a vector with
disturbances εt. In this case the state variables are the level
and slope components of the trend models and the regres-
sion coefficients of the intervention variables. The transition
equation (14) describes how these state variables evolve in
time. The vector ηt contains the disturbances of the assumed
stochastic processes of the state variables. Modelling the
K+1 series with separate stochastic trend models and inter-
vention variables, implies that the matrices in (13) and (14)
are given by

αt = (Lt,+,Rt,+, Lt,1,Rt,1, ..., Lt,K ,Rt,K , β+, β1, ..., βK)T ,

Zt = (IK+1 ⊗ (1, 0) | δtIK+1) ,

T = Blockdiag(Ttr,Tiv),

Ttr = IK+1 ⊗

(
1 1
0 1

)
,

Tiv =

(
0 1T

K
0K IK

)
, (15)

with 0p a vector of order p with each element equal to zero,
1p a vector of order p with each element equal to one, and
Ip the p × p identity matrix. The disturbances vectors are
defined as

εt = (εt,+, εt,1, ..., εt,K)T ,

ηt = (ηt,L+, ηt,R+, ηt,L1, ηt,R1, ..., ηt,LK , ηt,RK , 0T
K+1)T .

It is assumed that

E(εt) = 0K+1,Cov(εt) = Diag(σ2
ε+, σ

2
ε1, ..., σ

2
εK),

E(ηt) = 03(K+1),Cov(ηt) =

Diag(σ2
L+, σ

2
R+, σ

2
L1, σ

2
R1, ..., σ

2
LK , σ

2
RK , 0K+1).

Since the regression coefficients of the intervention vari-
ables are time independent, their accompanying irregular
terms in ηt as well as their variances equal zero. Due to (15)
these regression coefficients as well as their Kalman filter es-
timates obey the restriction β+ =

∑K
k=1 βk. Subsequently the

time series after the moment of the survey transition can be
adjusted for the estimated discontinuities with ỹt, j = ŷt, j − β̂ j.

As an alternative, the series before the survey transition can
be adjusted with ỹt, j = ŷt, j+ β̂ j. Since the observed series and
the estimated discontinuities obey the required consistencies,
the adjusted series also does.

A slightly different type of constraint requires that K se-
ries add up to a constant, i.e.

∑K
k=1 ŷt,k = c. For example

in the case of proportions, c = 1. In this case, the K regres-
sion coefficients of the intervention variables must obey the
restriction

∑K
k=1 βk = 0. This requires a K dimensional multi-

variate structural time series model defined analogous to (13)
and (14), where (15) is replaced by

Tiv =

(
IK−1 0K−1
−1T

K−1 0

)
.

6.3.2 Time series models for overlapping periods
If the period where the regular and new approach are

conducted in parallel is sufficiently long, it might be efficient
to construct a bivariate structural time series model for the
series ŷt = (ŷR,t, ŷN,t)T . Both components of the vector are
observed together only during the period that the regular and
the new survey approach are conducted in parallel. During
the period that the series is only observed under the regular
approach, the values for ŷN,t are missing observations. Dur-
ing the period that the series is only observed under the new
survey design, the values for ŷR,t are missing observations.
Subsequently, one common trend component, seasonal com-
ponent and regression model for explanatory variables is as-
sumed for both series. The differences between the obser-
vations under the regular and the new approach are modelled
with an intervention variable. For illustrative purposes only a
stochastic trend and an intervention is assumed. This model
can be put in state space representation with (13) and (14),
taking

αt = (Lt,Rt, β)T ,Z =
(

1 0 0
1 0 1

)
,

T =

 1 1 0
0 1 0
0 0 1

 ,
Cov(εt) = diag(σ2

εr, σ
2
εn),Cov(ηt) = diag(σ2

L, σ
2
R, 0).

In the state vector, Lt is the level component and Rt the slope
component of the stochastic trend model defined by (11) and
(12) common to both series being modelled. This approach
conceives the reconstruction of the time series as a missing
observation problem. The Kalman filter and the fixed interval
smoother can be applied to obtain forecasts for the missing
values of the series under the regular approach and backcasts
for the missing values of the series under the new approach
(Durbin and Koopman, 2001 section 2.8 and 4.8). Numerical
problems, however, might be expected if there are only a few
paired observations.
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7 Numerical example: the Dutch
Security Monitor

In example 2.2 it was explained that the Dutch Security
Monitor (SM) replaced two partially overlapping surveys,
namely the Population Police Monitor (PPM) and the Jus-
tice and Security Module (JSM) of the Permanent Survey on
Living Conditions. This redesign resulted in discontinuities
in many parameters from the PPM and the JSM, and these
are the results of several factors that changed simultaneously.
The most important ones are:
• Increase in the response rate of the SM compared to

the JSM and the PPM, which might result in different
amounts of non-response bias. The response to the SM
is 70%, while the response rates of the JSM varied be-
tween 55% and 60% and the PPM between 50% and
64%.
• Differences between sample frames. The PPM is based

on a sample of persons aged 15 years and older with a
non-secret permanent telephone connection. The SM
and the JSM are based on samples of all persons aged
15 years and older. A substantial part of the disconti-
nuities in the parameters that originate from the PPM
can be explained since the PPM does not observe the
subpopulation that does not have a non-secret perma-
nent telephone number. Additional analyses showed
that this results in an under-representation of young
people and ethnic minorities in the PPM. This group
also reports a higher rate of crime victimization and a
more negative opinion about police performance.
• Differences in data collection modes. The PPM is a

telephone based survey. In the JSM, data are collected
in face-to-face interviews conducted with the respon-
dents at home. In the SM a mixed mode design is
used. Interviews are conducted by telephone if per-
sons have a non-secret permanent telephone connec-
tion. For the remaining persons data are collected in
face-to-face interviews conducted at the respondents’
homes. Many references in the literature emphasize
that different collection modes have systematic effects
on the responses, see for example De Leeuw (2005),
and Dillman and Christian (2005).
• Differences between data collection periods. Data col-

lection for the PPM and the SM is conducted in the
first quarter of the year, while the JSM is conducted
continuously throughout the year. Real developments
result in different means if the data refer to a complete
calendar year instead of the first quarter of it. There
are also small seasonal effects in the quarterly figures
of the property and violent offences of the JSM. This
explains a small part of the discontinuities in the pa-
rameters that originate from the JSM.
• Differences between questionnaire designs. There are

differences between the routing, order and formulation
of the questions and the answer categories in the ques-
tionnaires of the PPM, SM and JSM. These might have
systematic effects on the outcomes of these surveys.
One of the most important differences is that the ques-

tionnaires of the SM and the JSM use a bounded re-
call procedure for retrospective questions about crime
victimization, see Sudman, Finn and Lannom (1984).
This approach, which is intended to minimize the num-
ber of measurement errors in remembering events due
to telescoping, is not used in the questionnaire of the
PPM and might result in an overestimation of the num-
ber of events in the PPM.
• Differences between the contexts of the surveys. The

PPM and the SM are introduced as surveys that are fo-
cussed on crime victimization and safety topics. The
JSM is a module of a more general survey on living
conditions. This might have a systematic selection ef-
fect on the respondents who decide to participate in
the survey. Furthermore, in the PPM and the SM the
attention of the respondent is completely focussed on
one topic, contrary to the JSM. This might influence
the effort made by the respondents to answer the ques-
tions as well as possible.

It is difficult to quantify the separate effects of these fac-
tors, since they are confounded in the chosen design (see sec-
tion 2.2). In the following we discuss the discontinuities and
the possible ways of dealing with them for one parameter
of the PPM, satisfaction with police performance (in section
7.1), and four parameters of the JSM, covering a total and
breakdown of offences against Dutch inhabitants (in section
7.2).

7.1 Population Police Monitor: Satisfaction with
police performance

One of the most important parameters from the PPM is
the fraction of the population which is satisfied with police
performance during their last contact with the police. The ex-
periment in 2005 demonstrated that the new design resulted
in a difference in this parameter of about 9.4%. This was a
reason for the Ministry of Interior and Kingdom Relations to
continue the PPM in 2006, since they use the PPM outputs
to evaluate police performance. As a result, the SM and the
PPM were conducted in parallel for two years, which gives
an excellent opportunity to test hypotheses about disconti-
nuities and investigate the performance of the proposed ad-
justments discussed in section 6.1. In 2005 the SM was con-
ducted on a small scale; the number of respondents of the SM
and the PPM were 5,200 and 52,500 respectively. In 2006
both surveys were conducted on a full scale; the net sample
sizes of the SM and PPM were 22000 and 25000 persons
respectively. The analysis results concerning the disconti-
nuities in satisfaction with police performance between both
surveys are summarized in Table 1.

Since satisfaction with police performance is defined as
a fraction, formula (5) is proposed to adjust the series based
on the PPM from 1993 to 2005 for the observed difference
with the SM. Based on the difference observed in 2005 and
the estimate obtained from the PPM in 2006, a prediction for
the SM in 2006 can be obtained using adjustment (5). This
prediction can be confronted with the real estimate obtained
from the SM in 2006. In a similar way, the difference ob-
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Table 1: Analysis of discontinuities in “Satisfaction with police performance” (standard errors in brackets)

Year SM PPM Difference z p-value

2005 52.38 (1.42) 61.75 (0.62) 9.37 (1.55) 6.05 0.000
2006 55.14 (0.78) 63.40 (0.65) 8.26 (1.02) 8.14 0.000

served in 2006 and the estimate of the PPM in 2005 can be
used to make a prediction for the SM in 2005. This predic-
tion can be confronted with the real estimate obtained from
the SM in 2005. The results are summarized in Table 2.

The estimate for the discontinuity in 2006 is about one
percentage point smaller than the estimate in 2005 (Table 1).
Since the sample size for the SM in 2006 is four times larger,
the most accurate estimate for the difference is obtained from
the 2006 data. The differences between the predicted and es-
timated values for satisfaction with police performance via
the SM are not significantly different form zero (Table 2).

The original series based on the PPM with a 95% confi-
dence interval, and a prediction of the series under the SM,
based on formula (5) with a 95% confidence interval based
on formula (18) are plotted in Figure 1. The figure clearly
illustrates that the adjusted series draws heavily on the as-
sumption that the observed difference in 2006 is time invari-
ant. Since the proportions observed under the PPM take val-
ues in a relatively small interval [62% - 68%], the damping
factor (4) does not result in large differences in the adjust-
ments between the years in this application.

Due to the relatively small sample size of the SM in
2005, no accurate direct estimates for parameters and dis-
continuities are available for the 25 police regions. There-
fore it was initially planned to assume that the national level
estimate for the discontinuity also held at the regional lev-
els. Under this assumption, predictions for the SM at a re-
gional level are obtained with (8). This approach assumes
no interaction between region and treatment effects. With
the data obtained in 2005 the hypothesis of no interaction
could not be rejected in a logistic regression analysis. Based
on the difference observed at the national level in 2005 and
estimates obtained in 2006 with the PPM for the 25 police
regions, predictions for these regions under the SM are ob-
tained with (8). These predictions are confronted with the
regional estimates observed with the SM in 2006 in Table
3. The difference between the predicted and the estimated
value under the SM is significantly different from zero (z >
1.96) in only one region. This difference is not significant,
if a multiple comparison procedure, like Bonferroni or the
more powerful sequentially rejective multiple test proposed
by Holm (1979), is applied.

It is also possible to quantify discontinuities with the
sample of the SM and the PPM in 2006 where both surveys
are full scale. In this year the differences in the separate re-
gions can be estimated and model (5) can be applied to pre-
dict the outcome for the SM in 2005 within each separate
region. The standard errors for these predictions take values
between 5.3 and 5.9 with a mean of 5.5. If the difference
between the SM and the PPM observed at the national level

in 2006 is used to predict the outcomes for the SM at the
regional level in 2005 with (8), then the standard errors of
these predictions take values close to 3.2. This illustrates
that we cannot expect more accurate predictions if both sur-
veys are replicated on a full scale and the estimated differ-
ences within the regions are used for prediction in this ap-
plication. With the assumption that the difference observed
at the national level holds in each separate region, model (8)
borrows strength from other regions to adjust the estimates
at a regional level. This reduces the variance of the esti-
mated difference and therefore of the adjusted series for each
region considerably. If, on the other hand, this assumption
does not hold it will introduce additional bias in the adjusted
regional series. In this application there is, however, no evi-
dence against the assumption that the difference observed at
the national level holds in each separate region. First, the
hypothesis of no interaction between regions and the treat-
ment effect could not be rejected. Second, there is only one
region in Table 3 where the difference between the SM pre-
diction and the direct estimate is outside the 95% confidence
interval.

7.2 Justice and Security Module of the Permanent
Survey on Living Conditions: crime victimisation

Important crime victimization parameters that originate
from the JSM are violence, property and vandalism offences
against Dutch inhabitants. In this section we discuss the ef-
fect of the redesign on the estimated mean number of these
three types of offences against Dutch inhabitants, and their
total, as an example. Since the JSM and the SM were not
conducted in parallel, no direct comparison of estimates ob-
tained under both surveys is possible. In Figure 2 the time
series for the mean number of violence, property, vandalism
and the total number of offences observed under the JSM and
the SM are plotted. This figure suggests that there is a clear
discontinuity at the moment that the JSM is replaced by the
SM in 2005 for the property and vandalism offences, and
only a small discontinuity for the violence offences. Since
the redesign appears to have increased the estimates of the
three reported offences, there is also a clear discontinuity in
the total number of offences.

One way to analyse the discontinuities in these crime
victimization series is to model these series with the mul-
tivariate structural time series model (13) and (14). For each
series, a separate smooth trend model is assumed, which is
given by (12) where σ2

L j = 0. Since the violence, property
and vandalism offences add up to the total offences, the re-
gression coefficients of the corresponding intervention vari-
ables must obey the same restriction and therefore evolve in
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Table 2: Predicted Satisfaction with police performance (standard errors in brackets)

Year SM prediction SM estimate Difference z p-value

2005 53.40 (1.27) 52.38 (1.42) 1.02 (1.91) 0.54 0.589
2006 54.19 (1.71) 55.14 (0.78) -0.95 (1.88) -0.51 0.610
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Figure 1. Time series for Satisfaction with police performance, original and adjusted for the discontinuity between the PPM and the SM
observed in 2006

Table 3: Estimated and predicted values for Satisfaction with police performance for different police regions (standard errors in brackets)

PPM estimate SM estimate SM predicted Difference of SM
Region 2006 2006 2006 estimate from prediction z

Amsterdam-Amstelland 62.4 (2.80) 52.5 (3.57) 53.1 (3.45) -0.6 (4.96) -0.12
Rotterdam-Rijnmond 60.4 (2.82) 46.9 (3.46) 50.9 (3.45) -4.0 (4.88) -0.82
Haaglanden 62.8 (2.79) 55.7 (3.32) 53.5 (3.45) 2.2 (4.78) 0.45
Utrecht 61.1 (2.81) 53.6 (3.40) 51.7 (3.45) 1.9 (4.84) 0.40
Midden- en West-Brabant 58.0 (2.85) 58.5 (3.48) 48.3 (3.44) 10.2 (4.89) 2.08
Hollands Midden 62.1 (2.80) 58.5 (3.34) 52.8 (3.45) 5.7 (4.80) 1.18
Kennemerland 63.6 (2.78) 55.9 (3.57) 54.4 (3.44) 1.5 (4.96) 0.30
Brabant-Zuid-Oost 62.8 (2.79) 53.4 (3.50) 53.5 (3.45) -0.1 (4.91) -0.03
Groningen 68.3 (2.69) 58.1 (3.71) 59.7 (3.40) -1.6 (5.03) -0.32
Limburg-Zuid 64.9 (2.76) 58.2 (3.67) 55.9 (3.44) 2.3 (5.03) 0.46
Gelderland-Midden 63.3 (2.78) 53.5 (3.75) 54.1 (3.44) -0.6 (5.09) -0.11
Zuid-Holland-Zuid 64.5 (2.76) 52.8 (3.39) 55.4 (3.44) -2.6 (4.83) -0.54
Twente 68.9 (2.67) 58.9 (3.64) 60.4 (3.39) -1.5 (4.97) -0.30
Noord- en Oost-Gelderland 64.0 (2.77) 57.4 (3.71) 54.9 (3.44) 2.5 (5.06) 0.50
Noord-Holland-Noord 64.2 (2.77) 54.4 (3.36) 55.1 (3.44) -0.7 (4.81) -0.14
Brabant-Noord 59.2 (2.84) 53.7 (3.79) 49.6 (3.44) 4.1 (5.12) 0.80
Gelderland-Zuid 65.7 (2.74) 54.6 (3.63) 56.8 (3.43) -2.2 (4.99) -0.43
Fryslân 65.3 (2.75) 54.7 (3.92) 56.3 (3.43) -1.6 (5.21) -0.31
IJsselland 61.4 (2.81) 54.5 (3.73) 52.0 (3.45) 2.5 (5.08) 0.49
Zaanstreek-Waterland 66.4 (2.73) 55.0 (3.85) 57.5 (3.42) -2.5 (5.15) -0.49
Gooi en Vechtstreek 64.3 (2.77) 61.5 (3.22) 55.2 (3.44) 6.3 (4.71) 1.34
Limburg-Noord 68.1 (2.69) 59.7 (3.58) 59.5 (3.40) 0.2 (4.94) 0.04
Flevoland 69.8 (2.65) 55.3 (3.15) 61.4 (3.37) -6.1 (4.62) -1.33
Drenthe 67.8 (2.70) 64.4 (3.73) 59.1 (3.41) 5.3 (5.05) 1.04
Zeeland 68.1 (2.69) 55.6 (3.74) 59.5 (3.40) -3.9 (5.06) -0.77
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Figure 2. Mean number of offences against Dutch inhabitants (hundreds) during the 12 months prior to the interview, observed with the
JSM (1997-2004) and the SM (2005-2007)

time according to (15). The annual net sample size of the
JSM was about 10,000 respondents, while the number of re-
spondents in the SM equals 5,200 in 2005, 22,000 in 2006,
and 19,000 in 2007. To account for these large fluctuations in
the annual sample size, it is assumed that the variance of the
measurement equations is proportional to the sample size,
i.e. Var(εt, j) = σ2

ε, j

/
nt where nt denotes the number of re-

spondents observed in the survey at time t.
With the Kalman filter, smoothed estimates for the trend

parameters and the regression coefficients β j are obtained us-
ing the fixed-interval smoother, see Harvey (1989) or Durbin
and Koopman (2001) for details. The analysis was conducted
with software developed in Ox in combination with the sub-
routines of SsfPack (beta 3.0) (Doornik 1998 and Koopman
et al. 1999).

In Table 4 the results of six different analyses are sum-
marised. Three of them are based on the data available up
to and including 2006. The other three analyses are based
on the complete series, including 2007. Comparison of the
results obtained under equivalent models illustrates the size
of the revision if an additional year becomes available to es-
timate the discontinuity induced by the redesign. The sizes
of the revisions are substantial. The advantage is that the
discontinuities are quantified more accurately if additional
information becomes available. A concomitant drawback is
that the estimated discontinuities three years after redesign-
ing the survey are still subject to major revisions.

The analysis results in Table 4 also illustrate the effect
of restricting the regression coefficients of the intervention

variable of violence, property, and vandalism offences to add
up to the regression coefficient of the intervention variable
for the total offences. If the regression coefficients are not
subject to this restriction, then (15) is replaced by the iden-
tity matrix. Under the unrestricted analysis, the consistency
between the four series is seriously disturbed. It also fol-
lows that the restriction improves the precision of the regres-
sion estimates, particularly the estimate for the total offences.
This can be explained since the restriction adds additional
information to the model.

The estimated regression coefficients for property,
vandalism and total offences are significantly different
from zero. In the series of violence offences, however,
no significant discontinuity can be established. To select
the most parsimonious model, the intervention variable for
violence offences is dropped, while the intervention variables
for the property, vandalism and total offences still obey the
consistency restriction. The estimated discontinuities
obtained under this model, using the data up to 2007, i.e.
the estimates in the final two columns of Table 4, are used
to adjust the series. To eliminate the estimated discontinuity
from the series, the estimates obtained with the SM in 2005
through 2007 can be corrected by ỹt, j = ŷt, j − β̂ j to make
them comparable with the outcomes under the design of
the JSM. These corrected series are given in Figure 3. No
adjustment is applied to the series of violence offences. As
an alternative, the estimates obtained with the JSM can be
corrected by ỹt, j = ŷt, j + β̂ j to make them comparable with
the outcomes under the SM.
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Table 4: Smoothed Kalman filter estimate of the regression coefficient of the intervention variable (standard errors in brackets)

estimate of intervention variable coefficient

2006 - four series 2007 - four series 2006 - three series 2007 - three series

Variable unrestricted restricted unrestricted restricted restricted restricted

Violence 0.44 (0.67) 0.52 (0.69) 0.14 (0.56) -0.15 (0.51) - - - -
Property 2.21 (0.72) 2.43 (0.74) 3.17 (0.77) 3.49 (0.73) 2.52 (0.72) 3.40 (0.83)
Vandalism 1.22 (0.76) 1.69 (0.75) 1.33 (0.78) 1.51 (0.66) 1.54 (0.74) 1.26 (0.73)

Total 3.17 (1.32) 4.64 (0.97) 5.14 (1.57) 4.85 (0.94) 4.06 (0.98) 4.66 (0.90)

There is also a case to keep the intervention for the vi-
olence offences in the model. The best estimate for the dis-
continuity in this series may not be zero and if there is a real
small discontinuity, although not significant, including it in
the model may give a more satisfactory adjustment for the
group of related series.

Most parameters about crime victimization that originate
from the JSM showed an increase in the mean number of
offences due to the transition to the SM. It appears that dif-
ferences in the context of the survey and the questionnaire of
the JSM and the SM are important explanations, even though
these factors are confounded with other changes in the sur-
vey redesign. The questions about crime victimization in the
JSM follow directly after a block of general questions about
living conditions. In the questionnaire of the SM these ques-
tions are preceded by questions about feelings of insecurity,
police performance and neighbourhood problems. Gibson
et al. (1978) and Kalton and Schuman (1982) describe an
experiment conducted in the National Crime Survey (USA)
where a comparable modification in the questionnaires is
tested. In this experiment the standard questionnaire about
crime victimization is compared with an alternative question-
naire where questions about safety of the neighbourhood and
police performance precede the questions about crime vic-
timization. In this experiment a similar increase in the mean
number of reported offences is observed due to the addition
of a block of related questions. Adding a block of questions
that are related to the retrospective crime victimization ques-
tions clearly affects the memory of respondents. It is unclear
whether this results in fewer omissions or in an increase of
telescoping errors.

8 General considerations and
guidelines

Some of the range of issues which need to be consid-
ered when making a change to a long-running survey are dis-
cussed and illustrated with examples in this paper. In this
section we discuss the practices which need to be followed
to help ensure a smooth transition, and set out some general
guidelines.

Quantifying the effect of a survey redesign is essential
to avoid the confounding of real developments with the sys-
tematic effect induced by the redesign on the series of of-
ficial statistics. Depending on the type of change and its

place in the survey process, these differences can be quan-
tified through an experiment where data under the new ap-
proach are collected from a separate probability sample, or
by applying the new methods to the existing sample – or
a subsample from it – to complete it with additional data,
and then using standard methods from sampling theory like
domain estimation or two-phase sampling. An intervention
analysis through time series modelling can be considered as a
second best alternative where there are insufficient resources
to conduct an experiment.

Clear communication with the main users during the en-
tire process of redesigning a survey is essential for the accep-
tance of a redesign. Users should be informed about plans
for redesigning the survey and the possible consequences of
discontinuities in the series. This should receive sufficient
attention, since users are generally not (survey) statisticians
and are mostly unaware of the sensitivity of survey estimates
to changes in the design parameters of the underlying survey
process. They should be involved in the experimental design
stage where it is decided which differences should be ob-
served in the experiment and which effects should be quanti-
fied. It is important that they have realistic expectations about
the conclusions that can be drawn from the experiment. For
example, the consequence of running the regular and new ap-
proach in parallel according to a two-treatment experiment is
that the effects of all changes are confounded and that only
the total effect of these changes is quantified. Users often
expect a precision that approaches the accuracy of the fig-
ures at the national level of the regular survey. This requires
a subsample size for the experimental group which equals
the sample size of the ongoing survey. Power calculations
can be helpful to illustrate the trade-off between costs and
precision. In some cases users might finance an increased
sample if they require more detailed or precise information
about possible discontinuities. In the National Travel Survey
example of section 2.1, the Ministry of Transport and Pub-
lic Works partially financed the additional costs to run both
surveys in parallel to quantify the effects of the redesign.

A synthetic estimation procedure is proposed to adjust
series for observed discontinuities. Accuracy measures for
these adjusted series are based on variance approximations
but do not account for the bias, which arises from model mis-
specification. A time series approach is probably the most
natural way to deal with discontinuities. A time series ap-
proach utilizes information across many samples of repeated
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Figure 3. Mean number of offences against Dutch inhabitants (hundreds) during the 12 months prior to the interview, observed with the
JSM (1997-2004) and the SM corrected for the estimated discontinuity (2005-2007)

surveys and is therefore appropriate to join series together.
If available, auxiliary time series can be used to improve the
model estimates for the discontinuity. Estimates are refined
as more post-data become available, so a revision policy may
be required.

Adjusting series according to synthetic estimation proce-
dures or intervention analysis based on time series modelling
is an appropriate tool for users to obtain adjusted estimates
for the target parameters, for policy evaluation for example.
Generally, national statistical institutes are rather reserved in
the application of model-based estimation procedures for the
production of official statistics. There is, however, a case for
having an official series (with appropriate quality descrip-
tions) rather than allowing each user to generate a slightly
different version of the series for their own use.

From the foregoing discussion we can set out some gen-
eral guidelines for making the quality of transitions in con-
tinuing surveys as high as possible, corresponding with the
steps described in detail in the paper.
• Set up an appropriate mechanism for producing con-

tinuous series
Once a potential for discontinuities has been identified,
a strategy for producing a continuous series is needed.
The best approach will depend on the particular situa-
tion of the survey change, but a variety of possibilities
are described within this paper.
• Document the important parts of the development

They can be used later when more information is avail-
able to make better revisions, and so that they can add

to the core of knowledge of such developments.
• Test (or pilot) new approaches to determine their im-

pact
A formal test using an appropriate experimental
method will give a statistical framework for the in-
terpretation of the results which is valuable when dis-
cussing with users of the statistics. Otherwise pilot
information can be used to make a judgement call, but
this means that the quality across the change will not
be quantifiable.
• Make inferences of the effect

The outcome of the test must be analysed to infer the
size of the discontinuity. This is relatively straightfor-
ward, if an experimental approach has been adopted
or if the sample of the regular survey, completed with
additional data, is used to calculate the outcomes un-
der the new method. In the situation where there
is no overlap between the regular and the new ap-
proach, or where an experimental approach has not
been adopted, it may be possible to make appropriate
inferences through time series methods
• Implement the change

Make the survey changes, estimate the differences,
preferably with the help of a parallel run or by recalcu-
lation, and implement the agreed approach for a con-
tinuous series to produce the required outputs
• Publish separate documentation of the redesign includ-

ing:
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– reasons for redesigning the survey including a
detailed description of the regular and new de-
sign;

– revised results;
– estimates of discontinuities (possibly itemised if

due to several changes, although the experiment
may not be sufficient to provide this informa-
tion);

– a description of the methodology employed to
investigate and quantify discontinuities (exper-
imental design, minimum sample size require-
ments, sampling techniques used to estimate the
target parameters under the new approach from
the sample available for the regular survey), as
well as the methodology used to correct for dis-
continuities or advice for users on how to deal
with them;

– descriptive interpretations and explanations of
which factors contribute to the observed differ-
ences.
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Appendix A: Sample size
determination for two-treatment

experiments

Let u denote the population mean of the target param-
eter of interest. Testing hypotheses about response bias in
the estimates of a finite population parameter due to differ-
ent survey approaches, implies the existence of measure-
ment errors. Therefore a measurement error model is re-
quired to link systematic differences between finite popula-
tion parameters observed under different survey approaches,
see Van den Brakel and Renssen (2005). It is assumed that
the data obtained under the regular approach are a realisation
of the model yiR = ui + βR + eiR ≡ uiR + eiR and that the
data obtained under the new approach can be modelled as
yiN = ui + βN + eiN ≡ uiN + eiN . Here yiR and yiN denote the
observations obtained from sampling unit i assigned to the
regular or the new approach respectively, ui the true intrinsic
value of the target parameter of sampling unit i, βR and βN
the bias (or treatment effect) induced by the regular and new
approach respectively, and eiR and eiN measurement errors
with expectations zero. Let uR = u + βR and uN = u + βN
denote the population parameters observed under a complete
enumeration of the finite population under the regular and the
new survey approach and σR and σN the corresponding stan-
dard deviations. It is required that a pre-specified difference
of ∆ = uR− uN results in a rejection of the null-hypothesis of
no treatment effect, i.e. H0 : uR = uN , against an unspecified
alternative that H1 : uR , uN . Furthermore nR and nN denote

the subsample sizes assigned to the regular and new surveys
respectively. Finally α denotes the required significance level
of the test and (1 − β) the power. This implies that the prob-
ability that the null hypothesis is rejected if uR = uN may
not exceed α, and the probability that the null hypothesis is
accepted given that uR , uN may not exceed β. The sample
sizes of the field experiments that are considered in this paper
are generally sufficiently large to use a standard normal dis-
tribution to approximate the t-statistic to test the hypothesis
of no treatment effects. In most practical situations there is
no information about σN . Therefore it is assumed in general
terms that σN is proportional to σR, i.e. σN = kσR. In most
cases, k will typically be equal to one. If the new method,
for example, is expected to reduce variance, then k might be
taken smaller than one.

First consider an experiment where the subsample size of
the regular survey is fixed in advance, since this subsample
is used for the regular survey publication and must meet pre-
specified precision requirements. In this case the minimum
sample size for the subsample assigned to the experimental
group equals

nN =
k2 nR σ̂

2
R(Z(1−α/2) + Z(1−β))2

∆2nR − σ̂
2
R(Z(1−α/2) + Z(1−β))2

k = σN/σR

, (16)

where Zγ denotes the γ -th percentile point of the standard
normal distribution and σ̂R is an estimator for the standard
deviation under the regular survey.

Second consider an experiment where the sample size of
the regular and the experimental groups are unknown, but
there is a decision about the ratio between the subsample
sizes of the regular and the experimental group, i.e. it is
known that nN/nR = f . In this case, the minimum sample
size can be determined as

nR =
(k2 + f )

f
σ̂2

R(Z(1−α/2) + Z(1−β))2

∆2

nN = f nR

. (17)

In the case of a specified alternative hypothesis, i.e.
uR > uN or uR < uN , Z(1−α/2) is replaced by Z(1−α) in (16)
and (17).

Appendix B: Variance
approximation of adjusted series

In this appendix variance approximations are given for
series that are adjusted according to model (1), (2) and (5)
and their corresponding models for subpopulation parame-
ters (6), (7) and (8) described in section 6.1. The variance ap-
proximations are predominantly design-based, which implies
that they are derived under the concept of repeatedly drawing
samples with the finite population values held fixed. It is as-
sumed that the survey estimates are based on repeated cross-
sectional surveys. As a result the sample estimates for differ-
ent time periods are uncorrelated, since they are based on in-
dependent samples. The approximations in this appendix do
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not apply to panel designs, because they require appropriate
correlations between sample estimates for different periods.

The variance approximations assume that the difference
between the regular and the new approach is estimated from
two separated probability samples, through an embedded ex-
periment or parallel run. These subsample estimates are cor-
related, since they are based on samples drawn without re-
placement from a finite population. In general, these corre-
lations are negligible since they are of order 1/N, while the
variances are of order 1/n, where N and n denote the pop-
ulation and sample size respectively. Van den Brakel and
Renssen (2005) and Van den Brakel (2008) describe condi-
tions when the covariance terms in the variance of contrasts
between sample estimates in embedded experiments vanish.
If, however, the same sample is used to obtain parameter esti-
mates under both the regular and the new approach (see sec-
tion 3), then the correlation between these estimates cannot
be neglected.

Since model (1) is linear and sample estimates for differ-
ent time periods are based on separate independent samples,
the variance is given by:

Vâr(ỹN,t) = Vâr(ŷR,t) + Vâr(∆̂T ),

where Vâr(ŷR,t) is the design variance of ŷR,t. Assuming that
ŷN,T and ŷR,T are uncorrelated, it follows that Vâr(∆̂T ) =
Vâr(ŷR,T ) + Vâr(ŷN,T ), where Vâr(ŷN,T ) and Vâr(ŷR,T ) are
the design variances of ŷN,T and ŷR,T respectively. It is also
possible to use formula (29) of Van den Brakel and Renssen
(2005) to estimate the variance of the contrast between ŷN,T
and ŷR,T . In an equivalent way, the variance for (6) is given
by

Vâr(ỹr
N,t) = Vâr(ŷr

R,t) + Vâr(∆̂T ).

Models (2), (5), (7) and (8) are non-linear. Therefore,
their variances are approximated by means of a Taylor lin-
earization. To this end, (2) is expressed as a function of
(ŷR,t, ŷR,T , ŷN,T ) and linearised with a Taylor expansion about
their real values in the finite population (yR,t, yR,T , yN,T ), trun-
cated at the first order term. If sample estimates for different
time periods are based on independent samples and if it is as-
sumed that ŷN,T and ŷR,T are uncorrelated, then the variance
for (2) can be approximated as:

Vâr(ỹN,t) ≈
(

ŷN,T

ŷR,T

)2

Vâr(ŷR,t) +
(

ŷR,t

ŷR,T

)2

Vâr(ŷN,T )

+

(
ŷN,T

ŷR,T

ŷR,t

ŷR,T

)2

Vâr(ŷR,T ).

In an equivalent way, an approximation to the variance

for (7) is given by

Vâr(ỹr
N,t) ≈

(
ŷN,T

ŷR,T

)2

Vâr(ŷr
R,t) +

( ŷr
R,t

ŷR,T

)2

Vâr(ŷN,T )

+

(
ŷN,T

ŷR,T

ŷr
R,t

ŷR,T

)2

Vâr(ŷR,T ).

If (5) is expressed as a function of (ŷR,t, ŷR,T , ŷN,T ) and
linearised around (yR,t, yR,T , yN,T ) by means of a first order
Taylor linearization, then it can be shown that the variance of
(5) can be approximated by

Vâr(ỹN,t) ≈ ĉ2
1 Vâr(ŷR,t) + ĉ2

2Vâr(ŷN,T )

+ ĉ2
3Vâr(ŷR,T ), (18)

where

ĉ1 = 1 +
∆̂T (1 − 2ŷR,T )
ŷR,T (1 − ŷR,T )

,

ĉ2 =
ŷR,t(1 − ŷR,t)

ŷR,T (1 − ŷR,T )
,

ĉ3 = −ŷR,t(1−ŷR,t)

 ŷN,T (1 − 2ŷR,T )
ŷ2

R,T (1 − ŷR,T )2
+

1
(1 − ŷR,T )2

 .
Again it is assumed that ŷN,T and ŷR,T are uncorrelated and
that sample estimates for different time periods are based on
independent samples. An approximation for the variance of
(8) is obtained in an equivalent way with

Vâr(ỹr
N,t) ≈ (ĉr

1)2 Vâr(ŷr
R,t) + (ĉr

2)2Vâr(ŷN,T )

+ (ĉr
3)2Vâr(ŷR,T ),

where

ĉr
1 = 1 +

∆̂T (1 − 2ŷr
R,t)

ŷR,T (1 − ŷR,T )
,

ĉr
2 =

ŷr
R,t(1 − ŷr

R,t)

ŷR,T (1 − ŷR,T )
,

ĉr
3 = −ŷr

R,t(1−ŷr
R,t)

 ŷN,T (1 − 2ŷR,T )
ŷ2

R,T (1 − ŷR,T )2
+

1
(1 − ŷR,T )2

 .
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