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Surveys are a critical resource for social, economic, and health research. The ability to effi-
ciently collect these data and develop accurate post-survey adjustments depends upon reliable
data about effort required to recruit sampled units. Level-of-effort paradata are data generated
by interviewers during the process of collecting data in surveys. These data are often used
as predictors in nonresponse adjustment models or to guide data collection efforts. However,
recent research has found that these data may include measurement errors, which would lead
to inaccurate decisions in the field or reduced effectiveness for adjustment purposes (Biemer,
Chen, & Wang, 2013; West, 2013). In order to assess whether errors occur in level-of-effort
paradata for in-person surveys, we introduce a new source of data — Global Positioning System
(GPS) data generated by smartphones carried by interviewers. We examine the quality of the
GPS data. We also link the GPS data with the interviewer-reported call records in order to
identify potential errors in the call records. Specifically, we examine the question of whether
there may be missing call records. Given the lack of a gold standard, we perform a sensitivity

analysis under various assumptions to see how these would change our conclusions.
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1 Introduction

Surveys are a critical resource for social, economic, and
health-related studies of human populations. However, sur-
veys are facing a crisis of rising costs and falling response
rates (Brick & Williams, 2013; Presser & McCulloch, 2011).
These difficulties threaten both the validity and the viabil-
ity of survey data. Survey methodologists have been search-
ing for methods to sustain and improve the quality of survey
data. Central to these efforts are the unique survey form of
‘big data’ known as paradata. Paradata are data generated
during the process of implementing a survey (Couper, 1998;
Couper & Lyberg, 2005). Although the measurement process
was the initial focus for paradata (Couper, 1998; Olson &
Parkhurst, 2013; Yan & Olson, 2013), increasingly, interest
has been in paradata related to the recruitment and partici-
pation process (Couper & Wagner, 2011; Eckman, Sinibaldi,
& Mantmann-Hertz, 2013; Kreuter, 2013; Wagner, 2013).
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These data about the recruitment and participation process
have been characterized as “level-of-effort paradata” (Biemer
et al., 2013). Level-of-effort paradata are generated by inter-
viewers in the form of “call records,” records of each attempt
made to contact and interview households. Each record typ-
ically includes the time, date, mode of call (e. g., telephone
or in-person), and an outcome or result code. For in-person
surveys, these data provide limited information about what
interviewers are actually doing in the field, including travel
patterns.

Level-of effort paradata are important for evaluating and
improving the quality of survey data (for a summary see
Kreuter, 2013). Many studies use paradata to improve survey
design, such as in the implementation of responsive designs
(Groves & Heeringa, 2006) or to identify cases that may re-
quire a different recruitment protocol (Peytchev, Baxter, &
Carley-Baxter, 2009). Further, these data have also been
made available to improve weighting and imputation proce-
dures for users of several major publicly-available datasets,
including the National Health Interview Survey, the Ameri-
can National Election Studies, and the European Social Sur-
vey. Other surveys have included summary measures of these
level-of-effort paradata on public use files, including the to-
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tal number of call attempts to a sampled case and whether
the respondent had ever refused.

Despite the ubiquity of level-of-effort paradata in surveys,
the quality of these paradata has received little attention. Er-
rors in paradata may affect how one allocates effort in the
field (e. g. Calinescu, Bhulai, & Schouten, 2013), leading to
suboptimal deployment of resources. Measurement errors in
paradata may reduce their effectiveness for adjustment pur-
poses (Biemer et al., 2013; West, 2013). However, previous
research does not explore the extent to which these errors
may occur.

One difficulty in evaluating the quality of level-of-effort
paradata is identifying a measure of quality. In this paper,
we review the scant existing literature on the quality of level-
of-effort paradata for in-person surveys. We then employ
a relatively new technique — collection of GPS data in real
time during the field period via a smartphone GPS applica-
tion. These GPS data are not without errors. Therefore, we
examine the quality of these data. We also have surveyed
interviewers on both travel behavior and potential errors in
the generation of paradata. Finally, we compare the level-of-
effort paradata to the GPS data. Although the GPS data have
errors, they may be useful in identifying patterns of behavior
that are meaningfully related to survey outcomes that are not
documented in the paradata. In particular, we examine the
following questions:

1. What is the quality of GPS data collected during the
process of data collection?

2. What insights can be gleaned from the comparison of
GPS data with call record paradata?

This paper provides the first insight into the challenges
and opportunities that arise when using real-time GPS data
collection. We use these GPS data to evaluate the magnitude
of measurement errors in paradata.

2  Background

For in-person surveys, interviewers are trained to gener-
ate call records for each contact attempt on laptops, tablets,
or smartphones. These computerized sample management
systems may automatically record the date, time, and (in cer-
tain situations) the result code (e.g., completed interview) of
each call attempt. Interviewers may edit these fields, and
may also make decisions about which kind of actions warrant
generating a call record. These data are called level-of-effort
paradata.

Level-of-effort paradata are used by virtually every sur-
vey organization to manage data collection efforts. For ex-
ample, paradata are used to estimate response, contact and
refusal rates; to identify the optimal day and time of visits to
sampled units (Durrant, D’ Arrigo, & Steele, 2011; Kreuter,
2013; Kulka & Weeks, 1988; Weeks, Jones, Folsom Jr., &
Benrud, 1980, 1987); and to evaluate whether refusal con-
version efforts are needed (Beullens, Billiet, & Loosveldt,

2010; Dutwin et al., 2015). Responsive or adaptive sur-
vey designs (Groves & Heeringa, 2006) draw extensively on
level-of-effort paradata to inform design decisions, manage
surveys (Kirgis & Lepkowski, 2013) and intervene during
data collection (Kreuter, Mercer, & Hicks, 2014; Peytchev et
al., 2009; Wagner et al., 2012). Level-of-effort paradata from
existing studies are also used to design future data collection
efforts (e. g. Calinescu et al., 2013; Luiten & Schouten, 2013;
Peytchev, Rosen, Murphy, & Lindblad, 2010). In practice,
almost every survey relies on these data to monitor data col-
lection and make design decisions in the field.

Level-of-effort paradata are also used for nonresponse ad-
justment. There is a relatively large literature about adjust-
ment strategies based upon these data (Alho, 1990; Beau-
mont, 2005; Biemer et al., 2013; Biemer & Link, 2007,
Drew & Fuller, 1980; Groves & Couper, 1998; Kreuter &
Kohler, 2009; Potthoff, Manton, & Woodbury, 1993; Wood,
White, & Hotopf, 2006) in which the values for survey out-
come variables for nonrespondents are assumed to be similar
to those respondents who required extensive recruitment ef-
forts. Research using level-of-effort paradata for adjustment
purposes assumes that they are error-free. Yet few direct
examinations of potential errors that occur in level-of-effort
paradata exist.

There are some reports of interviewer errors in paradata.
Biemer et al. (2013) surveyed field interviewers who reported
that they would not generate a call record if they drove by
a housing unit and decided that no one was home, leading
to an underreporting bias in the call records. This practice
leads to an upward bias in estimates of contact rates because
known noncontacts are systematically omitted from the call
records. Interviewers in the same survey reported that they
would keep cases near the maximum number of calls “alive”
by not recording call attempts. This practice would have a
similar biasing impact on estimates of contact and cooper-
ation rates. Without knowledge of specific, empirical error
rates, Biemer and colleagues used simulation methods to ex-
plore the potential impact of these errors in the number of call
attempts on nonresponse adjustments. They conclude that
even small errors can generate relatively high rates of bias in
adjusted estimates; a mere (simulated) 5% underreporting in
the number of calls resulted in a bias in the adjusted estimates
of about 19% (Biemer et al., 2013, p. 165).

Interviewer mistakes are another potential source of er-
rors. Early investigations of CAPI studies found that data
entry errors occur during computer-assisted interviews, and
are affected by the method of data entry (Baker, Bradburn, &
Johnson, 1995; Couper & Groves, 1992; Dielman & Couper,
1995). Additionally, despite instructions and training, inter-
viewers often fail to follow protocols for interviewing, in-
cluding failing to read questions exactly as written between
3% and 73% of the time (Ongena & Dijkstra, 2006). On
the other hand, these administration behaviors can be im-
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proved through training (Billiet & Loosveldt, 1988; Fowler,
1991). Further, studies of respondents have found that they
make errors when asked to recall events that occurred in the
past (Tourangeau, Rips, & Rasinski, 2000), but this concept
has not been applied to the creation of interviewer-generated
paradata. These same mechanisms may affect paradata gen-
eration. For example, paradata may be incorrect due to data
entry errors or problems with recall when records are gener-
ated after a lengthy interval (e. g. several hours later).

There are a few evaluations of the quality of paradata us-
ing measures created from the paradata themselves, that is,
an internal evaluation of paradata quality. Bates, Dahlhamer,
Phipps, Safir, and Tan (2010) examined internal consistency
in paradata across three large U. S. federal surveys. They
found that call attempts that had a noncontact code were
more likely to have call records generated at a time other than
when the attempt actually occurred, suggesting that reporting
errors may occur differentially across cases and outcomes.

The existing evidence suggests that field interviewers may
underreport call attempts for a variety of reasons — data entry
errors, to save time, through recall errors, or to prevent active
cases from being closed — and that these errors may occur at
different rates across different types of call outcomes (e. g.,
contacts vs. noncontacts). Quantifying this underreporting is
a difficult task. One possible strategy would be to “shadow”
interviewers and generate a second set of records to be com-
pared to those of the interviewer (e. g., see Kalsbeek, Bot-
man, Massey, & Liu, 1994). Such studies are expensive and,
hence, rare.

One source of data about the survey recruitment and par-
ticipation process that has yet to be considered comes from
equipping interviewers with global positioning system (GPS)
devices (Nusser, 2007). GPS devices can measure location
(latitude and longitude), elevation, speed, direction, date,
time, the source of the measurement (satellite or cell tower)
and an indicator of accuracy of the measurement (e. g., dilu-
tion of precision measures) at regular time intervals. This
creates a dataset of “GPS points” for each point in time.
These GPS data have been used in the development of ad-
dress frames (Cecchi & Marquette, 2012; Dekker, English,
Winfrey, & Seeger, 2013; Levinsohn et al., 2010; Morton
et al., 2007; Seeger, 2011), to capture the location of an in-
terview as a method of interview validation and falsification
detection (e. g. Cecchi & Marquette, 2012; Ellis, Sikes, Sage,
Eyerman, & Burke, 2011; Haddaway, 2013; Keating, Loftis,
McMichael, & Ridenhour, 2014; Sikes, 2009; U.S. Census
Bureau, 2014), to help interviewers plan travel routes in field
studies (Nusser & Fox, 2002), and for basic monitoring of
field data collection (Kurkowski, 2013).

The GPS data are not without errors themselves (Olson &
Wagner, 2015). First, GPS data can be missing (Lemmens,
2011) due to technical problems or because of interviewer
failure. Technical problems occur when the GPS device fails

to pick up a signal, picks up a poor signal, or when the tele-
phone battery dies. In a pilot test for a travel survey, re-
spondents used a high quality GPS-only wearable device in a
single metropolitan area, Toronto (Chung & Shalaby, 2005),
resulting in a missing data rate of 21.5%, due primarily to
device failure. Further, different quality measurements may
be produced depending upon whether satellites or cell towers
are used for GPS measurement. In a study of GPS measure-
ments using an iPhone, Zandbergen (2009) found that the
device failed to identify up to 12.3% of known locations, de-
pending on the type of signal used for the GPS measurement.
The interviewer might forget to turn on the GPS logging ap-
plication. For example, in a recent review of physical activity
studies where respondents are asked to carry GPS devices
(Krenn, Titze, Oja, Jones, & Ogilvie, 2011), missing data
rates ranged from 2.5% to 92%, with one of the strongest
predictors being the length of the study period (a long study
took four or more days).

Second, even when a signal is not completely blocked, it is
still possible for GPS data to have measurement error (Chung
& Shalaby, 2005). The major reasons for measurement error
in GPS data are inadequate satellite signals, errors in trans-
mitting from the satellites to the ground, or the need to use
the less accurate cell phone towers (Goodchild et al., 2007;
Lemmens, 2011; Zandbergen, 2009). Different devices may
result in different levels of error — cell phones have higher
rates of signal loss and less accurate measurement than spe-
cialized GPS devices (Wu et al., 2010).

Linking GPS data with call record data is a difficult task.
Others have tried to link data from travel surveys to GPS
data from respondents. Mavoa, Oliver, Witten, and Badland
(2011) found that using a computer algorithm that compares
sequences from travel diaries to sequences in the GPS data
led to linkages that were of sufficient quality for analysis
purposes compared to manual linkages, but at lower costs.
Deriving characteristics of the trip, such as the purpose and
mode of travel (e. g., car, bike, train, foot) is another chal-
lenge when analyzing GPS data. Bohte and Maat (2009), for
example, use a set of rules to derive the purpose and mode
of trips from GPS data. When compared to a daily web sur-
vey of the same persons from whom they collected the GPS
data, the rule-based approach provided reliable estimates of
purpose and mode. These studies provide evidence that GPS
data can be reliably used for these types of purposes.

In sum, neither the call records nor the GPS measurements
are error-free. Nevertheless, linking the data about spe-
cific interviewer trips to sampled neighborhoods and housing
units available from the two sources will illuminate strengths
and weaknesses in each data source. Such a comparison may
shed light on survey interviewer travel patterns, identify po-
tentially missing data in the level-of-effort paradata, and il-
luminate additional detail not available in the paradata. This
is a first step toward understanding and quantifying errors
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in level-of-effort paradata, with longer term implications on
survey management and adjustment methods.

3 Data

The data come from the National Survey of Family
Growth Continuous 2011-2019 (NSFG). The NSFG inter-
views females and males between the ages of 15 and 44
about fertility-related topics. The NSFG is an in-person sur-
vey, with a continuous area probability sample design that
rotates Primary Sampling Units (PSUs) annually. A new in-
dependent sample of housing units is released four times a
year (quarterly); each sample is in the field for 12 weeks.
For any given year, the NSFG has 40 to 45 female inter-
viewers on staff. The interviewers work in 35 primary sam-
pling units with over 450 unique area segments, with ap-
proximately 20,000 housing units sampled each year. Each
area segment contains a minimum of 75 housing units and
the average number of housing units in an area segment is
179. The sampling frame is developed from commercially
available address lists. These lists are checked in the field
by interviewers. A sample is then selected from this frame
of housing units. Cumulatively, these sampled units receive
more than 100,000 call attempts annually. We will examine
data from quarters 1 through 8. During these quarters, the
response rate ranged from 71% to 76% (AAPOR RR4), with
a total of 39,494 sampled housing units.

Interviewers have convertible tablet computers with the
University of Michigan Survey Research Center sample
management system, SurveyTrak. Interviewers keep call
records for attempts to contact housing units, screen for el-
igible respondents, randomly select respondents from the
household, and conduct an interview. The sample manage-
ment system data are entered into SurveyTrak in the field,
with the current time and date automatically loaded into each
call record. Interviewers are able to edit these times and dates
for the most recent call attempt. The remaining result code,
mode, and call notes are recorded by the interviewer.

Interviewers for the NSFG also were equipped with web-
enabled smartphones. These Android-based smartphones
(Motorola Atrix 2) included an application or “app” (GPS
Logger for Android devices) that recorded their location (lat-
itude and longitude), time, date, speed, direction of travel,
altitude, source of measurement (satellite vs. cell towers),
and two indicators of the accuracy of these data (the num-
ber of satellites used in the measurement and the Horizontal
Dilution of Precision, a measurement error indicator). The
app was configured to take measurements every 60 seconds.
The interviewers were instructed to activate the application
when they began their shift and stop the application when
their shift was complete. Olson and Wagner (2015) give a
more detailed description of how these data are collected, in-
terviewer compliance with the request to use the app while
working, and whether the use of the app altered the behavior

of interviewers.

We have a total of 1,943,764 individual GPS points in
the 7,168 interviewer-days of recordings. The average file
has 271.2 GPS points, covering an average distance of 149.5
miles (median distance = 51.98 miles) over an average of 6.8
hours (median time = 5.8 hours).

The other data source comes from web surveys of and
debriefings with the interviewers. Three web surveys were
conducted with the NSFG interviewers during summer 2012
(n=29, AAPOR RR1=62%), summer 2013 (n=25, AAPOR
RR1=71%), and summer 2014 (n=23, AAPOR RR1=60%).
We also conducted hour-long debriefing sessions with ten in-
terviewers between March 1, 2012 and July 23, 2012. These
debriefings were based on a purposive sample of interviewer-
days that were selected because of apparent discrepancies
between the call records and the GPS data or longer than
average travel distances.

4 Sampling and Linking Call Records and GPS Data

Call record and GPS data were collected in two separate
systems, and thus need to be linked together, a nontrivial
task. There are several ways in which this linkage can be
done. Our purpose is to evaluate the completeness of call
records. However, there may be missing data from the GPS
data as well. Missing GPS data can occur because the in-
terviewer forgets to start the app or because the phone does
not have access to either satellites or cell towers. Further, the
linkages can be incorrectly made.

Since the linkage was computationally intensive, we drew
a sample of interviewer-days. We selected a simple random
sample of 179 interviewer-days from all interviewer-days in
Q2 using the call records to identify all days when an inter-
viewer worked. Of these 179 days, 101 (56.4%) had GPS
files available. These 101 interviewer-days had a total of 917
call attempts to a total of 655 housing units as recorded in
the call records. The GPS files for these 101 days had a total
of 2,825 routes that passed active sampled housing units that
needed to be processed and merged to the call records.

The sample we selected allows us to infer to the popula-
tion of interviewer-days during Q2 of the NSFG. Our analy-
sis is further restricted in that we have GPS data for a subset
of interviewer-days in our sample. This subset was chosen by
the interviewers via their compliance with the request to turn
the app on and off. Olson and Wagner (2015) examine how
days with differ from days without GPS files. They found
that GPS logging was more likely to occur on interviewer-
days with more call records.

We use a deterministic linkage procedure, described in Ta-
ble 1. There are two dimensions which need to be incorpo-
rated in the linking process: time and space. Unfortunately,
the measurement on both of these dimensions can have er-
rors. Even when accurately measured, recorded GPS points
and geocoded location of sample housing units are rarely at
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Figure 1. Graphical Representation of Merging Call Records
with GPS Data

identical latitude and longitude measurements. Therefore, a
maximum distance needs to be identified for a GPS point to
be considered in the same location as an address in the call
records. Additionally, using time as the linkage criterion is
challenging because the time on the clock can be different
on the tablets and smartphones. This issue is exacerbated
when GPS points are missing due to poor reception of satel-
lite signals. Finally, the call records may be generated several
minutes after the call attempt and in a location other than the
sampled housing unit. Thus, the deterministic linkage proce-
dure uses a combination of distance and time for identifying
links.

Given the complexity of the procedure, we describe how
this linkage was done in detail, using an example map to il-
lustrate the process. We also provide additional details in
an the appendix. We start with the date and identify call at-
tempts and GPS points that occur on the same date recorded
in both systems. Only days for which we had both call
records and GPS files were linked.

Figure 1 gives a graphical representation of how these data
are linked using simulated data. The figure on the left shows
the GPS points and sampled housing units. The figure on the
right zooms in on a few points.

Focusing on left side of Figure 1, the larger-size house
icons represent geocoded sampled housing units and the
smaller-size house icons are unsampled housing units. The
larger icon black houses are those sampled houses that have
a call record with a date, time, and outcome code for that
day. The larger icon gray houses are sampled units that do
not have a call record or are not active. These dates and times
were either generated automatically by the interviewer’s lap-
top or were edited manually by the interviewer. The gray
dots represent the GPS points recorded by the interviewer’s
smartphone.

We started by sorting the GPS points (the gray dots) using
the date and time stamps on each point. Measurement error
in the recorded GPS points leads to variation in placement
of points, as illustrated in Figure 1. Each GPS point in our
sample was “snapped” to the nearest road (street, highway,
etc.). Then routes between GPS points are created. This as-
signment is represented in the figure by the dashed lines —
for example, points 32 and 33 were snapped to the nearest
road along these dashed lines. Once snapped to the nearest
road, a route along these GIS-identified roads between the
two points was identified following the temporal order of the
GPS points. The route follows the nearest roads to travel
between two points. In Figure 1, the arrow represents the
inferred route taken between points 32 and 33. We assigned
the time stamp of the last point on the route as the time of the
inferred route.

In the next step, call records were linked to these routes.
As noted earlier, we do not expect a call record should be
available for every route. Call records were similarly sorted
by date and time of the call attempt and sampled housing
units were geocoded. We then selected the route with the
time stamp immediately preceding the call record time. If all
the routes were later in time than the call record, we merged
the call record with the route with the earliest time stamp.
Out of the n=101 interviewer-days with GPS files, we cre-
ated 2,825 records of inferred routes that passed in front of
sampled housing units that had not been finalized as of the
date of the route. For those 101 interviewer-days, there were
a total of 917 unique call records. If there was a call record
associated with that sampled unit for that day, then it was
attached to the route. It was possible for multiple routes to
pass the same housing unit. For example, if an interviewer
walked up and then down the same street, this would gener-
ate two routes past any sampled housing unit on that street.
This meant that a single housing unit could be associated
with multiple inferred routes. Each call record was linked
to only one route using the method described.

Figure 1 provides an example of the linking process. The
right figure in Figure 1 is a zoomed in view of the part of
the left figure outlined by the black box. In Figure 1, there
is a call record associated with the black housing unit. There
are two routes that pass sampled housing unit 233B3344: the
route associated with travel between points 32 and 33 and
the route between points 77 and 78. Since the route between
points 32 and 33 immediately follows the time of the call
record, we associate this route with the call record.

Finally, we determined whether each sampled unit was ac-
tive on the day of the route. We did this by comparing the
date of the final result code from each housing unit to the
date of the route. If it was earlier than the date of the route,
we treated that sampled unit as having been finalized before
the day of the route and, therefore, not available for calling.
Of the 2,825 routes associated with active sampled housing
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Table 1
Description of GPS and Call Record Linkage Procedure

JAMES WAGNER, KRISTEN OLSON, AND MINAKO EDGAR

GPS Processing
Step 1:

Sort GPS points using the GPS date and time stamps within each interviewer-day.

Step 2:  “Snap” GPS points to nearest road.

Step 3:  Identify route along road between twol points adjacent in time.

Step 4:  Assign last time stamp for the route as the “time of trip.”

Call Record Processing

Step 1:  Identify subset of interviewer-days for which call records and GPS points recorded

Step 2:  Geocode location of all sampled housing units.

Step 3:  Identify “active” sampled housing units on that interviewer-day.

GPS and Call Record Linkage

Step 1:  Calculate difference in distance (meters) between all inferred routes on a given interviewer-day and
geocoded location of active sampled housing units.

Step 2:  If the calculated difference in distance >1000 m, exclude inferred route as possible “link” to call records.

Step 3:  If the calculated difference in distance < 1000 m, compare the street name for the sampled active housing
unit to the street name of three closest inferred route.

Step 4:  If the street name for the route is the same as the street name for the sampled active housing unit, identify
as “potential link.”

Step 5:  If the street name for the route is not the same as the street name for the sampled active housing unit, then
if there are multiple routes having same street name evaluate whether the closest point for a house to the
nearest road is on an inferred route. If it is, identify as a “potential link.”

Step 6:  Among all of the “potential link” inferred routes, select the route with the GPS time stamp immediately
before the call record time. This is a “linked route.”

Step 7:  If all of the GPS time stamps are after the call record time, select the route with the earliest time stamp.
This is a “linked route.”

Step 8:  Identify the number of call records that do not have a linked inferred route.

units, 2,235 (79.1%) did not have a call record. The final
dataset included three types of records (Table 2): 1) routes
that passed a nonfinal sampled housing unit for which there
was a linked call record (n=590), 2) routes for which there
was no call record (n=2,235), and 3) call records for which
there was no route (n=327).

We assess the sensitivity of our conclusions to potential
errors in the linkage by examining different subsets of linked
records defined by time, speed, and distance. Overall, 20.9%
of routes have a linked call record. We do not expect a call
record for every route. However, every route that passes an
active, sampled housing unit gives the interviewer an oppor-
tunity to observe potentially useful information. We might
also assess the probability that there is a linkage for the call
records. Overall, 35.7% of call records had a linked route.
We would expect a route to be linked to every call record.
These errors point to potential issues with the GPS data. Ini-
tial analyses indicate that routes are not systematically miss-
ing for any single type of call outcome.

We assess the sensitivity of our analyses to a number of
factors. First, the interviewer may have been on their way to
an appointment, and thus would not be able to stop at a sam-
pled housing unit if they saw someone at home. We expect

that there will be a higher probability of a linked route when
the call attempt is not being made to an appointment.

Apartment complexes present a special problem for our
method. Often, these units are geographically close to each
other, including being located above or below other sampled
units. Some apartment complexes share a common street,
such that travel between apartments might be missed by our
process of creating routes. Therefore, excluding apartments
from the analysis might improve the overall accuracy of the
linkages in the analysis set.

The next subset analysis is based upon the speed of travel.
The interviewer may have been driving past active, sampled
housing units and did not notice whether there seemed to be
anyone at home. Therefore, the speed of travel along the
route may also be an indication of whether there is any data
missing. We expect that there will be a higher probability of
a linked route when examining only call records with slower
speeds.

Finally, some of the routes that we generate may not re-
flect actual interviewer travel. Due to errors in the GPS mea-
surement, a stationary person can generate two different mea-
surements of their location. These errors are usually fewer
than 10 meters. Therefore, focusing on longer routes can
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Linkage Results for GPS and Call Record Data

n % % of call records % of routes

Total number of call records 917 100.0

Total number of routes 2,825 100.0
Call record and GPS route 590 18.7 64.3 20.9
Call record, no GPS route 327 10.4 35.7

GPS Route, no call record 2,235 70.9 79.1
Total 3,152  100.0

Table 3

reduce the possibility that the “route” is actually due to this
sort of measurement error.

5 Results

In this section, we will first discuss the quality of the GPS
data and our ability to link them to the call record data. Sec-
ond, we will discuss interviewer reports of errors they make
in the process of generating paradata. Then, from the com-
bined call records and GPS data, we will look at measures
of potential errors in the call records. Finally, we will use
several measures to assess the sensitivity of our results to the
quality of the linkage.

5.1 GPS Data

The GPS data are useful when they are (1) high quality
and (2) can be successfully merged with the call record in-
formation. We start by examining the quality of the GPS
data with respect to potential technological implementation
deficiencies.

An initial, if not very discriminating, measure of qual-
ity is whether the GPS measurements were estimated using
satellite signals or through cell phone network towers (Zand-
bergen, 2009). Of the 1.9 million GPS points, 69.4% were
recorded via the higher-quality satellite measurements (with
an average of 7.61 satellites used for the measurement), and
30.6% were recorded via the lower-quality cell network.

A second internal measure of quality is the Horizontal Di-
lution of Precision (HDOP). This measure provides a more
detailed assessment of the precision of the measurement.
This measure was not implemented in the app until after the
survey had been in the field for a year. We have HDOP data
for 230,234 GPS points (Table 3). By this measure, only
21.6% of the points meet the accepted criterion for “good
quality” measurement — having HDOP values less than or
equal to 5 (Chung & Shalaby, 2005; Rempel & Rodgers,
1997; Stopher, FitzGerald, & Zhang, 2008). About a fifth
of the points have HDOP values above 20, considered to be
only “poor” measurements (Piras & Cina, 2010). Given the
use of smartphones for this measurement and interviewers
being in cars or respondent’s homes, it is likely that the GPS

Horizontal Dilution of Precision (HDOP) mea-
surements from GPS Logger app, NSFG Q1-08

HDOP Quality N %

0-1 Ideal 8,612 3.7
1.01-2.0 Excellent 9,557 4.2
2.01-5.0 Good 31,647 13.8
5.01-10.0 Moderate 56, 894 24.7
10.01-20.0  Fair 71,030 30.9
20.01+ Poor 52,494 22.8
Total 230,234  100.0

device did not have good positioning of the antenna (being
in a computer bag, purse, or pocket) or have a clear view
of the sky (being in a respondent’s home), increasing HDOP
values.

Another data quality measure for the GPS measurements
is the length of time between the points. The application was
set to take this measurement every 60 seconds; a gap of more
than a minute thus indicates a failure to find a satellite sig-
nal. Figure 2 shows the distribution of the lag times between
points. The median length of time for all the points is 65 sec-
onds. More than 19% of points have more than 120 seconds
elapsed between them. The median elapsed time between
points is equivalent for GPS measurements taken by satellite
and those taken over the cell network (65 seconds), but the
means differ substantially. Measurements taken by satellite
are 125 seconds apart, on average, compared to 91 seconds
apart for those recorded via cell towers.

Although the GPS data are not a gold standard, they pro-
vide sufficient detail for our purposes. That is, the available
GPS data allow us to describe general patterns of interviewer
travel and identify occasions when interviewers were near
sampled housing units without making a call record. There is
missing data in the GPS data, but observing those data could
only change the magnitude of our findings regarding under-
reporting of call records, not whether this under-reporting oc-
curs.
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Figure 2. Elapsed Time in Seconds Between GPS Measure-
ments Captured by GPS Logger App, NSFG Q1-Q8

5.2 Quality of Links between GPS and Call Record
Data

We now examine the quality of the links between call
records and GPS routes. There is no GPS route available for
35.7% of housing units with a call record on that interviewer-
day. This might be an indication that the interviewer was
never at the sampled housing unit for which the call was
recorded. However, given the errors that we have seen with
the GPS data and call records, it also may have been the re-
sult of missed GPS points (due to interviewer or technical
failure), incorrect dates in the call records, or errors in the
inferred route. Unfortunately, our data do not give us insight
into which of these issues may have occurred.

The other 64.3% of housing units with a call record were
merged to a route. We first assess the quality of these merges
by comparing the time stamps on each data source. The
median time difference between the GPS time stamps and
the merged call record time stamps was 10.2 minutes. The
25" percentile was 3.2 minutes and the 90™ percentile was
85.9 minutes. This indicates that the merge based first on
geography and then on time generally worked, with minimal
time discrepancies. An example of an outlying value occurs
when the GPS time points run from 11am to 3pm, but the
call record has a time of 7:30pm. This could indicate either
that there are errors in the time recorded in the call records,
or that the interviewer returned to a housing unit during the
same day without turning on the GPS device.

Overall, although there are missing GPS data, for those
interviewer-days where the GPS data are available, the link-
ages are quite good. In particular, 90% of these linked call
records and GPS points have time stamps that are within 86
minutes of each other.

5.3 Interviewer Self-Reports of Errors in Paradata

Errors may occur in call records for a variety of reasons.
In the debriefing interviews, interviewers explained that they
often completed their call records in their car around the cor-
ner from a contacted sampled unit. Interviewers also told us
that would wait until they had made several non-contact calls
and then enter them into the sample management system, al-
lowing them to focus on making attempts at households as
efficiently as possible.

Additional evidence about errors was provided in the web
surveys completed by the interviewers. Asked if they had
made mistakes in generating paradata (on a five-point scale
ranging from always to never), 47% of interviewers said they
have ever recorded the wrong day, and 55% ever recorded
the call record for the wrong address. Further, 88% reported
that they would not make a call record if they walked passed
a household and determined that no one was home without
knocking on the door — a situation they are explicitly told in
training should result in a call record.

Errors may also occur in call records when they are gener-
ated after the actual contact attempt was conducted, such as
at the end of a shift or the next day. In these cases, it may be
difficult for the interviewer to remember the times at which
calls were actually attempted, and thus result in estimating
the contact time, or that an attempt was made at all. Across
the three web surveys, 83% of interviewers responded that
they always or most of the time recorded call records im-
mediately after the call attempt. On the other hand, 29% of
interviewers reported completing call records at the end of
the day at least once, and 4% reported completing their call
records at the end of the week at least once.

5.4 Evidence of Under-Reporting in the Call Records

We now turn to an important issue: do the GPS data iden-
tify underreporting of call records? We will briefly discuss
overall patterns of travel. Then we will examine this question
using all of the linked data. After examining all of the data,
we will then perform a sensitivity analysis where we focus
on subsets of the data with indications of higher probabilities
of correct linkages.

We begin with an examination of patterns of within-
segment travel. There were 2,703 active sampled housing
units in the sampled segments with GPS data. Table 4 shows
the distribution of the number of times an active sampled
housing unit was passed by an inferred route during a visit
to an area segment. First, 61% of active sampled units in a
sampled segment were not passed — that is, were not associ-
ated with an inferred route — on a particular interviewer-day.
Not passing an active housing unit is due to a complex set of
factors — the workload may be large, the shift may be short,
or relatively more time was spent completing interviews at a
few households.
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Table 4
Distribution of Number of Times Active Sampled
Housing Units are Passed Per Segment Trip

Number of Times HU is Passed  All Routes (%)

0 61
1 16
2 12
3 5
4+ 6

Note: n=2703 active housing units

Second, there are non-linear patterns of travel in the GPS
data, indicating back-and-forth movement. Among all active
sampled units, 16% were passed one time, but 23% of all
active sampled units were passed at least twice.

Using the inferred travel routes from the GPS points, we
also can look at how many times a sampled housing unit —
excluding those with finalized result codes — is passed with-
out a call record being made. Of course, it is possible that the
interviewer did not make an active decision about whether or
not someone was home and no call record should be gener-
ated, but an opportunity for such a decision was possible.

We begin by looking at all the 590 routes merged to a call
record and 2,235 routes for which there was no call record.
As noted above, this means that there is a call record for only
21% of routes, and no call record generated for a striking
79% of all of the inferred interviewer routes that pass an ac-
tive sampled housing unit (Table 5).

Interviewers are trained to make a call record if they pass
a housing unit and determine that no one was home. The
reason this rule is employed is to avoid creating a bias in
estimated contact rates that would occur if these kinds of
“noncontact” events were not recorded. The evidence that
noncontacts are underreported is buttressed by the results
from our survey of interviewers, where we found that 88%
of interviewers would not generate a call record when they
have determined that no one is home without knocking on
the door.

The household may not have been observed by interview-
ers in the field, either due to appointments, being in an apart-
ment building, or traveling quickly. We use information
about these situations to evaluate the sensitivity of our results
to various assumptions about the likelihood of a call record
being necessary. This is accomplished by examining subsets
of cases that are more likely to have correct linkages.

As a first step in this sensitivity analysis, we excluded
routes where the time stamp on the GPS occurred 30 min-
utes or less before a call to a housing unit on that route with
a scheduled appointment. This definition is imperfect; some
cases have calls attempted during the 30 minutes prior to an
appointment, and is thus somewhat conservative. With this

exclusion the percentage of routes that went past a housing
unit and did not have an associated call record goes down
slightly to 76%, with the percentage of linked routes increas-
ing slightly to 24%. Thus, appointment-keeping appears to
be one of the reasons that a call record is not made, but the
effect on estimated rates of observing a call record is modest.

It is possible that linkages are more difficult to make for
apartment buildings than for single family homes. Apart-
ments constitute 18% of the active sampled housing units in-
cluded in the analysis. When we excluded all apartments, the
results were essentially the same (80% not linked vs. 79%
not linked overall). Therefore, linkages missed due to apart-
ment buildings do not explain our findings.

We can also use the speed and distance of travel from the
GPS data to further assess the sensitivity of our results. First,
we exclude routes that were less than 15 m long as an indica-
tor of potential measurement error in the GPS measurement.
This has no effect on the linkage rate.

We note that an average human walking pace is about 1.3
meters per second (Pline, 1992). Bohte and Maat (2009) use
an average speed of less than 2.8 meters per second and a
maximum speed of less than 3.9 as an indication of foot
travel. Interviewers were traveling more quickly along routes
on which they did not make call records. The average speed
of cases with a call record was 5.5 meters per second (about
12 miles/hour; median=1.6 m/s, or about 3.5 miles/hour).
The average speed for cases with no call record was 12.0
meters per second (about 27 miles/hour; median=5.1 m/s,
or about 11 miles/hour). The pattern is identical when ex-
cluding routes that appear to be on the way to an appoint-
ment. This speed suggests that interviewers were likely trav-
eling too quickly on some of these routes to directly observe
whether a sampled household member was at home. Figure 3
shows the proportion of routes that pass active sampled units
for which there is no call record by the cumulative speed of
travel. The speed is the maximum average speed of the in-
cluded routes. For example, the point at 65% for 1.5m/s is
the proportion for routes that had 1.5 m/s or lower average
speed, a sharp decrease from the overall nonlinkage rate of
79%. From the figure, it is clear that although the proportion
without call records increases as the average speed increases
slightly, the range is limited, from about 65% to 71%. There-
fore, interviewers driving by housing units and not noticing
whether anyone is home because of the speed of travel is not
the only explanation for our high estimates of nonlinkage.

As discussed above, interviewers can pass housing units
several times. An alternative explanation for the lack of call
records is that interviewers only generate one call record for
each housing unit that is passed several times. While this
may be true in some cases, among the 1,065 active sampled
housing units that are ever passed by an inferred route (i. e.
passed 1+ times), 31% do not have a call record recorded
at all for the day. Thus, interviewers pass by housing units,
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Table 5
Comparison of GPS data and call record data
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No call record

N (routes or

% SE With call record (%) housing units)
% of routes that pass a sampled housing unit
All routes (row=100%) 79 2.4 21 2825
Excluding appointments (row=100%) 76 2.7 24 2486
Excluding apartments (row=100%) 80 2.5 20 2313
Excluding routes less than 15m (row=100%) 79 2.5 21 2692
% of active sampled housing units passed at least once by an inferred route
All active sampled housing units (row=100%) 31 4.5 69 662
Excluding apartments (row=100%) 36 5.5 64 569
No call record With call record
Stat. SE Stat. SE N
Speed, all cases
Average speed 12.0 29 4.7 0.9 2674
Median speed 5.1 1.7
Speed, excluding appointment cases
Average speed 11.4 25 4.7 0.9 2335
Median speed 52 1.7
80 sults about the linkage rate show very limited sensitivity to
any of the indicators of the quality of the linkage that we
o examined, with speed of travel yielding the largest effect on
g linkage rates.
&, ]
© PY L] L d
© ° 6 Discussion
z ®
% In this paper, we evaluated the quality of data collected
=80 from a GPS-enabled smartphone app and compared the GPS
S data with interviewer-recorded level-of-effort paradata. To
& our knowledge, this is the first study that has examined con-
cordance of call record data with real-time GPS data. We
s0 identified that GPS data can provide unique insights into
1.5 2.0 25 3.0 3.5 4.0

Maximum Speed
Figure 3. Percentage of Routes Passing an Active Sampled
Housing Unit that do not have a Linked Call Record by Cu-
mulative Maximum Speed of Routes

but do not record a call record roughly one-third of the time.
Identifying the location of an apartment may be more dif-
ficult than a single family home. When we examine only
non-apartments (e. g., single family homes), the percent of
sampled housing units that are passed without a call record
recorded for the day increases slightly to 36%.

Overall, the data suggest that call records are giving in-
complete information about likely at-home rates. These re-

the movement of interviewers in the field, including that in-
terviewers engage in back-and-forth travel. We also found
that they move past some sampled housing units repeatedly.
Other housing units (around 60%) are not passed at all on any
given visit to a sampled segment. Many of these “passes”
are undocumented in paradata, despite the fact that inter-
viewers are trained to communicate this information through
call records. Additionally, we found potential errors in both
sources of data, and identified how the union of these two
sources could provide new insights into interviewer travel
behavior. This analysis suggests that further research is mer-
ited, since level-of-effort paradata are used for monitoring
data collection and post-survey adjustment. Further, inter-
viewers reported in debriefings and web surveys that they
know that they make these sorts of errors, including poten-
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tially underreporting noncontact call attempts. The inter-
viewer survey conducted by Biemer et al. (2013) reported
similar results.

Our evaluation of GPS data indicated potential data qual-
ity issues that we hypothesize to be related to non-ideal cir-
cumstances for GPS measurement. Interviewers are likely to
have their cell phone in a bag or in some other way obstructed
and thus not able to obtain high quality GPS measurements.
Lack of a clear view of satellites adds measurement error
to the GPS points, as indicated by the low quality HDOP
measurements, and irregular measurement time intervals, as
indicated by long lapses between GPS points. We note that
these problems are heightened because the interviewers were
instructed to have the GPS app on at all times during work.
Simply asking interviewers to “snap” GPS coordinates at the
time of obtaining an interview would likely mitigate some
of these precision problems at a particular housing unit, but
detailed data about travel would not be possible in this ap-
proach. On the whole, these issues mean that GPS data can-
not be considered a gold standard. However, they are accu-
rate enough to allow researchers to gain insight into inter-
viewer behavior in field surveys.

Finally, we compared call record data to GPS data. Two
primary findings come from this analysis. First, the task of
linking the GPS files and the call records is non-trivial, re-
quiring substantial dedicated time by GIS professionals. Sur-
vey organizations that want to collect real-time travel data on
interviewers for the purpose of monitoring or evaluating field
work will need to build systems to assist with this linkage.
This feasibility test did not permit such resources to be ded-
icated. Our second set of findings from this comparison has
to do with interviewer behavior. We found that interview-
ers travel in nonlinear patterns through area segments, con-
trary to the models of within-area segment interviewer travel
sometimes assumed by sample designs (e. g. Kalsbeek, Men-
doza, & Budescu, 1983). Our survey of interviewers helped
explain how these decisions are made and suggested that this
nonlinear travel may be more efficient than a linear route that
sought to minimize mileage. The GPS data also suggest that
the call records contain incomplete information that may lead
to overestimated contact rates. Interviewers travel past active
sampled housing units a surprising number of times in their
daily work travels, and this movement is not recorded in call
records. To our knowledge, this has not previously been em-
pirically described in an actual field study. This analysis did
not reveal whether multiple trips to or by a housing unit on
the same day is more or less effective than multiple contact
attempts spread over different days of the week; future re-
search taking advantage of both GPS and call record data
will look at this question.

These findings are important for both survey management
decisions and nonresponse adjustments. First, call records
are used by virtually every survey organization to monitor

field effort and guide decisions. As responsive or adap-
tive designs are becoming more prevalent (e. g. Groves &
Heeringa, 2006; Miller, 2014), the accuracy of these data are
increasingly important. Missing data on call attempts means
that field effort is going unreported and interviewer decisions
are not known to their supervisors or field managers, mak-
ing these decisions less efficient and possibly less effective.
Second, Biemer et al. (2013) simulation study demonstrated
the important impact such call record errors could have on
nonresponse adjustments. We suspect that these errors in
call records may also influence estimates of coefficients and
predictions in contact models (Wagner, 2013) and response
propensity models used in responsive designs (Groves &
Heeringa, 2006; Wagner & Hubbard, 2014; Wagner et al.,
2012). The impact of the potentially missing data on both
management decisions and on propensity models is not cur-
rently understood.

Reducing errors should also be a goal for survey organi-
zations. There are at least three options. The first option
is to train and monitor interviewers more carefully to im-
prove level-of-effort paradata. Other studies have shown that
training can improve interviewer performance with respect to
administering the questionnaire (Billiet & Loosveldt, 1988;
Fowler Jr. & Mangione, 1990) and reducing nonresponse
(Groves et al., 1997; Groves & McGonagle, 2001). A prob-
lem with this approach is that it is very difficult (or impos-
sible) to know when call records are missing, thus reducing
the effectiveness of the training and monitoring. A second
option is to use methods that passively collect data such as
the GPS app used in this study. Given the difficulties we had
merging the two disparate sources of data (call records and
GPS data), more integrated systems may be required for this
to be a practical solution. For example, can GPS-enabled de-
vices be linked to sample management systems and passively
record when an active sampled housing unit is passed? Can
the interviewer be prompted by the sample management sys-
tem when a sampled housing unit is passed? The generation
of a call record could include the passive recording of the
GPS location. The US Census Bureau recently conducted
a test using a smartphone for sample management and in-
terviewing for the US Decennial Census using an approach
similar to this. When each call record was generated, the
GPS location was recorded. In the test, if the phone’s lati-
tude and longitude did not match that of a household where
an interview was being conducted, the interviewer was asked
if they were certain they were at the correct location (Wale-
jko & Wagner, 2015). A third option is to ask interviewers
to record some observations on each trip to an area segment.
Did they drive through the neighborhood? Did they see evi-
dence at any households that no one was home? These obser-
vations could be prompted either by call records generated in
the area segment or by GPS devices that signal to the sample
management system when the area segment is being entered
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or exited.

These options may have different costs. Asking interview-
ers to be more careful in the creation of call records may
lead to additional costs. We found that 79% of the times
that an interviewer passed a sampled housing unit, they did
not generate a call record of this event. If we asked them
to generate call records for all these events, we would be
more than tripling the number of call records. Would these
improved data be worth the costs? Bates et al. (2010) report
that the median time to record a call record ranged between
43 and 55 seconds, depending on the survey. In the NSFG,
an average quarter produces 22,000 call records. Producing
322,000 = 66,000 call records at 45 seconds each would
require an additional 550 hours of interviewer time.

The costs of technological solutions are not free either.
Integrating GPS technologies into existing sample manage-
ment systems requires programming time. Further, these op-
tions need to be tested to see if they lead to changes in in-
terviewer behavior (Olson & Wagner, 2015). The value of
the data needs to be evaluated as well. Do improved call
records reduce nonresponse bias of estimates? Does im-
proved reporting of these data lead to more careful control
of costs? Are field management decisions improved with
better data? Understanding the cost and error implications
of each of these decisions will be critical for the design of
paradata. Further studies that aim to understand cost and er-
ror implications are needed to inform these decisions. The
total survey error perspective should be a guiding principle
for this research.
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Appendix
Additional Details on Sampling and Linking
In order to draw a sample, we needed decide what would be
the appropriate unit for the sampling. We could have sam-
pled PSUs, interviewers, interviewer-days (where each day
that any interviewer worked is a unit) or GPS points within
a defined area. We sampled a subset of interviewer-days be-
cause this is the unit of analysis for which the GPS points
were collected, making the interviewer-day a better unit to
sample than PSUs, interviewers, or GPS points within a de-
fined area. This sampling design provided some protection
against missing true linkages due to errors in the recorded
times in each source of data. Errors in the dates in the GPS

data and call records are less likely to occur than errors in the
time of the attempt. The interviewer survey indicated that
most call records are generated on the day the call attempt
was made (79% said they always or almost always gener-
ate the call record immediately after the attempt, 92% said
they never complete call records at the “end of the week” in
which the call attempt was made). This parallels the expe-
rience reported by the Census Bureau (Bates et al., 2010).
The location of the roads (streets, highways, etc.) was de-
termined using the Census TIGER files. The snapping of
the GPS points gathered by the smartphones to these roads
was done using ArcGIS and the Geospatial Modelling Envi-
ronment (GME). Then routes were created by using the Ar-
cGIS Network Analysis toolbox. Merging the call records to
the routes then involved several steps. For each interviewer
and interviewer-day, we calculated the distance between the
sampled housing unit and the inferred route, the difference
between the time of the route and the time of the call attempt,
and identified whether the sampled housing unit was on the
same street as the inferred route (in order to find the road
that the housing unit faces). Sampled and visited housing
units were eligible to be linked if

1. the distance between sampled housing unit and the
route is within 1,000 meters,

2. the street name of sampled housing units’ address
and street name of the route match, and

3. the route is one of three closest routes to the sam-
pled housing unit.

The latter stipulation was necessary to limit the com-
putation required in situations where many routes would be
within 1,000 meters of the sampled housing unit.
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