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In rural societies of low- and middle-income countries, land is a major measure of wealth, a
critical input in agricultural production, and a key variable for assessing agricultural perfor-
mance and productivity. In the absence of cadastral information to refer to, measures of land
plots have historically been taken with one of two approaches: compass and rope (accurate, but
cumbersome), and farmers’ self-report (cheap, but marred by measurement error). Recently,
the advent of cheap handheld GPS devices has held promise for balancing cost and precision.
Guided by purposely collected primary data from Ethiopia, Nigeria, and Tanzania (Zanzibar),
and with consideration for practical household survey implementation, the paper assesses the
nature and magnitude of measurement error under different measurement methods and pro-
poses a set of recommendations for plot area measurement. The results largely point to the
support of GPS measurement, with simultaneous collection of farmer self-reported areas.
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1 Introduction

Land area measurement has been of concern to humanity
since the dawn of time. Some of the buildings constructed
in ancient Egypt as early as 2700 BC testify to the knowl-
edge of land surveying techniques. Evidence of boundary
surveying in Mesopotamia and the Nile Valley from around
1400 BC have also been found (Lyman & Wright, 2015).
The word “geometry” originated in ancient Greece from the
Greek words for “measure” and “Earth’. Similarly, ancient
traces of the command of surveying techniques have been
found in China (Swetz, 1992) and India (Joseph, 1997). The
need to measure land originated from concerns as diverse as
the construction of buildings, tax collection, and the need
to demarcate properties and boundaries. Those concerns are
still valid today, and many of the basic principles and tech-
niques have remained remarkably similar over the millennia,
even though technology has certainly advanced and allows
for measurements that are both easier and more precise than
they might have once been.

With over 70 percent of the developing world’s poor re-
siding in rural areas where agriculture is the primary means
of livelihood, high quality agricultural data and analysis are
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paramount to informing policy aimed at poverty reduction
(IFAD, 2010). Land is a key measure of absolute and rel-
ative farmer wealth, a critical input in production, and a
key variable for normalizing agricultural input use and out-
put measures. Although easily overlooked by analysts, the
quality of land area measurement can have non-trivial im-
plications for agricultural statistics, economics, and policy
analysis (Carletto, Gourlay, & Winters, 2015, 2013; Dillon,
Gourlay, McGee, & Oseni, 2016).

While the focus of this study is on the importance of area
measurement in smallholder agriculture in developing coun-
try contexts, the implications of land area measurement ex-
tend well beyond agricultural productivity. For instance, dis-
aggregated land ownership data are an input into analyses
of agrarian structures and how these evolve with economic
and demographic change, the related analyses of land in-
equality, and how this might be related to income inequality
and its trends. Unequal distribution of land has been linked
to less pro-poor growth, participation in and occurrence of
civil strife, and delayed long-run human capital development
(André & Platteau, 1998; Baten & Juif, 2013; Deininger &
Squire, 1998; Macours, 2011). Carletto et al. (2015) find
that the area measurement methodology used in calculating
the land Gini coefficient has consequences on the level of
inequality observed, with self-reported area estimates result-
ing in underestimated land inequality. Failure to adequately
measure land limits the ability to analyze the agricultural
economy and its relationship with land inequality. Addition-
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ally, land registration and titling programs require high qual-
ity land area measurement for fair program implementation.
Such programs are frequently met with opposition and accu-
sations of corruption or favoritism. Ongoing land certifica-
tion reform efforts in Ethiopia have recently moved from the
first stage of certification, which consisted of identification
of plots by land markings and neighbor recall, to the sec-
ond stage certification in which GPS measurements would
replace the first stage data. International organizations have
also emphasized the importance of objective area measure-
ment in land registration and redistribution.

Area measurement holds significant value in the devel-
oped country context as well. In Europe, national author-
ities conduct a regular Farm Structure Survey employing a
common methodology devised by Eurostat (Istat, 2008). The
EU FIELDFACT Project is one of many schemes that aim to
raise farmer awareness on the use of GPS in land measure-
ment for the purposes of precision agriculture and more ac-
curate and transparent subsidy claims through the EU’s Com-
mon Agricultural Policy1. Frequent land measurement is
encouraged by several developed country governments (e.g.
USA, UK, Germany, Australia) at the individual farmer level
in promotion of precision agriculture, whereby the produc-
tion process is tailored to farmland size estimates obtained
via GPS/GNSS and remote sensing. By knowing exact area
measurements, farmers are able to adjust input use accord-
ingly and, thus, optimize yields while cutting down on costs.
Effective land area measurement, therefore, also contributes
to a more focused application of fertilizers and pesticides that
could, in turn, alleviate environmental degradation and pol-
lution.

The methodological menu for collecting land area mea-
surements is diverse and selection of the appropriate method
depends on several factors. This paper focuses on the meth-
ods that hold relevance for agricultural and household sur-
veys 2. Readers interested in a broader approach to the mea-
surement of agricultural land are referred to FAO (1982), Sud
et al. (2015). This is an important distinction because several
measures of agricultural land that are important for agricul-
tural statistics can be collected separately from information
about the holding or the household (e.g. when the goal is to
estimate crop land or area under specific crops at the national
or other administrative level). For the analysis of household
level processes and outcomes, on the other hand, it is vital
that the land area being measured can then be linked to other
variables concerning the agricultural production, or welfare
outcomes, or other variables of interest for the same house-
hold or holding3. The main types of surveys for which these
measurements are relevant are agricultural sample surveys,
agricultural censuses, multi-topic surveys that cover agri-
culture (such as most Living Standard Measurement Study
(LSMS) surveys), and smaller scale household surveys car-
ried out for research purposes.

This paper aims to provide some elements to inform the
selection of measurement methods, based on empirical evi-
dence gathered by the Living Standard Measurement Study
– Integrated Surveys on Agriculture (LSMS-ISA) team of
the World Bank in Ethiopia, Tanzania, and Nigeria during
methodological fieldwork aimed at understanding the rela-
tionship between farmer estimates, GPS measurement and
the traditional compass and rope method. This paper focuses
on the analysis of area measurement data from the above-
mentioned studies. For more detailed guidance on costing,
training, implementation, and other practical considerations
for area measurement in household surveys, refer to the com-
plementary guidebook (Carletto, Gourlay, Murray, & Zezza,
2016).

2 Methods for land area measurement in surveys

Three main methods are used in the context of agricul-
tural statistics data collection for the measurement of land
area: respondent self-reported land area; compass and rope,
traditionally held as the “gold standard’; and, the most recent
addition, GPS-based measurement. Each area measurement
option has unique costs and benefits that need to be carefully
assessed in view of the scale of the data collection of which
they are a part, the intended use of the data, and the char-
acteristics of both the plots to be measured and the respon-
dents to the survey. Different methods also present different
challenges in terms of their implementation: a potentially
accurate method can become highly inaccurate if poorly im-
plemented in the field, or it may simply not be feasible on a
larger scale. The specific limitations, challenges, and bene-
fits of each of the abovementioned measurement methods are
addressed in detail below.

2.1 Self-Reported Area Estimation

Household surveys, particularly in developing countries,
have historically relied on subjective measurements of land
area, and for good reason. The marginal cost of adding one or
two questions to a survey that is already being administered
to a household is trivial and the exercise can be completed
in a matter of minutes, with no need to visit the plot. As a
result, item non-response for this item is usually negligible in
existing surveys. The minimal financial investment required
by this method, however, does not come without challenges,
particularly in terms of data quality.

Several factors influence the accuracy of subjective farmer
self-reported estimates of area, including respondent charac-

1http://www.gsa.europa.eu/introduction-and-promotion-gnss-agriculture
2 The focus will also be on low income countries with little or

no cadastral or administrative information to integrate this type of
data collection.

3Similarly, for plot level productivity analysis it is essential that
input and output data can be combined at the plot level.
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teristics, plot characteristics, and the land registration or ti-
tling system. Land in developing countries is often passed
down from generation to generation or distributed by the
community, and rarely are there property rights or documen-
tation to inform farmers of their true land area. In many cases
measurement units are not standardized and determining ac-
curate conversion factors is a time-consuming and often ill-
fated exercise. The most worrying aspect of some of the mea-
surement error associated with self-reporting is that it may be
systematic, and associated with key variables of interest.

The literature has shown the accuracy of subjective esti-
mates to be sensitive to respondent characteristics. More ed-
ucated farmers might be more numerate and more at ease at
quantifying their own land area, while absentee landlords, or
respondents for whom farming is only a secondary activity,
may be less aware of the characteristics of their plots. Using
data from Uganda, Carletto et al. (2013) analyze the determi-
nants of the difference between farmer self-reported plot area
and GPS measurements, finding that the age of the household
head has a significant and positive relationship with measure-
ment bias.

The quality of data collected through farmer self-reporting
is also significantly degraded by the natural inclination of re-
spondents to round off numbers, as has been documented by
several national level studies. Distributional analysis of GPS
and self-reported areas of the 2010/2011 Malawi Integrated
Household Survey shows clear evidence of heaping at whole
numbers and common fractions, such as 0.5 acres. Carletto et
al. (2015, 2013) and Desiere and D‘Haese (2015) find round-
ing to be a significant factor in the discrepancy between GPS
area and farmer self-reported estimates. Plot characteristics,
such as boundary delineation and the existence of property
rights, are known to significantly influence the measurement
bias (Carletto et al., 2015, 2013). Plot slope or crop-type
may also play a role in the ability of a farmer to estimate plot
size. De Groote and Traoré (2005) assessed the accuracy of
a method in which farmer self-report is elicited during a visit
to the plot, and a discussion with a trained enumerator. Com-
paring this method to rope and compass in southern Mali they
find that on average plots areas were underestimated by 11
percent, with smaller plots being overestimated and larger
plots underestimated, and measurement error being smaller
for cotton fields than for cereals, which supports the idea that
farmers may be better able to estimate the area of plots on
which cash crops are cultivated.

Farmer self-reported area estimates are influenced not
only by plot and respondent characteristics, but also by a
variety of cultural considerations and logistics of survey im-
plementation. One major such factor is the prevalence of
traditional or non-standard units. In many countries, re-
spondents are often not familiar with standard measurement
units such as acres, square meters, or hectares as they are
used to expressing area measures in traditional units. Those

units are not standardized and may vary in size by region, or
even across villages or farms. Goldstein and Udry (1999),
for example, report a correlation between self-reported and
GPS measured plot size of just 0.15 using data from Eastern
Ghana, which they attribute to the agricultural history of the
region where local field measurements are traditionally based
on length rather than area, and respondents are not accus-
tomed to converting them to two dimensional area measures.

Recent studies emphasize not only the presence of large
measurement error in self-reported measures, but also the
systematic association of the magnitude and sign of the er-
ror with important plot characteristics. Carletto et al. (2015),
using LSMS-ISA data from Malawi (2010/11), Tanzania
(2010/11), Niger (2011) and Uganda (2009/10), identify a
common trend in the magnitude of measurement bias, de-
fined as self-reported minus GPS area for plots for which
both measures were available and taken independently. The
smallest of plots (less than 0.5 acres) are systematically over-
reported. The degree to which these are over-reported varies,
but in all countries the mean self-reported area is overesti-
mated by at least 90 percent of the mean GPS area of plots in
that particular class. With increasing plot size the degree of
over-estimation decreases and, eventually, converts to under-
estimation for the largest plots. Carletto et al. (2013) find the
same trend in 2005/6 data from Uganda while Dillon et al.
(2016) provide evidence of similar systematic trends in data
from Nigeria. In a methodological study conducted in South-
ern Mali comparing area estimates with compass and rope
measurement on larger plots (average 0.816 ha, maximum
8.78 ha) De Groote and Traoré (2005) find that the same is
true: farmers (while aided by expert observers) are inclined
to over-estimate the area of plots less than one hectare, while
the degree of area under-estimation increases with plot size.

2.2 The “Gold-Standard”: Compass and Rope Mea-
surement

The compass and rope (CR) method is widely used in
farm surveys and is often considered to be the gold stan-
dard (FAO, 1982). When properly implemented, the com-
pass and rope method returns highly accurate measures that
can also provide a benchmark against which to judge the
precision of other methods. However, its implementation is
time-consuming and burdensome, and is often unfeasible in
the context of national household surveys and censuses.

This method requires that the enumerator and respondent
travel to the plot and clear its boundaries from obstacles to
the extent possible. Before the measurement can begin, the
farmer must pace the perimeter of the plot with the enumer-
ator in tow to ensure the measurement captures the proper
area. The enumerator will mark the corners of the plot with
ranging poles. When plots are irregularly shaped, enumer-
ators use their best judgment in declaring the corner points.
The boundary of bushy plots will need to be cleared (with the
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permission of the farmer) prior to commencing measurement
in order for the ranging poles to be visible. Only then can the
enumerator start the task of measuring the plot, which entails
measuring the distance and compass bearing between every
two consecutive corner points and then using these measures
to construct a polygon and compute the area (aided by a pro-
grammable calculator or other computational tool). An ex-
ample of instructions for completing the compass and rope
measurement can be found in FAO (1982), while an example
questionnaire format can be found in Carletto et al. (2016).

To some degree, the measurement error associated with
compass and rope is observable. The closure (or closing)
error is an important element of quality control in the com-
pass and rope method. It is a measure of the gap between
the reported start and end points of the constructed polygon,
and gives an indication of the accuracy of the measurement.
If the closing error is calculated while in the field, the mea-
surement can be conducted again when found to be above
a pre-determined threshold. The closing error will not con-
firm that the plot corners have been accurately assessed, how-
ever, only that the bearings and distances recorded form a
full closed figure. The precision of the measurement is still
subject to human error as identifying the plot corners can
be a burdensome task on its own, particularly for irregularly
shaped plots.

When corners are not clearly defined (as is the case in
many irregularly shaped plots) enumerators must plot the
“best” corner they can, and take the compass bearings. With
each additional corner, therefore, there is additional room for
error in the misreading of the compass or the measurement
of the distance between two corners. Misreading of the com-
pass by one or two degrees on one corner is not likely to re-
sult in material changes to the area measurement. However,
aggregated over several plot corners, these small deviations
add up, implying that the area calculation is not for the true
plot boundaries. While field protocols usually include clos-
ing error thresholds beyond which the measurement needs to
be retaken, this adds to the time necessary to take the mea-
surement.

The limitations to the compass and rope method lie pri-
marily in the burdensome nature and time required to com-
plete the measurement. The time requirements will vary by
plot size, but the compass and rope method is expected to be
consistently and significantly more time-intensive than GPS.
However, when properly implemented this method is consid-
ered the gold standard and, as such, it offers the benchmark
against which to evaluate the trade-offs with competing, less
time-intensive methods.

2.3 Measurement with Handheld GPS Devices

Measurement with Global Navigation Satellite Systems,
such as the Global Positioning System, collectively referred
to hereafter as GPS, requires that the enumerator first tra-

verse and clear the plot boundary with the farmer, as is the
case with compass and rope measurement. The enumerator
then begins at a designated corner of the plot, starts the GPS
area measurement function, paces the perimeter at the recom-
mended speed (pausing at all corners to allow for coordinate
capture) and completes the area measurement upon returning
to the initial corner (instructions may vary by GPS unit).

GPS technology and GPS-enabled devices offer a practi-
cal approach to objective area measurement (Kelly & Dono-
van, 2008). Measuring land area with portable GPS devices
is becoming increasingly popular among survey practitioners
around the world. The method is relatively cheap, accurate
and precise if careful measuring protocols are devised and
implemented. Currently, decent handheld GPS devices can
be procured for under $300 each4. The main concerns with
the method relate to the measurement of plots that cannot
be visited by survey staff (resulting in missing data), and the
accuracy of the measurement on very small plots. Advance-
ments in GPS technology show promise for increased accu-
racy in the coming years as more satellites are launched and
the availability of satellite augmentation systems spreads to
reach all world regions (at the time of writing, augmentation
systems do not currently extend across Africa to any useful
degree)5.

Time can often be the most restrictive resource in sur-
vey implementation, and existing studies comparing the time
use for GPS and compass and rope find that compass and
rope can take approximately 3.5 times as long as required
for GPS (Keita & Carfagna, 2009; Schøning, 2005). Keita
and Carfagna (2009) provide a discussion of the area mea-
surement performance of different GPS devices compared to
compass and rope. Their discussion is informed by a field
experiment, the results of which indicate that the GPS-based
area measurement is a reliable alternative to compass and
rope and that 80 percent of the sample plots were measured
with negligible error.

4The GPS devices used for the Ethiopia and Tanzania studies
discussed below, the Garmin eTrex 30, are priced at $299.99 at the
time of writing in March 2017 (http://www.garmin.com). The de-
vice used in the Nigeria study discussed below, the Garmin GPS
Maps 62 has been discontinued but was of a similar price point.

5In 2011 the Russian Global Navigation Satellite System
(GLONASS), which works seamlessly with the United States’ GPS
network, became globally operational with 24 satellites. Augmenta-
tion systems can improve the accuracy and speed of GPS measure-
ment in the field. The Wide Area Augmentation System (WAAS),
a real-time correction based on ground stations, has been proven
to increase position accuracy by as much as five times according
to a leading manufacturer. The WAAS system is only operational
in North America, while Europe and Asia have their own regional
solutions (Euro Geostationary Navigation Overlay Service (EG-
NOS) and Japanese Multi-Functional Satellite Augmentation Sys-
tem (MSAS), respectively). India’s regional augmentation system
(GAGAN) was cleared for navigational use in early 2014.

http://www.garmin.com
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Despite the great potential of GPS technology, GPS-based
coordinates are subject to known types of measurement error
stemming from satellite position, signal propagation, and re-
ceivers. Approximate contributions of these factors to the
overall position error are significant, ranging from 0.5 to 4
meters (Hofmann-Wellenhof, Lichtenegger, & Wasle, 2008).
The number of satellites, in particular, can cause the distri-
bution of position error to be elliptical, rather than spherical,
and therefore not exactly randomly distributed around the
true point (Van Diggelen, 2007). Additional factors that may
be expected to influence the quality of GPS measures include
the presence of dense tree canopy or cloud cover, which may
interfere with the signal. The quality of the GPS device used
also has non-negligible impact on the magnitude and distri-
bution of measurement error (Palmegiani, 2009). Although
position estimates are subject to a certain level of inaccuracy
and may be distributed in a non-spherical manner, in theory
the error associated with area measurement should be ran-
dom – that is, the factors that cause non-spherical position er-
ror are largely macro level factors that are unlikely to change
in the short period of time required to pace the perimeter of a
plot, rendering the position error distribution consistent at all
points along the perimeter. A study by (Bogaert, Delincé, &
Kay, 2005) using simulated coordinates and European Geo-
stationary Navigation Overlay Service (EGNOS) augmenta-
tion concluded that the position error can be reasonably as-
sumed to be normally distributed.

The literature suggests some concern that errors in GPS
measures may vary systematically with key plot character-
istics, namely plot size, slope, and shape. Few published
studies have tested the use of GPS measurement against
the gold-standard measure, the traditional compass and rope
method. Recent research by FAO points out possible effects
of slope on the accuracy of GPS-based area measurement
(Keita, Carfagna, & Mu‘Ammar, 2010). Slope-related effects
on area measurement are rooted in the fact that the actual area
should be the horizontal projection of the plot, as opposed
to the plot area itself (Muwanga-Zake, 1985). The differ-
ence between actual area and projection appears to be partic-
ularly important for slopes greater than 10 degrees (Fermont
& Benson, 2011).

Bogaert et al. (2005), based on modeling and simulations
conclude that “for GPS/EGNOS measurements made by an
operator moving along the border of a field, area measure-
ment error is linked both to the operator speed and to the
acquisition rate of the GPS device. For typical field sizes
found in the European Union, ranging from 0.5 ha to 5 ha,
the coefficient of variation (CV) for area measurement errors
is about 1 percent to 5 percent. These results depend on the
field area, but they can be considered to be insensitive with
respect to the field shape. They also show that field area mea-
surement errors can be limited if an appropriate combination
of operator speed and GPS acquisition rate is selected.”

Fasbender and Lucau (2012) also find that plot shape
as well as plot size affects GNSS area measurement error.
In their synthetic simulation of four distinct parcel shapes
(square, rectangular, elongated narrow rectangle, and irregu-
lar polygon), with simulations for areas from 1 m2to 10 ha,
they find that the variance of the measurement on the elon-
gated rectangle and irregularly shaped polygon are the most
amplified. Specifically, they suggest that the error on such
irregular parcels, which are common amongst low-income
regions” small-holder farmers, is primarily attributable to op-
erator (enumerator) error (Fasbender & Lucau, 2012).

One concern with GPS measures in large scale surveys,
which does not apply to self-reported measures, is the rate
of missingness in the data. Missingness rates of 20-30 per-
cent are not uncommon in existing datasets, and the pat-
tern of missingness is not random but tends to be corre-
lated with both plot and respondent characteristics. Kilic,
Zezza, Carletto, and Savastano (2017) show, with national
data for Uganda and Tanzania, how plot distance from the
interviewed household is the main factor determining what
plots get measured, as field protocols normally include a pro-
vision not to measure plots beyond a given distance. Partly
due to that, the plots that are not measured also differ sys-
tematically from those for which a GPS measure is taken
in a number of (self-reported) characteristics, such as self-
reported plot size, level of input use, and titling. Further-
more, some respondent characteristics are associated with
higher missingness rates: plots belonging to older, less edu-
cated, poorer household heads, owning fewer plots are more
likely to be measured than other plots. This is a drawback
of GPS data that raises concerns about possible biases intro-
duced by relying on observed GPS plot measures alone. Uti-
lizing the compass and rope method in place of GPS would
not alleviate these missingness problems, as it, too, requires
physical travel to the plot.

In the presence of rates of missingness this high, impu-
tations are often necessary for analysts to be able to work
with complete case datasets. Self-reported land areas mea-
sures have been shown to be an important predictor of GPS
area measure (Kilic et al., 2017). For that reason it is rec-
ommended that GPS measures be taken in addition to, not
instead of, self-reported ones.

3 Data: The LSMS Methodological Validation
Program

In order to address the gaps in the area measurement liter-
ature and extend the applicability of studies to the plot con-
ditions common to developing countries, the Living Stan-
dard Measurement Study – Integrated Surveys on Agricul-
ture (LSMS-ISA) of the World Bank has prioritized land area
measurement in its research agenda. The Global Strategy
to Improve Agricultural and Rural Statistics has also identi-
fied improving the measurement of crop productivity, and by
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necessity farm area measurement, as a top priority (World
Bank, FAO, United Nations, 2010). Because agricultural
statistics are often marred by controversy over methods and
overall quality, stringent validation of the available measure-
ment methodologies is essential. With financial support from
UK Aid, the Living Standards Measurement Study (LSMS)
has partnered with national statistical offices in the design
and implementation of methodological validation studies.
The methodological studies completed through the LSMS
have a particular focus on the feasibility of implementation
in large-scale household surveys, thus the recommendations
on best practices are made in consideration for both the high-
est data quality and practicality of implementation under the
constraints common in this type of survey. To date, method-
ological validation studies on land area measurement have
been conducted in Tanzania (Zanzibar), Ethiopia and Nige-
ria. This paper uses the data collected within these studies,
which are briefly described in what follows.

Data for Zanzibar, Tanzania come from the Measuring
Cassava Productivity study. This study focused on testing
several methods for measuring cassava production, includ-
ing crop-cutting, harvest diary, various means of assisted
harvest diary, and various recall periods. To complement
the measurement of cassava production, cassava plots were
also measured using three methods of area measurement.
Fieldwork extended from June 2013 to May 2014, with area
measurement completed from August 2013 to January 2014.
The study was conducted in two districts, one on Unguja
and one on Pemba Island, Zanzibar. The sample consisted
of 1,247 households, with 1,932 cassava plots measured for
area. Only 1.1 percent of selected households failed to par-
ticipate in the study, rendering non-response negligible (98.9
percent household response rate). Partners in the study in-
cluded the Ministry of Agriculture and Natural Resources,
Zanzibar, the Office of the Chief Government Statistician,
Zanzibar, and the World Bank. The handheld GPS Unit used
in the study was a Garmin eTrex 30.

The second data set used in this paper comes from the
Ethiopia Land and Soil Experimental Research (LASER)
study. The LASER study involved methodological validation
of plot area measurement, soil fertility testing, and measure-
ment of maize production. Area measurement and soil fer-
tility testing was conducted on up to two randomly selected
plots per household (where applicable, one pure-stand maize
plot was selected for crop-cutting). The questionnaires were
administered using computer-assisted personal interviewing.
Fieldwork was conducted in multiple waves. Post-planting
activities were conducted from September to December
2013. Post-harvest activities were conducted from January to
early March 2014. Crop-cutting was conducted at any point
during this period when the maize was deemed ready for har-
vest by the respondent. Area measurement was conducted in
the post-planting visit. The data collection for LASER was

conducted in 3 zones of the Oromia region in Ethiopia. In
total, 85 enumeration areas (EAs) were randomly selected
using the Central Statistical Agency of Ethiopia’s Agricul-
tural Sample Survey as the sampling frame. Within each EA,
12 households were randomly selected from the household
listing completed September 2013. Non-response was not a
problem, as only 2 of the 1020 selected households refused
to participate in the study (99.8 percent household response
rate). Partners in the study include the Central Statistical
Agency of Ethiopia, the World Agroforestry Centre, and the
World Bank. This study also used Garmin eTrex 30 units to
collect GPS land area data. Data for the Ethiopia LASER
study is available on the LSMS website (Ethiopia Land and
Soil Experimental Research (LASER) data, 2016).

The last batch of data used in this analysis comes from
the Nigeria Area Measurement Validation Study. The pri-
mary focus of this study was validation of area measure-
ments. Extraordinary differences between GPS and farmer
self-reported areas were observed in the first wave of the
Nigeria General Household Survey, invoking the need to val-
idate the methodologies. This study was conducted on a sub-
sample of the General Household Survey panel households.
After the measurement conducted in the second wave of the
national survey, a special team was deployed to re-measure
a subsample of plots using three area measurement meth-
ods. Fieldwork for the area measurement validation study
ran from March to May 2013. Four states were selected for
inclusion in the study based on safety, location, and previous
performance of farmer self-reported area and GPS area. The
plot selection was stratified on plot size to ensure a complete
range of plot sizes included6. In total, 211 households were
selected, including 518 plots. Nine households failed to par-
ticipate in the study, totaling 23 plots, either due to farmer
refusal (4 plots), land disputes (5 plots), or other reasons (14
plots) (95.7 percent household response rate). The study was
implemented by the National Bureau of Statistics, Nigeria,
and the World Bank. The GPS unit utilized for this study
was the Garmin GPS Maps 62.

In each of the three studies, agricultural plots were mea-
sured first by farmer self-reported estimate, then by compass
and rope, and finally by GPS. The order of measurements
was deliberate and great attention was paid to this in the field.
Farmer estimation must be recorded prior to any objective

6The stratification on plot size has the potential to bias results, as
larger plots were more heavily sampled relative to the population.
In order to evaluate this possibility, all analysis was run with and
without sample weights. The conclusions of the paper were not
altered by the inclusion of sample weights. This, coupled with the
fact that using unweighted analysis allows for greater comparability
with the pooled analysis, led to the presentation of unweighted re-
sults throughout. Sample weights were not computed for Tanzania
or Ethiopia, as household selection was random within the selected
enumeration areas and not stratified on plot size.
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measurement so as not to influence the farmer. Enumerators
were instructed in all studies not to influence the farmer’s
estimate. Consistent with the evidence found in the national
level studies discussed above, data from each of the three
methodological studies reveals rounding of self-reported area
estimates on common fractions, such as 0.25 and 0.5, and
integers.

Although in each of the three studies the training of meth-
ods was conducted in the same way, with the same LSMS
staff present at each training, there were two differences in
implementation worth noting. First, in each survey, enumer-
ators were required to repeat the compass and rope measure-
ment if the closing error was 5 percent or more. However,
in the Ethiopia experiment the closing error calculation was
done on the spot by the enumerators, possible because of the
use of computer-assisted personal interviewing. In Tanza-
nia and Nigeria, the closing error was calculated by the su-
pervisors (in some instances the supervisors in Nigeria were
present at the plot at the time of measurement). This may in-
fluence the comparison of compass and rope with GPS mea-
surement if, for example, an enumerator had to re-visit the
plot in order to take the new compass and rope measure-
ment and unintentionally identified the borders differently
during the second visit. In Ethiopia, on the other hand, all
re-measurements were completed at the same time of the ini-
tial measurement as the closing error was calculated before
leaving the plot. The instance of closing error greater than
5 percent, however, was rare and therefore not expected to
influence the analysis (in the Ethiopia experiment, only 5
percent of fields were measured more than once).

Second, the skill level of the enumerators varied. In Tan-
zania, the enumerators were the agricultural extension offi-
cers for the local area. These enumerators were very fa-
miliar with the agricultural practices but generally inexpe-
rienced in survey administration and the use of the partic-
ular measurement tools. These enumerators also happened
to be significantly older and several had poor vision (requir-
ing the purchase of glasses in order to read the compass
and GPS). Because of the ongoing and intensive nature of
the cassava measurement component of the Tanzania exper-
iment, the extension officers were the preferred enumerators
for the existing infrastructure and established relationships
within the community. In Ethiopia, professional enumera-
tors were hired based on past performance with the Central
Statistical Agency and previous experience with computer-
assisted personal interviewing. In this particular study the
enumerators all held bachelor’s degrees and were relatively
young. In Nigeria, staff from the head office of the National
Statistics Bureau were trained and sent to the field rather than
the enumerators used to conduct the national panel survey. In
each of these studies the health, education, and skill level var-
ied, as did the incentive structure and duration of fieldwork.
Rather than discredit the comparability of the data collected

from each of these studies, the consistency observed in the
comparison of methods should lend confidence in the appli-
cability across survey environments.

4 Methods

Before comparing the various measurement methods, the
integrity of the compass and rope method is first examined,
as well as a descriptive analysis of the time required to com-
plete the measurements. A simple OLS model is employed
with the aim of identifying the determinants of closing er-
ror, a proxy for measurement error in the compass and rope
measurement. Recall that the closing error reflects the error
in constructing a full polygon only, and does not account for
cases in which enumerators may misidentify plot corners or
simplify plot shapes. The following model is estimated:

Ci = γ + α1Li + α2S i + α3Ti + α4Wi + εi , (1)

where C is the percent closing error on plot i, L is the mea-
sure of the plot taken using CR, S is a vector of proxies
for the complexity of plot shape (the number of corners and
plot slope, where available), T is a vector of dummy vari-
ables related to tree canopy cover (the reference being no
canopy cover), W is a dummy variable indicating mostly
cloudy, all cloudy, or rainy weather conditions at the time
of the measurement, and ε is a random error with the usual
desirable characteristics. Parameters to be estimated include
α1, α2, α3 and α4 and the constant term, γ. Had plots been
randomly assigned to enumerators, enumerator effects could
have been used to control for enumerator skill level and other
idiosyncrasies, but plots were assigned primarily based on
geographic proximity and thus enumerators often measured
plots with very similar geographic properties, rendering enu-
merator effects inappropriate.7

After examining the potential determinants of error in
compass and rope measurement, comparisons of the various
measurements are made. To that end we construct two mea-
sures of deviation between the GPS and CR measures, de-
fined as follows:

Bias = GPS − CR ,

and
Relative Bias =

GPS − CR
CR

· 100

The bias is the simple difference between the GPS mea-
sure and the CR measure, expressed in acres. The relative
bias is the simple difference between the GPS measure and
the CR measure, in acres, divided by the CR measure, ex-
pressed in percentage terms. The absolute value of both mea-
sures is also used in the analysis.

7The inclusion of enumerator fixed effects did not improve the
fit of the models, likely due to the correlation of enumerator assign-
ment and geographic identifiers.
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Although the main focus on what follows will be on the
deviation of the GPS from the CR measure, we will occasion-
ally employ measures of deviation of the self-reported (SR)
from the CR measure, employing a terminology analogous
to the one just described for the deviation of GPS from CR
measures8.

The analysis will be based initially on a bivariate compari-
son of the means of the above variables for particular portions
of the sample cross-tabulated with a broad range of variables
of interest. The second part of the analysis will explore the
determinants of the different measures of bias. We will esti-
mate two main regression models. The first model is an OLS
regression specified as:

Yi = γ+ β1Li + β2Ci + β3SATi + λS i + δTi + ηWi + εi , (2)

where Y is one of the four measures of bias defined above
(bias, relative bias, absolute bias and absolute relative bias),
L is the measure of the plot taken using CR, C is the clos-
ing error of the CR measure, S is a vector of proxies for the
shape of the plot (including the number of corners and the ra-
tio of the perimeter/area, SAT is the number of satellites the
GPS device was fixed on at the time of measurement, T is a
vector of dummy variables related to tree canopy cover (the
reference being no canopy cover), W is a vector of dummy
variables related to weather conditions at the time of the mea-
surement (the reference being clear or partly cloudy sky), and
ε is a random error term with the usual desirable character-
istics. β1, β2, and β3 are parameters to be estimated, as are
vectors λ, δ, and η, and constant, γ.

To focus specifically on plots for which large deviations
are observed between GPS and CR, we then estimate a probit
model to capture the factors likely to increase the probabil-
ity that a plot be measured with a relative bias larger than ten
percent (in absolute value). We estimate three versions of this
model for each country dataset, so as to investigate whether
under- and over-estimation by large margins are driven by
different factors. The model is specified as follows:

Pr(i = 1|Xi) = Φ(Xiβ) , (3)

where Xi = (Ci, S i,SATi,Ti,Wi) and Φ is the standard cu-
mulative distribution function and β is a vector of estimated
parameters. In equation (3), Yi is one of three outcomes: a
plot having absolute relative bias greater than 10 percent; a
plot having relative bias greater than 10 percent; a plot having
relative bias smaller than -10 percent.

5 Results

5.1 Compass and rope: How golden is the gold stan-
dard?

Closing error is (weakly) associated with plot charac-
teristics. The error associated with the compass and rope

measurement is to some degree observable through the clos-
ing error. The average closing error in our data across all
measurements is around 2 percent, with the range going from
1.6 percent in Nigeria to 2.2 percent in Ethiopia.

Regression analysis aimed at determining the factors that
contribute to closing error is presented in Table 1. At the in-
dividual country level, only in Tanzania is there a significant
negative relationship between plot area and closing error, im-
plying that closing error is smaller on larger plots. When the
data from three experiments are pooled, plot size has no sig-
nificant effect on the closing error. The number of corners
on the plot (as measured by the number of vertices captured
in the compass and rope measurement) exhibits a negative
and significant coefficient in Ethiopia and the pooled data –
contrary to the expectation that more corners lead to higher
closing error. Tree cover proves to have little effect on the
closing error, as none of the individual experiments exhibit
significant coefficients. Ultimately, there seems to be little
evidence that closing error is systematic. This is comforting
for the analysis that follows, as we move to explore system-
atic sources of error in other area measures, namely deviation
from the CR method.

Compass and rope is significantly more time consum-
ing that GPS measurement. From the perspective of sur-
vey practitioners and national statistical offices, considera-
tions about accuracy need to be accompanied by considera-
tions related to time (and hence cost) of each methods’ im-
plementation. The reason why the choice of method should
matter for survey practitioners is compellingly conveyed by
Figure 1, which shows the measurement time for GPS and
compass and rope measurements by plot size classes, moving
from small plots on the left to large plots on the right. Com-
pass and rope requires significantly more time than GPS,
with time increasing exponentially with plot size, while the
additional time required for GPS measurement for plots of
the size included in these studies is negligible. In both the
Ethiopia and Tanzania experiments, the compass and rope
measurement took approximately four times the time re-
quired for GPS9. In Ethiopia, GPS required 13.9 minutes on
average, while the compass and rope measurement on the
same plots required an average of 57 minutes. In Tanzania,
the duration averages were 7.4 minutes and 29.3 minutes for
GPS and compass and rope respectively. These findings are

8To limit the influence of outliers, 78 observations which fell
in the top 1 percent in terms of absolute value of relative bias (for
GPS vs CR and SR vs GPS) of the individual country data sets
were dropped. The majority of identified outliers are smaller plots
(as measured by CR), where small discrepancies in area estimates
result in very high absolute value of relative bias figures (in per-
centage terms). The exclusion of outliers results in conservative
estimates of the bias between CR and subjective measurements, but
has little impact on the comparison of GPS and CR measurements.

9Data on measurement duration are not available for Nigeria.
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Table 1
Determinants of Closing Error

OLS Regression Ethiopia Tanzania Nigeria Pooled

CR Area (acres) 0.020 −0.291* 0.096 −0.032
CR Area2 0.166 - −0.005 -
CR Area3 −0.039* - - -
Number of Corners −0.032** 0.006 −0.004 −0.013**

Slope (clinometer) 0.014** - - -
Treecover (Ref. Categ.: None)

Partial −0.003 −0.052 −0.128 −0.143**

Heavy 0.183 −0.163 0.331 0.021
Weather (Ref. Categ.: Partly Cloudy or Clear)

Mostly Cloudy, All Cloudy, or Rainy −0.014 −0.128* 0.036 −0.048
Constant 2.298** 2.118** 1.597** 2.238**

N 1765 1908 485 4158
R2 0.015 0.007 0.019 0.008

* p <.05; ** p < .01

consistent with previous studies such as Keita and Carfagna
(2009), Schøning (2005) who find that compass and rope
takes approximately 3.5 times as long as GPS on average.

To put the time considerations into context, given the sam-
ple size and average measurement durations in Ethiopia, the
field teams spent a total of 416 hours measuring plots with
GPS (1797 plots * 13.89 minutes) and 1,707 hours measur-
ing with compass and rope. Using GPS instead of compass
and rope, therefore, saved 1,291 hours of labor – over 160
person/days (at 8 hours per day). This estimate of time sav-
ings is for a relatively small-scale methodological experi-
ment; savings in nationally representative household surveys
would be proportionally larger. Minimizing the amount of
time required to collect quality land area data can signifi-
cantly reduce costs and improve the flow of fieldwork.

5.2 Comparison of competing measurements

Compass and Rope vs. Self-Reported Estimations.
Before examining the comparability of GPS and compass
and rope measurements, we first explore the difference in
subjective (self-reported) and objective (CR) measurement10.
Table 2 presents mean plot areas as measured by farmer
self-reported estimation and compass and rope for all three
methodological experiments. The data is grouped by com-
pass and rope plot size class. While the mean plot areas as
measured by GPS and compass and rope differ by only as
much as 3 percent on average (explored further below), the
mean self-reported and compass and rope measurements dif-
fer by as much as 143 percent on average (Tanzania). The
mean difference is smaller in Ethiopia and Nigeria, at 23 per-
cent and 5 percent respectively, but still considerably larger
than the divergence observed between the objective measure-
ments.

Self-reported measures result not only in higher aver-
age deviations, but in dramatic systematic error as the size
of small plots is overestimated by anywhere from 30 per-
cent (Nigeria) up to a factor of six (Tanzania), with the
over-estimation declining almost monotonically as plot size
increases and eventually results in under-estimation in the
larger plot size classes in Nigeria and Ethiopia. These results
comparing objective and subjective area measures are in line
with findings of previous literature (Carletto et al., 2015; De
Groote & Traoré, 2005). The scatter plots on the right side
of Figure 2 convey the same message in graphic form.

Compass and Rope vs. GPS. In the literature, the main
reservation regarding the use of GPS measurement in sur-
veys is its performance on small plots. Furthermore, Keita
and Carfagna (2009), Palmegiani (2009), Schøning (2005)
all found that GPS tends on average to err on the negative
side, i.e. to understate the area with respect to compass and
rope.

Table 3 presents descriptive statistics on the GPS and com-
pass and rope area measurements completed as part of the
methodological studies. Mean plot size is small in all coun-
tries, ranging from 0.27 acres in Tanzania to 1.31 acres in
Nigeria. The mean difference between compass and rope and
GPS measurement is very small. The sample mean bias in all
three countries is plus or minus 0.01 acre, which translates in
a 1 to 3 percent difference when expressed in relative terms
(note that the values are not expressed in absolute value and
as such negative and positive figures are averaged). Mean
GPS and CR measurements are significantly different at the

10Comparing self-reported to GPS yields exactly the same re-
sults, even when analyzed using data from the nationally represen-
tative LSMS surveys in Malawi (2010/11) and Tanzania (2010/11),
therefore we limit the comparison to self-reported and CR.
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Figure 2. Scatter plots of Compass and Rope vs GPS (left) and Self-Reported (right) land area
measures, acres (Note: red line is line of equality between measurements.)
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Table 2
Comparison of Self-Reported and CR measures

Mean Bias
/Mean CR Difference

Level (CR) N SR CR Bias (in %) in means

Ethiopia
1 (<0.05 acres) 352 0.09 0.02 0.07 307 **
2 (<0.15 acres) 392 0.27 0.09 0.18 188 **
3 (<0.35 acres) 351 0.40 0.23 0.17 72 **
4 (<0.75 acres) 316 0.66 0.51 0.15 29 **
5 (<1.25 acres) 179 0.95 0.97 −0.02 −2 -
6 (≥1.25 acres) 99 1.42 1.90 −0.47 −25 **

Total 1689 0.47 0.38 0.09 23 **

Tanzania
1 (<0.05 acres) 44 0.32 0.04 0.28 661 **
2 (<0.15 acres) 622 0.41 0.11 0.31 288 **
3 (<0.35 acres) 816 0.62 0.23 0.39 173 **
4 (<0.75 acres) 323 0.98 0.49 0.49 100 **
5 (<1.25 acres) 63 1.53 0.92 0.61 66 **
6 (≥1.25 acres) 20 2.05 1.81 0.24 13 -

Total 1888 0.65 0.27 0.38 143 **

Nigeria
1 (<0.05 acres) - - - - - -
2 (<0.15 acres) 21 0.15 0.11 0.03 30 -
3 (<0.35 acres) 73 0.39 0.25 0.14 55 **
4 (<0.75 acres) 129 0.79 0.53 0.26 50 **
5 (<1.25 acres) 108 1.31 0.99 0.32 33 **
6 (≥1.25 acres) 153 2.56 2.87 −0.30 −11 -

Total 485 1.38 1.31 0.07 5 -

Pooled
1 (<0.05 acres) 397 0.12 0.03 0.09 371 **
2 (<0.15 acres) 1035 0.35 0.10 0.25 247 **
3 (<0.35 acres) 1240 0.55 0.23 0.32 136 **
4 (<0.75 acres) 768 0.82 0.50 0.31 62 **
5 (<1.25 acres) 350 1.16 0.96 0.20 21 **
6 (≥1.25 acres) 272 2.11 2.44 −0.32 −13 *

Total 4062 0.66 0.44 0.22 51 **
* p <.05; ** p < .01

1 percent level in Ethiopia, Tanzania, and the pooled data.
In Nigeria, GPS and CR area measurements are significantly
different at the 10 percent level. Furthermore, in Nigeria the
GPS and compass and rope measurements are significantly
different at the 5 percent level for all plot size levels reported
in Table 3 except for the largest plots (level 6), in which the
measurements are not significantly different. Notably, GPS
and CR measurements on the smallest plots (level 1) are not
found to be significantly different in Ethiopia, Tanzania or
the pooled data.

The data do not exhibit any clear trends in terms of GPS
underestimating plot size compared to CR. In Nigeria, GPS
under-estimates plot size compared to CR, but only slightly,
while in Tanzania and Ethiopia GPS averages are somewhat
larger than compass and rope measurements. Moreover, the
magnitude as well as the sign of the error seem both to be un-
related to plot size, being small in all of the plot size classes.

The concern of GPS accuracy at small plot sizes is also
discounted, particularly when looking at group means. While
some literature suggests that plots smaller than 0.5 hectares
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Table 3
GPS vs Compass and Rope (CR) measures, by plot size classes

Mean Bias
/Mean CR Difference

Level (CR) N SR CR Bias (in %) in means

Ethiopia
1 (<0.05 acres) 390 0.02 0.02 0.00 0 -
2 (<0.15 acres) 400 0.10 0.09 0.00 2 **
3 (<0.35 acres) 365 0.24 0.24 0.01 3 **
4 (<0.75 acres) 328 0.52 0.51 0.01 2 **
5 (<1.25 acres) 182 0.98 0.96 0.02 2 **
6 (≥1.25 acres) 100 1.91 1.89 0.02 1 -

Total 1765 0.38 0.38 0.01 2 **

Tanzania
1 (<0.05 acres) 45 0.04 0.04 0.00 −3 -
2 (<0.15 acres) 631 0.11 0.11 0.00 2 **
3 (<0.35 acres) 823 0.23 0.23 0.01 2 **
4 (<0.75 acres) 326 0.51 0.49 0.02 4 **
5 (<1.25 acres) 63 0.94 0.92 0.02 2 **
6 (≥1.25 acres) 20 1.91 1.81 0.09 5 -

Total 1908 0.28 0.27 0.01 3 **

Nigeria
1 (<0.05 acres) - - - - - -
2 (<0.15 acres) 21 0.11 0.11 −0.01 −7 **
3 (<0.35 acres) 73 0.24 0.25 −0.01 −4 **
4 (<0.75 acres) 129 0.52 0.53 −0.01 −2 *
5 (<1.25 acres) 108 0.97 0.99 −0.02 −2 **
6 (≥1.25 acres) 153 2.86 2.87 −0.01 0 -

Total 485 1.30 1.31 −0.01 −1 *

Pooled
1 (<0.05 acres) 436 0.02 0.02 0.00 −1 -
2 (<0.15 acres) 1052 0.10 0.10 0.00 2 **
3 (<0.35 acres) 1261 0.24 0.23 0.01 2 **
4 (<0.75 acres) 783 0.51 0.50 0.01 2 **
5 (<1.25 acres) 353 0.97 0.96 0.01 1 -
6 (≥1.25 acres) 273 2.44 2.43 0.01 0 -

Total 4158 0.44 0.44 0.00 1 **

Note: Results for categories in which there are fewer than 20 observations are not re-
ported. The same is true for all tables presented in the paper.
* p <.05; ** p < .01

(1.24 acres) have significantly different GPS and compass
and rope measurements with much lower correlation (Schøn-
ing, 2005), results from the methodological validation exper-
iments suggest otherwise. In the pooled data, the difference
between the average GPS measurement and average compass
and rope measurement for plots ranging from 0.05 – 0.15
acres was less than 0.002 acres or 2 percent of the average

compass and rope area. Even for the smallest plots, those less
than 0.05 acres (202.3 square meters or 0.02 hectares), the
average measurements are extremely consistent. In Ethiopia,
the average GPS measurement of 390 plots in this size range
is 0.0216 while the average compass and rope measurement
for the same plots is 0.0215 acres.

The differences in mean plot areas do not appear to bear



CHEAPER, FASTER, AND MORE THAN GOOD ENOUGH: IS GPS THE NEW GOLD STANDARD IN LAND AREA MEASUREMENT? 247

Table 4
Correlation Coefficient (GPS & CR)

Level (CR) Ethiopia Tanzania Nigeria Pooled

1 (<0.05 acres) 0.95 0.81 - 0.95
2 (<0.15 acres) 0.91 0.92 0.91 0.92
3 (<0.35 acres) 0.90 0.95 0.90 0.93
4 (<0.75 acres) 0.91 0.96 0.87 0.92
5 (<1.25 acres) 0.93 0.95 0.91 0.92
6 (≥1.25 acres) 0.98 0.96 1.00 1.00

Total 0.996 0.993 0.997 0.997

any clear trend with plot size. In Tanzania, the smallest and
largest plot classes have the smallest and largest average rel-
ative bias, but the figures are not large, and the number of
observations in these two classes fairly small. The correla-
tion coefficients between GPS and CR are in excess of 0.99
in all three studies, and 0.87 or larger in all classes with n
larger than 50 (Table 4).

The results presented here suggest that average GPS mea-
sures are not much different from compass and rope even for
very small plots, and even from a fairly small n, and that
is despite the difference in enumerator skill levels and plot
characteristics of the different studies. This is confirmed by
an inspection of the scatter plots in the left side of Figure 2,
where GPS measures are plotted against compass and rope
with measures tightly clustered around the equality line. This
all lends support to the argument that GPS is an acceptable
substitute of compass and rope measures across the range of
plot sizes in our samples, at least if the goal is that of estimat-
ing average plot size for groups with sufficient numerosity.
While this section examines mean differences, the regression
analysis in subsequent sections delves deeper into differences
in measurements on individual observations.

GPS measures: Exploring deviations from the gold-
standard. Previous studies have also raised the issue of
how factors other than plot size may affect the quality of GPS
measures, as was recalled earlier in this paper. None of the
studies have provided compelling, conclusive evidence on
the impact of these factors on measurement quality. Some
have explicitly called for further research to systematically
investigate this matter. Our data allow for analysis on a num-
ber of factors including plot shape, slope, and tree cover,
weather conditions, and number of GPS satellites acquired
at the time of measurement, via a comparison of the GPS
measurement to the “gold standard” of CR measurement.

Satellite acquisition, canopy cover, weather conditions,
and plot slope. The global navigation system requires, at
a minimum, the acquisition of four satellites to triangulate
the 3D position of the GPS receiver. The acquisition of ad-
ditional satellites can improve position error11. Enumerators
in both the Tanzania and Ethiopia experiments recorded the

number of satellites fixed at the start of the GPS measure-
ment. In training, enumerators were instructed to wait until
at least four satellites were acquired, with further instruction
that they must wait until the “GPS accuracy” figure on the
GPS device stabilized (thereby allowing time for maximum
satellite acquisition). Descriptive statistics (Annex 1) suggest
that the difference between GPS and CR measurement tends
to decline the higher the number of satellites, but average
difference remains small across all the distribution of plot
areas. In Ethiopia, the difference between measurements is
1.6 percent (but not statistically significant) on the plots with
fewer than 16 satellites and 1.2 percent on plots with 20 or
more satellites, though the trend is not linear as the middle
category has an average of 1.8 percent bias. In Tanzania, the
differences are 2.9 percent and 2.6 percent, respectively.

Various geographic and atmospheric conditions can im-
pact the satellite acquisition and signal quality. Dense
canopy cover and weather conditions at the time of measure-
ment have been found or argued to impair the precision of
the GPS measurement. Contrary to expectations, descriptive
analysis reveals that the relative difference between the GPS
and CR measurements was slightly higher on plots with no
tree cover, with the level of bias decreasing with increasing
canopy density. In Ethiopia and Nigeria, there was no statis-
tically significant difference in measurements found on plots
reported with partial or heavy tree cover. The lack of statisti-
cal significance in the groups with canopy cover is also likely
linked to the smaller sample size for these groupings. This
could also be attributable to plot size, enumerator character-
istics or other factors, which are not controlled for in these
simple descriptive statistics. The sections below will further
explore the influence of tree cover on measurement.

The literature on GPS measurements points to weather
conditions as a potential source of error. In all three method-
ological studies, no clear trend emerges in terms of system-
atic association of the differences between the two measures
and weather conditions. In Ethiopia, the relative bias in
measurements hovers around 2 percent for plots measured
in conditions “mostly clear” or better, and the difference in
mean measurements is only significantly different on plots
measured in clear or mostly clear conditions. Similarly, in
Nigeria differences in GPS and CR measurements are only
observed on plots measured in “clear/sunny” conditions. The
descriptive statistics from Nigeria and Tanzania provide lit-
tle evidence that weather conditions have an adverse effect
on GPS area measurement. It should be noted that the ma-
jority of plots were measured in conditions “partly cloudy”
or clearer.

Keita et al. (2010), and Muwanga-Zake (1985) explain
that plot slope can influence the difference between GPS and
compass and rope measured areas, as the GPS measures the
horizontal plane and compass and rope measures the sur-

11http://www8.garmin.com/aboutGPS/

http://www8.garmin.com/aboutGPS/
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Figure 3. Scatter plots of relative (percent) and absolute (acres) bias over plot size (acres)

face area. Fermont and Benson (2011) note that plot slopes
greater than 10 degrees will result in significantly different
measurements. The LASER study incorporated the use of
clinometers for slope measurement. For plots of slope 5
degrees or less, the mean relative difference is 1.3 percent
whereas for plots of 6 – 15 degrees in slope it is 2.2 percent
and for plots of slope greater than 15 degrees it is 2.4 percent.

High bias observations. Having ascertained that the av-
erage difference between GPS and CR is small does not rule
out that for individual measurements, there may be obser-
vations with errors of significant magnitude. To investigate
this aspect we plot the percentage and absolute differences
between GPS and CR measures over plot area (Figure 3).

A number of considerations emerge from a visual analysis of
these graphs. First, the GPS measurement error in percentage
terms is often far from negligible, in some instances larger
than plus or minus 50 percent. Second, large percentage er-
rors appear to be roughly equally distributed above or below
the zero line, which explains why we do not observe differ-
ences in the means for the two measures. Thirdly, the magni-
tude of the percentage errors is much larger for the small size
classes, and decreases rapidly as plot size increases. Those
trends are clearly mirrored by the graphs with the absolute
bias, which show no clear correlation with plot size and fairly
constant dispersion both sides of the zero line, with most val-
ues within the plus/minus 0.5 acre range. That seems to sug-
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Table 5
Descriptive statistics for high-bias observations

Diffenrence
Relative GPS over- GPS under- Relative in Means

Bias reported reported Bias All (>10% Bias
>10% by >10% by >10% <10% Plots vs.<10%)

Ethiopia
Average:

CR Area (acres) 0.22 0.23 0.20 0.45 0.38 **
GPS Area (acres) 0.23 0.28 0.16 0.45 0.38 **
Bias (GPS - CR) 0.01 0.05 −0.03 0.00 0.01 **
|% Bias| 22.74 23.18 22.18 3.41 9.34 **
Closing Error (%) 2.24 2.31 2.14 2.22 2.23 -
Number of Corners 5.94 5.98 5.89 6.48 6.32 **
Per: Area Ratio (GPS) 0.41 0.27 0.59 0.20 0.26 **
Number of Satellites 17.00 17.10 16.80 17.40 17.30 **
Walking Speed (m/min) 37.00 37.80 36.10 43.50 41.50 **

Treecover:
Partial (n) 139 77 62 292 431

(%) 26 25 26 24 24 -
Heavy (n) 39 20 19 50 89

(%) 7 7 8 4 5 **

N 542 305 237 1223 1765
% of Total Plot Sample 31 17 13 69 100

Tanzania
Average:

CR Area (acres) 0.21 0.23 0.17 0.28 0.27 **
GPS Area (acres) 0.22 0.27 0.14 0.29 0.28 **
Bias (GPS - CR) 0.02 0.04 −0.03 0.01 0.01 **
|% Bias| 16.95 16.61 17.57 4.13 6.74 **
Closing Error (%) 2.09 2.21 1.86 1.97 2.00
Number of Corners 8.09 8.25 7.80 8.35 8.30 -
Per: Area Ratio (GPS) 0.19 0.16 0.24 0.15 0.16 **
Number of Satellites 16.50 16.60 16.40 16.80 16.70 *
Walking Speed (m/min) 42.10 42.40 41.60 44.30 43.90 **

Treecover:
Partial (n) 207 132 75 739 946

(%) 53 53 55 49 50
Heavy (n) 26 16 10 78 104

(%) 7 6 7 5 5 -

N 388 251 137 1520 1908
% of Total Plot Sample 20 13 7 80 100

Continues on next page
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Continued from last page

Diffenrence
Relative GPS over- GPS under- Relative in Means

Bias reported reported Bias All (>10% Bias
>10% by >10% by >10% <10% Plots vs.<10%)

Nigeria
Average:

CR Area (acres) 0.94 1.31 0.72 1.38 1.31 *
GPS Area (acres) 0.96 1.56 0.61 1.37 1.30
Bias (GPS - CR) 0.02 0.25 −0.11 −0.02 −0.01 *
|% Bias| 18.96 23.60 16.33 3.93 6.50 **
Closing Error (%) 2.05 2.68 1.69 1.54 1.62 **
Number of Corners 9.17 9.50 8.98 10.24 10.06 -
Per: Area Ratio (GPS) 0.13 0.08 0.15 0.09 0.09 **
Number of Satellites - - - - - -
Walking Speed (m/min) 58.60 67.50 53.30 61.80 61.30

Treecover:
Partial (n) 50 18 32 228 278

(%) 60 60 60 57 57 -
Heavy (n) 9 3 6 48 57

(%) 11 10 11 12 12 -

N 83 30 53 402 485
% of Total Plot Sample 17 6 11 83 100

Pooled
Average:

CR Area (acres) 0.27 0.29 0.25 0.49 0.44 **
GPS Area (acres) 0.29 0.34 0.21 0.49 0.44 **
Bias (GPS - CR) 0.01 0.05 −0.04 0.00 0.00 **
|% Bias| 20.21 20.39 19.97 3.82 7.82 **
Closing Error (%) 2.16 2.29 1.99 2.01 2.05 **
Number of Corners 7.03 7.13 6.89 7.87 7.66 **
Per: Area Ratio (GPS) 0.30 0.21 0.42 0.16 0.20 **
Number of Satellites - - - - - -
Walking Speed (m/min) 40.70 41.30 39.90 46.00 44.70 **

Treecover:
Partial (n) 396 227 169 1259 1655

(%) 39 39 40 40 40 -
Heavy (n) 74 39 35 176 250

(%) 7 7 8 6 6 *

N 1013 586 427 3145 4158
% of Total Plot Sample 24 14 10 76 100

* p <.05; ** p < .01
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gest that it is the inherent imprecision of GPS devices that
causes percentage error to matter much more for very small
plots. We therefore turn to investigating more in depth the
extent and nature of the discrepancy for observations with an
arbitrary set value of plus or minus 10 percent.

Table 5 reports on some key the characteristics of the
plots and the measurements, slicing the sample according to
whether the bias is below or above the 10 percent threshold,
and splitting the latter portion of the sample in observations
where GPS over- or under-reports land area. The number
of observations with such large errors is far from negligible,
ranging from 17 percent in Nigeria to 31 percent in Ethiopia.
Again, no strong systematic bias emerges in terms of GPS
over- or under-reporting: differences in average acreage be-
tween GPS and CR are small, yet statistically significant,
even for the high-error portion of the sample in all coun-
tries. In two of the three experiments (Ethiopia and Tan-
zania) there are more GPS observations with large percent-
age over-reporting compared to under-reporting, in Nigeria
the opposite is true. Desiere and D‘Haese (2015) present
more optimistic results in their robust sample of over 50,000
parcel-level observations in Burundi, as 90 percent of plots
greater than 550m2 were measured with less than 10 percent
absolute value of relative error.

Table 5 also reports the average values for several of the
variables that are expected to influence the quality of GPS
measurement. We do not observe any substantial difference
for some of the factors that are often cited as important for
GPS measurement, such as number of plot corners, number
of satellites and tree canopy cover. In Ethiopia there is no sta-
tistically significant difference in closing error between plots
measured with high bias versus those not measured with high
bias, while the number of plot corners is not significantly dif-
ferent in Tanzania or Nigeria. We do, however, observe some
difference in the perimeter/area ratio, which approximates
the complexity of a plot shape. In all three experiments, this
ratio is higher in plots that are substantially underestimated
by the GPS measure, compared to the plots that are measured
with greater accuracy. Ethiopia is the only country for which
such a difference, albeit of much smaller magnitude, is also
observed for plots with size over-reported by more than 10
percent. Shape complexity therefore does seem to affect GPS
precision, resulting mostly in under-reporting of the plot size.

Some differences are observed also for the walking speed
of the enumerators, but with results that are more difficult to
interpret. In Ethiopia, the walking speed is lower on the plots
measured with larger errors. In Tanzania we observe no size-
able difference. In Nigeria, plots that are under-estimated by
more than 10 percent are associated with lower average walk-
ing speed, while plots that are over-estimated tend to record
higher average walking speed. We are not able to draw any
conclusions from this mixed evidence.

One last variable for which we do observe systematic dif-

ferences is the magnitude of the CR closing error, although
differences are not significantly different across high-bias
and non-high bias plots in Ethiopia. In both Ethiopia and
Tanzania there is a gradient between plots that are underes-
timated by a large margin (which have the smallest closing
error), plots with error below 10 percent (which have mod-
erate closing error), and plots with large GPS over-estimate
(with the largest closing error). In Nigeria the plots with
larger over-estimates are also the ones with the largest clos-
ing error, but the ranking of the other two groups is inverted.
What we conclude from these observations is that for the
cases in which we observe substantial deviations between
GPS and CR measures, part of the explanation is likely to
rest in noise in the CR measures. In that sense the inaccuracy
in the GPS measures may be somewhat less serious than if
one just looked at the prevalence of high bias cases, and that
as observed earlier the gold standard is also bound to be im-
perfect.

5.3 Regression analysis of the differences between com-
peting measures

Comparison of SR and Objective Measurements.
While Table 2 illustrates the degree to which farmer self-
reported estimates differ from compass and rope measure-
ments, it does not offer any explanation as to why the two
systematically diverge. For this we turn to regression anal-
ysis. Table 6 presents the results of four specifications per
dataset, the difference among them being the dependent vari-
able, which is: (i) bias (self reported estimate – CR), (ii)
absolute value of bias, (iii) relative bias (bias as a percentage
of the CR area), and (iv) absolute value of relative bias.

The claim of plot area affecting the direction and degree
of error associated with self-reported area estimates is sup-
ported by the regression results. The results from the first two
specifications (on bias and its absolute value), indicate an in-
crease in the bias with plot size. When looking at the relative
bias and the absolute value of the relative bias, the linear term
is negative and the quadratic term positive in all countries,
indicating that in percentage terms the bias declines steeply
with plot size.

The distance from the plot to the dwelling holds signifi-
cant explanatory power in the Ethiopia data, but not in Tan-
zania. The results from Ethiopia suggest that self-reported
estimates of area diverge more from compass and rope mea-
surements on those plots that are further from the household.
This could be theoretically explained by assuming the farmer
spends less time on plots more distant from the household
and does not have the opportunity to view these plots to make
his/her area estimate, should he/she prefer to do so. Con-
sistent with Carletto et al. (2015), the existence of property
rights (proxied here by the possession of a title or certificate
of ownership or the ability to sell or use the plot as collat-
eral) has a significant, negative relationship with the relative
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bias in Ethiopia and the pooled data, suggesting that on plots
where the household has some form of property rights they
are better able to estimate the area. The presence of cash
crops on the plot exhibits a significant relationship with mea-
surement bias in both Ethiopia and Nigeria, but to differing
degrees. In Ethiopia, the effect of cash crops is minimal,
with a small positive significance in the absolute bias specifi-
cations but no significance in the relative bias specifications.
The effect of cash crops is much more pronounced in Nige-
ria, where both absolute and relative biases are higher for
plots on which cash crops are cultivated. This finding comes
contrary to expectation, as one might expect farmers to have
more precise knowledge of cash crop plots.

Household characteristics such as the gender, age, and
education of the household head play out differently across
countries. Results from Nigeria and Tanzania (but not
Ethiopia) suggest that measurement bias is slightly greater in
households with older household heads. The education of the
household head significantly increases the measurement bias
in Ethiopia and in some Nigeria specifications, but has a neg-
ative effect on bias in Tanzania. One can speculate that, edu-
cation may be associated with increasing opportunity cost of
time or decreasing involvement in agriculture, which could
make the respondent less attentive or knowledgeable regard-
ing the measurement or reporting of plot area.

Finally, one key decision point when collecting self-
reported area data is whether to allow respondents to use
non-standard units, or to force them (or enumerators) to con-
vert responses from traditional to standard units at the mo-
ment of the interview. In Table 7, we compare deviations
between self-reported and GPS data separately splitting the
sample between observations where respondents used tradi-
tional and standard units in the Ethiopia and Nigeria sam-
ple. When land area is collected using non-standard units,
as opposed to forcing respondents or enumerators to perform
a conversion to standard units at the time of the interview,
data from self-report appears to approximate the preferred
GPS measures much better. This finding supports the idea
that it is best to allow non-standard units to be used at in-
terview time, while organizing complementary collection of
adequate conversion factors to translate all the data into a
common metric at the data processing stage (refer to Oseni,
Durazo, and McGee (forthcoming) for information on the use
of non-standard units).

Comparison of CR and GPS . The descriptive statis-
tics presented above are aimed at comparing the two pri-
mary objective area measurement options, GPS and compass
and rope. In this section, regression analysis is used to ex-
plore the determinants of measurement bias, defined here as
the difference between GPS measured area and compass and
rope measured area, which is used as the benchmark.

The results in Table 8 include four regression models as
in the preceding section: the first on the measurement bias

(GPS minus CR measured area), the second on the abso-
lute value of this bias, the third on the relative bias, and the
fourth on the absolute value of the relative bias (in percent-
age terms). Recall from the descriptive statistics that the ob-
served error is generally small, and little evidence of system-
atic variation with many of the factors that are a priori ex-
pected to influence GPS measurement precision was found.
It is therefore not surprising that the explanatory power of
these regressions (as captured by their R2 values) is low, and
that the majority of the estimated coefficients are not statisti-
cally significant.

The main variables of interests are the set of terms (levels,
quadratic, cubic) related to the plot size itself, as measured by
CR. In the first specification, there appears to be a relation-
ship between plot size and measurement error in Ethiopia,
where the shape of the relationship is that of an inverted U,
with the predicted bias being positive on very small plots,
peaking at about 0.7 acres, and becoming negative for plots
larger than about 1.7 acres. The coefficients are small, so that
the predicted error is in the plus/minus 0.02 acres range. In
Tanzania, a linear relationship is exhibited in which larger
plot size results in larger bias (in terms of acres). In Nigeria
there is no statistically significant relationship between bias
and plot size, and in the pooled data there is very little, con-
trolling for other factors.

When the absolute level of bias is considered the relation-
ship with plot size becomes monotonically positive, with a
small curvature only in Nigeria and the pooled data. Values
are somewhat larger, up to about 0.2 acres in the observed
plot size range, but still small.

When the percentage bias is considered (third specifica-
tion) the relationship with plot size becomes an L-shaped
quadratic curve (the cubic term is significant only in Ethiopia
and the pooled data, tilting the curve up around the 2 acres
mark). The last specification has the absolute bias expressed
in percentage terms as the dependent variable, with the re-
lationship with plot size being again best characterized as
L-shaped. Nigeria is an exception in that no statistically sig-
nificant relationship with plot size is revealed by these two
specifications.

These results are in line with the earlier descriptive anal-
ysis in that the overall distribution of the bias does not seem
to bear much relationship with plot size, as they are largely
equally distributed on the positive and negative side. The ab-
solute magnitude of the error does, however, increase some-
what with plot size but less than proportionally. For that
reason, in percentage terms the bias actually declines fairly
rapidly as plot size increase, stabilizing as plot size reaches
the 1-2 acres range.

Of the covariates reflecting physical characteristics that
are expected to affect the quality of GPS measures (cloud and
canopy cover, plot slope) hardly any are consistently signifi-
cant across country. What appears to matter most are closing
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Table 7
Standard and Non-Standard Area Units

Standard Units Non-Standard Units

Mean Bias/ Mean Bias/ Difference
Level (GPS) N SR GPS Mean GPS (%) N SR GPS Mean GPS (%) in Biasˆ

Ethiopia
1 (<0.05 acres) - - - - 375 0.09 0.02 276.1 -
2 (<0.15 acres) 31 0.67 0.09 643.6 356 0.24 0.10 150.0 **
3 (<0.35 acres) 24 1.02 0.25 302.4 349 0.36 0.23 53.6 **
4 (<0.75 acres) 20 1.32 0.52 152.4 309 0.60 0.52 16.3 **
5 (<1.25 acres) - - - - 163 0.87 0.96 −9.8 -
6 (≥1.25 acres) - - - - 93 1.19 1.71 −30.3 -

Total 120 1.16 0.63 84.2 1645 0.42 0.37 12.9 **

Nigeria Experiment
1 (<0.05 acres) - - - - - - - - -
2 (<0.15 acres) - - - - 25 0.15 0.11 38.1 -
3 (<0.35 acres) - - - - 69 0.33 0.25 33.9 -
4 (<0.75 acres) 28 1.49 0.53 181.4 112 0.67 0.54 24.4 **
5 (<1.25 acres) 25 2.24 1.01 121.2 71 1.06 0.99 7.3 **
6 (≥1.25 acres) 76 3.51 3.24 8.4 76 1.61 2.51 −35.9 *

Total 131 2.80 2.19 28.2 354 0.85 0.97 −12.2 **

ˆ Testing difference in mean bias across plots reported with standard units and non-standard units.
* p <.05; ** p < .01

error and the perimeter/area ratio. The former reflects in-
accuracy in the CR measure, while the latter is a proxy for
the complexity of the plot shape which is likely to affect the
accuracy of GPS measures, but can in principle also be cap-
turing noise in the CR measure besides what is captured by
the closing error. In Ethiopia and Tanzania (as well as in the
fourth specification of the pooled sample regression), there is
evidence that heavy canopy cover does increase relative bias.
An unsystematic comparison of plot outlines computed from
the CR method and collected in the GPS also suggests that it
may often be the case that enumerators may tend to simplify
the shape of the plot more when collecting CR than GPS data
(Figure 4, for additional evidence see Carletto et al., 2016).

Although the difference between the two objective mea-
surements is relatively small on average, it is worth digging
into the problem cases in which the deviation is much larger.
Table 9 reports results of a probit model (see equation 3) es-
timating the probability of a plot being a “problem plot” –
defined here as having a relative bias greater than 10 percent
(in absolute value). In all countries, we find evidence that
the plots with the highest probability of large measurement
error are the very small plots. The regressions unveil a cubic
relationship between the probability of GPS measures being
overestimated by more than 10 percent of plot size. That
translates into the probability being highest for very small
plots, and decreasing fast as plot size increases, before flat-

tening fairly quickly (and eventually tilting up somewhat) for
larger plot sizes. The same relationship is found for plots un-
derestimated by GPS in Ethiopia, but not in the other two
experiments. As in the OLS regression, in the probit model
the other covariates that appear to be playing a role are clos-
ing error and perimeter/area ratio. Tree canopy cover appears
to play more of a role in these regressions, implying that the
effects of canopy cover are not felt equally throughout the
distribution of the bias variable, but that they kick-in in par-
ticular regions of the distribution. Weather at the time of GPS
measurement has a more limited effect. In Tanzania, plots
that are measured during “mostly cloudy”, “all cloudy”, or
“rainy” weather, aggregated into a single dummy variable,
are slightly more likely to be over-stated by the GPS by 10
percent or more (compared to plots measured during “partly
cloudy” or clearer weather). In all other countries and spec-
ifications the weather conditions do not have a statistically
significant effect on the probability of area being measured
with high bias.

6 Conclusions

Several important findings emerge forcefully from this
analysis, which translate into clear implications for future
survey design and implementation. The first result is that our
experimental data confirm what we already knew about the
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(a) Not high bias plot (included for reference)

6211_2_3
1004_1_2

8306_2_1

3310_1_3

(b) Not high bias plot (included for reference)

1004_1_2

8306_2_1

3310_1_3

4808_2_1

(c) 19 sides and obvious closing error

1004_1_2

8306_2_1

3310_1_3

4808_2_1

6211_2_3

(d) CR shape simplification – number of vertices in GPS
is twice the number of CR corners

8306_2_1

3310_1_3

4808_2_1

6211_2_3

(e) Apparently an enumerator/field delineation error,
with CR shape simplification

4808_2_1

6211_2_3
1004_1_2

8306_2_1

(f) Apparently an error in CR bearing (front and back
bearings were likely switched)

3310_1_3

4808_2_1

6211_2_3
1004_1_2

Figure 4. GPS and Compass and Rope Plot Outlines. Red outlines were constructed from compass and rope measurements.
Gray shapes are GPS plot outlines.
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presence of large, systematic measurement error in farmers’
self-reported estimates of land area, and on its direction, cor-
relates and determinants (which include land area itself, in-
troducing potentially large biases at the data analysis stage).
While not a novel finding, this is a useful reminder of the
urgency to find alternative measures that are both accurate
and usable in the context of large scale household surveys,
specifically in the developing country context where non-
traditional units of measure are common, land titling (with
area measurement) is limited, and plots are small and irregu-
larly shaped. GPS measurement is the obvious candidate.

Much of the focus of the paper has, therefore, been on
assessing the fitness for purpose of GPS measures. In this
respect, an important finding of the study is that on average
GPS measures return very accurate estimates of plot size,
even for very small plots, and even for reasonably small sam-
ples. The small differences between GPS and CR measure-
ments are primarily driven by factors that cannot necessarily
be addressed by survey practitioners, such as complexity of
plot shape. Yet, even with these errors in GPS measurement,
the method offers dramatic improvement over SR estimates.
We also do not detect any evidence that GPS systematically
under-reports land size, as is the case in earlier studies. That
should suffice to make GPS an attractive method for land area
data collection for most household survey practitioners. This
conclusion becomes even more forceful when taken together
with the comparison of the time required for GPS compared
to CR measurement, with our data showing GPS to lead CR
by several orders of magnitude.

This strong message in support of the adoption of GPS in
survey fieldwork is, however, mediated by a number of con-
siderations regarding outstanding challenges with GPS mea-
surement. One that emerges from the analysis is that while
the GPS measurement error is almost universally small in
magnitude (only 5 percent of observations recording a dis-
crepancy with CR of more than 0.09 acre), in relative terms
a discrepancy of plus or minus 10 percent is not uncom-
mon. However the CR method itself is not immune to mea-
surement error thus some of the problematic cases could be
attributable to noise in the CR data. Complementing data
collection with information that can aid in identifying those
problem cases, as well as enforcing sound field implementa-
tion protocols, can significantly reduce both bias and miss-
ingness in GPS measures.

Despite the evidence that subjective measurements can be
riddled with problems, farmer self-reported estimates of area
should still be included in household surveys, though not as
the primary measurement method. Objective measurements
come with their own challenges, including time and equip-
ment requirements, questions of accuracy at small-plot lev-
els, and feasibility of full plot sample measurement (a large
scale dataset of GPS plot measurements could be plagued
by as much as 50 percent problem cases). Subjective mea-

surements have negligible fieldwork costs, and, more impor-
tantly, they can serve as a baseline for imputation where ob-
jective measurements may be missing (Kilic et al., 2017).
Therefore, we recommend GPS measurement (where feasi-
ble) complemented by farmer self-reported estimated area
(for all plots).

An ancillary story emerging from the data concerns self-
reported data. While confirming all the known issues with
measurement error in self-reported land data, the analysis
presented here provides at least one suggestion for limiting
the scope of this error in the future. When land area is col-
lected using non-standard units, as opposed to forcing re-
spondents or enumerators to perform a conversion to stan-
dard units at the time of the interview, data from self-report
appears to be a better approximation of the benchmark pre-
ferred measure.

Furthermore, our analysis casts some shadows on the
benchmark compass and rope measurement. It appears that a
good deal of what we labeled, for simplicity, as measurement
error in the GPS measurement, may in fact be linked to noise
in the CR data. This result is hardly surprising since CR does
in fact require a good deal of precision that, no matter how
careful the training, will be hard to reach for survey enumer-
ators who are not professional land surveyors. In terms of
specific suggestions for CR measurements, we do observe
an increase in discrepancy between CR and GPS when the
CR closing error is above 3 percent. Translated into recom-
mendations for survey work, this means that 3 percent offers
a good rule of thumb for instructing enumerators to re-take
CR measurement.

Finally, little research is currently available on the use of
remote sensing imagery for area measurement in household
surveys. As technology advances and image resolution im-
proves along with affordability, the use of this method be-
comes more feasible, and is likely to hold promise particu-
larly for the measurement of large plots. Future research on
how to effectively integrate remote sensing and household
survey data for plot area measurement, including fieldwork
challenges and respondent ability to identify plots, is highly
encouraged.
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Table A1
Summary Statistics on Weather Conditions, Satellite Acquisition, and Canopy Cover

Mean Bias/ Difference
N GPS CR Bias Mean CR (%) in means

Ethiopia
Weather Conditions at Measurement

Clear/Sunny 576 0.50 0.49 0.01 1.9 **
Mostly Clear 733 0.33 0.33 0.01 2.0 **
Partly Cloudy 334 0.32 0.31 0.00 0.6 -
Mostly Cloudy 94 0.34 0.34 0.00 −0.1 -
Completely Cloudy - - - - - -
Rainy - - - - - -

Tree Canopy Cover
None 1245 0.40 0.39 0.01 2.0 **
Partial 431 0.35 0.35 0.00 0.7 -
Heavy 89 0.28 0.28 0.00 1.0 -

GPS Satellites Acquired
≤15 305 0.23 0.22 0.00 1.6 -
16-19 1204 0.40 0.39 0.01 1.8 **
≥20 256 0.49 0.48 0.01 1.2 *

Total 1765 0.38 0.38 0.01 1.7 **

Tanzania
Weather Conditions at Measurement

Clear/Sunny 800 0.30 0.29 0.01 3.3 **
Mostly Clear 217 0.28 0.27 0.00 1.3 *
Partly Cloudy 705 0.25 0.24 0.01 2.8 **
Mostly Cloudy 76 0.22 0.21 0.01 3.1 *
Completely Cloudy 41 0.26 0.25 0.00 2.0 *
Rainy 69 0.29 0.28 0.01 2.7 **

Tree Canopy Cover
None 858 0.27 0.26 0.01 3.2 **
Partial 946 0.28 0.27 0.01 2.8 **
Heavy 104 0.34 0.33 0.01 1.6

GPS Satellites Acquired
≤15 488 0.31 0.30 0.01 2.9 **
16-19 1266 0.27 0.26 0.01 2.9 **
≥20 154 0.24 0.24 0.01 2.6 **

Total 1908 0.28 0.27 0.01 2.9 **
Continues on next page
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Continued from last page

Mean Bias/ Difference
N GPS CR Bias Mean CR (%) in means

Nigeria
Weather Conditions at Measurement

Clear/Sunny 317 1.31 1.32 −0.01 −0.9 *
Mostly Clear 101 1.35 1.34 0.01 0.5 -
Partly Cloudy 62 1.13 1.16 −0.03 −2.6 -
Mostly Cloudy - - - - - -
Completely Cloudy - - - - - -
Rainy - - - - - -

Tree Canopy Cover
None 150 0.92 0.94 −0.02 −2.1 -
Partial 278 1.42 1.43 −0.01 −0.6 -
Heavy 57 1.66 1.66 0.00 −0.1 -

GPS Satellites Acquired
≤15 NA NA NA NA NA NA
16-19 NA NA NA NA NA NA
≥20 NA NA NA NA NA NA

Total 485 1.30 1.31 −0.01 −0.9

Pooled
Weather Conditions at Measurement

Clear/Sunny 1693 0.56 0.55 0.01 1.0 **
Mostly Clear 1051 0.42 0.41 0.01 1.5 **
Partly Cloudy 1101 0.32 0.32 0.00 1.0
Mostly Cloudy 174 0.30 0.30 0.00 0.5 -
Completely Cloudy 54 0.25 0.25 0.00 1.3 -
Rainy 85 0.34 0.33 0.01 2.1

Tree Canopy Cover
None 2253 0.38 0.38 0.01 1.6 **
Partial 1655 0.49 0.48 0.00 0.7 *
Heavy 250 0.62 0.62 0.00 0.4 -

GPS Satellites Acquired
≤15 NA NA NA NA NA NA
16-19 NA NA NA NA NA NA
≥20 NA NA NA NA NA NA

Total 4158 0.44 0.44 0.00 1.1 **
* p <.05; ** p < .01


	Introduction
	Methods for land area measurement in surveys
	Self-Reported Area Estimation
	The ``Gold-Standard'': Compass and Rope Measurement
	Measurement with Handheld GPS Devices

	Data: The LSMS Methodological Validation Program
	Methods
	Results
	Compass and rope: How golden is the gold standard?
	Closing error is (weakly) associated with plot characteristics
	Compass and rope is significantly more time consuming that GPS measurement

	Comparison of competing measurements
	Compass and Rope vs. Self-Reported Estimations
	Compass and Rope vs. GPS
	GPS measures: Exploring deviations from the gold-standard

	Regression analysis of the differences between competing measures
	Comparison of SR and Objective Measurements
	Comparison of CR and GPS 


	Conclusions 

