Variables used in paper Table **sample *deriving when/ how often been a survey respondent *inmcs1 inmcs2 inmcs3 inmcs4 – variables represent if family in corresponding data collection sweeps. compute lonresp = -1. if (inmcs1 = 1) lonresp = 1. if (inmcs2 = 1) lonresp = 2. if (inmcs3 = 1) lonresp = 3. if (inmcs4 = 1) lonresp = 4. if (inmcs1 = 1 and inmcs2 = 1) lonresp = 5. if (inmcs1 = 1 and inmcs3 = 1) lonresp = 6. if (inmcs1 = 1 and inmcs4 = 1) lonresp = 7. if (inmcs2 = 1 and inmcs3 = 1) lonresp = 8. if (inmcs2 = 1 and inmcs4 = 1) lonresp = 9. if (inmcs1 = 1 and inmcs2 = 1 and inmcs3 = 1) lonresp = 10. if (inmcs1 = 1 and inmcs3 = 1 and inmcs4 = 1) lonresp = 11. if (inmcs2 = 1 and inmcs3 = 1 and inmcs4 = 1) lonresp = 12. if (inmcs1 = 1 and inmcs2 = 1 and inmcs3 = 1 and inmcs4 = 1) lonresp = 13. missing values lonresp (-1). value labels lonresp 1'mcs1' 2'mcs2' 3'mcs3' 4'mcs4' 5'mcs1 mcs2' 6'mcs1 mcs3' 7'mcs1 mcs4' 8'mcs2 mcs3' 9'mcs2 mcs4' 10'mcs1 mcs2 mcs3' 11'mcs1 mcs3 mcs4' 12' mcs2 mcs3 mcs4' 13'mcs1-4'. freq lonresp. *grouping/simplifying above variable recode lonresp (1,2,3,4 = 1) (5,6,7,8,9 = 2) (10,11,12 = 3) (13 = 4) into lonrespg. fre lonrespg. *family returned a tooth. *number of teeth . fre tteeth. recode tteeth (0=0) (sysmis = 0) (1 thru 10 = 1) into teeth. variable labels teeth 'tooth returned'. value labels teeth 0'no' 1'yes'. freq teeth. *summary of number of teeth returned compute teethg = -1. if (tteeth = 0) teethg = 0. if (tteeth = 1) teethg = 1. if (tteeth > 1) teethg = 2. missing values teethg ( ). value labels teethg 0'no tooth' 1'1 tooth' 2'2+ teeth'. freq teethg. *whether family ‘issued’ at sweep 4 and whether participated and whether returned tooth compute mcsip = -1. if (dissued = 1) mcsip = 1. if (dissued = 1 and teeth = 1) mcsip = 2. if (dissued = 1 and inmcs4 =1) mcsip = 3. if (dissued = 1 and inmcs4 = 1 and teeth = 1) mcsip = 4. value labels mcsip 1'issued mcs4' 2'issued, sent tooth' 3'issued & in mcs4' 4'issued & in mcs4 & returned tooth'. missing values mcsip (-1). freq mcsip. *these are the valid sample recode mcsip (3=0) (4=1) into MCS4tooth. value labels mcs4tooth 0'no' 1'yes'. freq mcs4tooth. *type of tooth being retuned. temporary. select if (teethg = 1). freq DK LCAN LCINC LFMOLAR LLINC LSMOLAR UCAN UCINC UFMOLAR ULINC USMOLAR UNKNOWN. *high – medium – low ‘lead’ areas missing values lead (-999). FREQUENCIES VARIABLES=LEAD CORINE /NTILES=4 /NTILES=5 /STATISTICS=STDDEV MINIMUM MAXIMUM MEAN MEDIAN /ORDER=ANALYSIS. recode lead (19 thru 37.9500000000001 = 1) (37.950000000002 thru 48 = 2) (48.00000000001 thru highest = 3) into leadg. var labels leadg ' amount of lead'. value labels leadg 1'<1sd mean' 2'mean +/-1sd' 3'>1sd mean'. freq leadg. *TABLE 2 in paper. *Biological Variables: dhcsex00 M4ethnic (ddc06e00) agemum Recode adgmab00 (13 thru 19 = 1) (20 thru 29 = 2) (30 thru 39 = 3) (40 thru highest = 4) into agemum. **Behavioural. Variables: ambfeva0 dmberea0 dmhodi00 m4clsl m4cghg *long-standing limiting illness do if (dmclsia0 >= 1). compute m4clsl = 0. if (dmclsia0 = 1) m4clsl = 1. if (dmclsia0 = 1 and dmclsla0 = 1) m4clsl = 2. end if. *original general health status variable = dmcghea0 . recode m4cghe (1=1) (2,3=2) (4,5=3) into m4cghg. value labels m4cghg 1'ex' 2'vg-g' 3'f-p'. freq m4cghg. **environmental. Variables: PTTY00 ddregn00 ddcnty00 dimd dhadsa00 *where live in UK. freq ddregn00. missing values ddregn00 (13). *level of deprivation in area where live. compute dimd = sum(dimdscoe,dimdscow,dimdscos,dimdscon). freq dimd. **social Variables: m4homeg1 doedp000 ddtots dlang dmphq dmp05s DCWRK DHTYP *parent highest qualification recode dmdnvq00 dpdnvq00 (96=0) (95=0.5) (else=copy) into dmhq dphq. compute dmphq = dmhq. if ((missing(dmhq)) or (dphq > dmhq)) dmphq = dphq. freq dmphq. recode dmphq (-1=sysmis). freq dmphq. **parental social class (NSSEC). compute dmp05s = dmd05s00 . if ((missing(dmd05s00)) or (dpd05s00 > dmd05s00)) dmp05s = dpd05s00. if (dcwrk >= 4) dmp05s = 0. freq dmp05s. **number of children in household. recode ddtots00 (1 thru 4 = copy) (5 thru 13 = 5) into ddtots. freq ddtots. *household type (parents). recode DHTYP0000 (1=1) (2 thru 12=2) (15 thru 24 = 3) into dhtyp. freq dhtyp. *number of people working in household. recode DCWRK0000 (1=1) (2,3=2) (5=3) (4=4) (6=5) into dcwrk. freq dcwrk. *language spoken in home recode ddhlan00 (1=1) (2,3,4=2) (5=3) into dlang. *housing in sweep 1 freq dmroow00. recode dmroow00 (1,2,3=1) (4,5=2) (6=3) (7 thru 95 = 4) into m4homeg1. value labels m4homeg1 1'own' 2'rent la/ha' 3'rent - private' 4'other'. Freq m4homeg1. **income poverty fre doedp000. *MCS data needs to be weighted. *SPSS *In spss the data needs to be weighted using an appropriate .csaplan file – see appropriate documentation on CLS website on how to derive these. http://www.cls.ioe.ac.uk/page.aspx?&sitesectionid=880&sitesectiontitle=Survey+Design *on the right-hand side of this page there is a document on how to weight data in SPSS or STATA. *SPSS cross-tab code CSTABULATE /PLAN FILE='/Users/kkkkkk/Documents/MCSdata/mcs4csp.csaplan' /TABLES VARIABLES= m4clsl m4cghe M4ethnic PTTY00 ddregn00 ddcnty00 dimd dhadsa00 dmhodi00 dmberea0 m4homeg1 doedp000 ddtots dlang dmphq dmp05s DCWRK DHTYP dhadsa00 BY mcs4tooth / CELLS colPCT /STATISTICS SE COUNT /MISSING SCOPE=TABLE CLASSMISSING=EXCLUDE.