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Text data from open-ended questions in surveys are difficult to analyze and are frequently
ignored. Yet open-ended questions are important because they do not constrain respondents’
answer choices. Where open-ended questions are necessary, sometimes multiple human coders
hand-code answers into one of several categories. At the same time, computer scientists have
made impressive advances in text mining that may allow automation of such coding. Auto-
mated algorithms do not achieve an overall accuracy high enough to entirely replace humans.
We categorize easy-to-categorize text answers of open-ended questions automatically using
text mining and multinomial boosting, and hard-to-categorize text answers manually. Expected
accuracies guide the choice of the threshold delineating between “easy” and “hard” to code text
answers. This approach is illustrated with two examples from open-ended questions related to
respondents’ advice to a patient in a hypothetical dilemma, and a follow-up probe related to
respondents’ perception of disclosure/privacy risk. Targeting 80% accuracy, we found that
47%-58% of the data could be categorized automatically in research surveys.
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1 Introduction

Open-ended questions are often manually coded into dif-
ferent categories. Manual categorization is time consuming
and expensive (Geer, 1991), and does not scale well in large
surveys. Therefore text data from open-ended questions are
often ignored, or sometimes individual text answers are used
for anecdotes or qualitative analyses. This paper primarily
addresses categorizing narrative text answers. The two ex-
amples we use consist of narrative responses to an open-
ended question in a Web survey.

Fully automated text mining for narrative open-ended
questions is generally not as accurate as manual categoriza-
tion, which is a problem for researchers who value accuracy
over low cost and a fast turnaround time. We focus on cat-
egorization with high accuracy rather than full automation.
Briefly, we turn text into numerical variables using the ngram
approach used in text mining (e. g. Joachims, 2002; Schonlau
& Guenther, 2016). Some answers are categorized manually
and serve as training data. We next apply multinomial boost-
ing, a statistical learning1 algorithm, on the training data and
compute the probability of correctly categorizing each an-
swer in the test data. We categorize text answers with a high
probability of correct classification automatically and the re-
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mainder manually. For the subset of test data that is catego-
rized automatically the expected accuracy can be computed.
In summary, automated categorizations are used where pos-
sible and manual categorization where necessary.

We next give some background on text mining and boost-
ing (Sections 2 and 3) and then describe the proposed ap-
proach (Section 4). Our approach relies on approximately
unbiased probability estimates of categorization. We use a
simulation to show which boosting parameters yield approx-
imately unbiased estimates of the probability of categoriza-
tion (Appendix B). The proposed approach is illustrated with
two examples (Sections 5 and 6). Our approach can achieve
substantial time savings (Section 7). We conclude with a dis-
cussion (Section 8).

2 Text Mining

Categorizing texts using text mining consists of two steps:
In the first step, text is encoded into a set of numeric variables
such that in a second step statistical learning algorithms can
be employed (Witten, Frank, & Hall, 2011). Briefly, each
word (“unigram”) is encoded into a separate indicator vari-
able indicating whether or not a text answer contains the
word. Several modifications are made including stemming
(reducing inflected words to their root form), discarding of
common words (“stop words”) such as “the” and “and”, and
discarding words that appear too infrequently. Variables for

1The terms “statistical learning” and “machine learning” are
synonyms with one term being used more frequently in the statisti-
cal sciences and the other more frequently in computer science.
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sequences of two words, “bigrams,” are also often created.
This approach to text mining is called “set of words” (Hotho,
Nürnberger, & Paaß, 2005) because it uses only the presence
or sometimes also the frequency of a word, not the order in
which it appears in the text.

Encoding text into indicators of unigrams and bigrams is
illustrated in Table 1 with three hypothetical texts. Pres-
ence/absence of each word is encoded as an indicator vari-
able. The stop word “the” is omitted; “eats” is reduced to
its stem “eat”. For space reasons only three of the bigrams
are shown: “cat_eat”, “dog_eat”, and “mouse_eat”. Includ-
ing bigrams partially recovers word order and allows distin-
guishing between “The cat eats the mouse” and “The mouse
eats the cat”.

This approach to text mining has been implemented in the
Stata package ngram (Schonlau & Guenther, 2016), in the R
programming language (Meyer, Hornik, & Feinerer, 2008),
in free-for-non-commercial use software LightSIDE (May-
field & Penstein Rose, 2012) (English only), as part of the
PERL programming language, and elsewhere.

3 Prediction with boosting

After encoding the text into numerical variables, some
type of regression is employed to relate the outcome, the
multinomial variable that assigns the text to a category, to
the x-variables (unigrams, bigrams, and others). Multino-
mial linear regression does not work well for prediction in
text mining for two reasons: a) variables are highly collinear
and b) text mining creates thousands of variables; poten-
tially more variables than observations. Variables are highly
collinear because text answers typically only contain up to
a few dozen words. For any given text, most unigrams and
bigrams are zero.

For prediction, statistical learning algorithms are used.
A popular statistical learning algorithm is gradient boosting
(Friedman, Hastie, & Tibshirani, 2000). We choose this al-
gorithm, because it computes probabilities for each category
natively. How this algorithm works in detail is beyond the
scope of this paper, but here is some intuition: A regression
tree is fit to the data. A second regression tree is fit to the
residuals from the first tree, a third tree is fit to the residuals
of the sum of the first two trees, and so forth. How many such
trees or iterations are needed? The number of trees is chosen
such that classification all on a test data set is minimized and
depends on the data and the values of the tuning parameters.
That being said, thousands of trees are not unusual.

From a practitioner point of view it is important to know
statistical learning algorithms are so flexible that they can
produce (near) perfect prediction on any data set. This is
called overfitting. To avoid overfitting, training data are usu-
ally split into two parts: the training data set is used to fit the
model, and the test data set is used to evaluate whether the fit
is good.

Most statistical learning algorithms have so-called tuning
parameters that need to be set to reasonable values. For
boosting, the following tuning parameters are often consid-
ered: degree of interactions (1, 2, 3, 4, 5, etc.), degree
of bagging (typical values are 50%- 100%), and degree of
shrinking (typical values are 0.1, 0.01, 0.001). In linear re-
gression most scientists would not consider more than two-
way interactions. In the context of boosting 5-way interac-
tions would not be unusual. Shrinking refers to fitting the
model with more iterations taking shrinking the step length
at each iteration (i. e. taking smaller steps). Shrinking em-
bodies the proverb “Slow and steady wins the race”. A
value of shrink=1 corresponds to full step length; 0.1 to one-
tenth of the step length and so forth. Bagging refers to us-
ing only a subset of the data at each iteration. A value of
100% (bag=1.0) refers to using all the data at each iteration,
whereas a bagging value of 50% (bag=0.5) means that a ran-
dom half of the data are used at each iteration. This often
leads to a more diverse model that may make it less depen-
dent on individual variables. Experimenting with different
values for tuning parameters can improve prediction on the
test data.

Gradient boosting is implemented in Stata (Schonlau,
2005), the R language (Ridgeway, 2013), and elsewhere.

4 Semi-automatic categorization

Semi-automatic categorization involves five steps:
1. Manually categorize randomly selected training data

(e. g. n=500). Rare categories with few observations in the
training data (e. g. 10) can be combined into a single “rare”
category. Develop a “correct” gold standard categorization
for the training data. Typically, open-ended questions are
categorized by two or more humans. To develop a gold stan-
dard from two or more categorizations, conflicts are recon-
ciled either by consensus between the coders, by majority
vote, or by an expert coder.

2. Turn the text answers (using both training and test data)
into numerical variables.

3. Fit a statistical learning algorithm to the training data.
In addition to categorization, the statistical learning algo-
rithm needs to estimate the probability for each text falling
into a category. In the examples below boosting is used;
however, other algorithms could be used. Use the statistical
learning algorithm to predict the category of uncategorized
texts as well as the prediction probability.

4. Decide on a threshold probability (e. g., 0.8) for auto-
matic categorization. The threshold should be chosen in view
of the expected accuracy and the fraction of the test data that
can be automatically categorized. “Accuracy” refers to the
percentage of correct categorizations. Because it is unknown
for uncategorized data, we rely on an estimate, the expected
accuracy. The expected accuracy can be computed for the
automatically categorized data only or of the combined ac-
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Table 1
Hypothetical example of encoding three texts into variables (unigram and selected bigram indi-
cators)

text cat eat mouse dog bone cat_eat dog_eat mouse_eat

The cat eats the mouse 1 1 1 0 0 1 0 0
The mouse eats the cat 1 1 1 0 0 0 0 1
The dog eats the bone 0 1 0 1 1 0 1 0

curacy of manual and automatic categorization. Appendix A
gives formulas for estimates and variances as well as a lower
bound for back-of-the-envelope calculations. The expected
accuracy of the automatically categorized data is simply the
average predicted probability (Equation 3 in Appendix A).

5. If the estimated categorization probability exceeds the
threshold probability, then automatic categorization is ac-
cepted. If the estimated probability is lower than the thresh-
old probability, manual categorization is required. A higher
threshold corresponds to less automatic categorization with
higher accuracy; a lower threshold corresponds to more au-
tomation with lower accuracy.

We evaluate the semi-automatic method against the alter-
native of coding all answers manually in terms of time sav-
ings and against the alternative of coding all answers auto-
matically in terms of the percentage of correctly coded text
answers. The percentage of correctly coded text answers is
called accuracy.

5 Example 1: “Patient Joe” Question in Dutch

Consider the following open-ended question about a hy-
pothetical scenario: “Joe’s doctor told him that he would
need to return in two weeks to find out whether or not his
condition had improved. But when Joe asked the reception-
ist for an appointment, he was told that it would be over a
month before the next available appointment. What should
Joe do?” The original purpose of this question was to learn
to what extent respondents would try to actively engage in
the decision-making process and to what extent “patient ac-
tivation” correlates with other variables such as literacy skills
(Martin et al., 2011). Four code categories – proactive, some-
what proactive, passive and counterproductive – were articu-
lated and a coding manual was developed. Coding reliability
for two manual coders was κ = 0.79 (Martin et al., 2011).
This question could not reasonably be asked as a single-
response categorization question because the terms are not
broadly understood and providing the terms would have bi-
ased the answers (“proactive” being more socially desirable
than “counterproductive”).

In 2012, the same question was asked in Dutch in the
Internet panel LISS (http://www.lissdata.nl). Answers were
also given in Dutch. Using the coding manual, two native
Dutch speakers coded each of 1,758 responses into one of

the 4 categories. Kappa was lower (κ = 0.61), presumably
because the English version was coded by expert coders (in-
vestigators) and the Dutch version by non-expert coders (two
students unrelated to the project). Differences were then re-
solved by an expert and yielded the “gold standard” cate-
gorization. Relative to the gold standard, the human coders
were on average 87.7% accurate (the individual accuracies
were 92.4% and 83.0%, respectively). The text answer con-
tained a median of 17 words (Minimum: 1 word, 25th per-
centile: 10 words, 75th percentile: 97 words, maximum: 119
words).

Using the Stata program ngram, we created indicators of
unigrams and bigrams that each appeared in at least 5 dif-
ferent answers (5 is the default in the software). We also
included a variable that gave the length of the answer where
length is defined as the number of words. We use Dutch
language stemming and we removed Dutch stop words. This
created more than 1,200 unigram and bigram variables plus
the length-of-answer variable. We imported the data into
Stata for boosting and other processing. We used 500 random
observations as training data. We ran multinomial boost-
ing with five-way interactions (interaction=5) and bagging
(bag=0.5) and shrinking (shrink=0.1). Fitting a boosting
model on the training data set with 500 observations took just
over 10 minutes on a desktop computer (Intel Core i5-4590
chip and 8GB of RAM).

What fraction of the answers can be categorized automat-
ically? It is possible to categorizing all answers automati-
cally (threshold=0), but then the accuracy will be low. Ex-
pected values for accuracies and standard errors as a func-
tion of threshold can be computed (Appendix A). Results are
summarized in Table 2. The choice of threshold value (first
column) determines the fraction of answers that can be cat-
egorized automatically (second column) and the (estimated)
expected accuracy among the automatically categorized an-
swers (third column) along with the margin of error (half-
width of a confidence interval) of that estimate (fourth col-
umn). For example, if a threshold of 0.7 is chosen, 47% of
the data can be categorized automatically with an expected
accuracy of 81% (±3.1%). The remainder, 53% of the data,
would be categorized manually. Classifying all data auto-
matically corresponds to a threshold of 0. If one were to cat-
egorize all data automatically, the achieved accuracy would
be 69%.

http://www.lissdata.nl
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Figure 1. Distribution of the four categories based on the
gold standard, human rater1, human rater2, semi-automated
categorization with a threshold of 0.7, and fully automated
categorization

To demonstrate the success of the method, not only the
training data but also the test data were categorized manu-
ally. This makes it possible to compare the percentage of
correctly classified texts (“Achieved Accuracy”, fifth col-
umn) with the expected percentage based on the boosting
model (“E(Accuracy)”). The expected accuracy (third col-
umn) matches the achieved accuracy (5th column) for auto-
matic categorization very well, and is well within the margin
of error.

Manual categorization is not 100% accurate either. Ap-
pendix A gives a formula for combining automatic and man-
ual accuracies to get one overall measure of accuracy. The
overall accuracy is always in between the expected accuracy
and the (assumed) manual accuracy.

Figure 1 shows the distribution of the four categories
based on each rater, the gold standard (with resolved differ-
ences between the two human raters), fully-automatic cate-
gorization and semi-automatic categorization with a thresh-
old of 0.6 (the lowest threshold exceeding an expected ac-
curacy of 0.8). The distribution of the semi-automatic cate-
gorization is roughly consistent with the distribution of two
human categorizations. For the fully-automatic categoriza-
tion, the percentage of texts categorized into the most fre-
quent category “proactive” is somewhat larger than the two
human categorizations.

6 Example 2: Risk of Disclosure

Couper, Singer, Conrad, and Groves (2008) investigated
disclosure risks, privacy and confidentiality concerns as fac-
tors in survey participation. In a series of eight vignettes
describing different surveys and with different risks of dis-
closure conditions, respondents were asked how likely they

would be to take part or not take part in the survey described.
After the first vignette, immediately following the “Willing-
ness to participate” question, half the respondents were asked
either a positively or negatively worded open-ended probe
(Why would you participate? Why would you not partici-
pate?), depending on their response. The other half of the
respondents received this question after the 8th vignette. Our
analysis focuses here on the positively worded open-ended
probe combining answers of questions asked after the 1st
and 8th vignettes. 13.1% and 15.5% of respondents didn’t
answer the open-ended probe after the 1st and 8th vignettes,
respectively. Open-ended probes were coded independently
by two coders. Disagreements were reconciled by an expert
coder. The interrater reliability was κ = 0.79 for the posi-
tively worded question.

The data contain 1,212 answers with 20 different cate-
gories. Some categories are rare with as few as 7 occur-
rences. Five hundred random observations were used as
training data. All categories with less than 10 answers in
the training data were categorized into a separate category
“rare”. This left 11 categories, including the “rare” category
containing about 10% of the sample (Table 3). The text an-
swers contained a median of 11 words (minimum: 1 word,
25th percentile: 5 words, 75th percentile: 18 words, maxi-
mum: 49 words). Using the Stata program ngram with En-
glish stemming and English stop words removed, we created
a little over 1,000 unigram and bigram variables. The boost-
ing parameters used were bagging=0.5, interaction=5, and
shrink=0.1. This run took just under 11 minutes on a desktop
computer (Intel Core i5-4590 chip and 8GB of RAM).

Expected accuracies for a range of threshold values are
shown in Table 4. For example, if using a threshold of 0.6,
then 58% of the data could be categorized automatically. For
this threshold the expected overall accuracy is 0.81 (±0.037).
If one categorizes all data automatically (threshold=0), the
overall accuracy is 65%. This is much lower than the inter-
rater reliability and not good enough if accuracy is the over-
riding concern.

As before, to demonstrate the success of the method we
also categorized the test data manually. This allows a com-
parison of the expected accuracy with the percentage of cor-
rectly classified texts (“achieved accuracy”). The expected
and achieved accuracies for the data that are to be catego-
rized automatically are within 2 percentage points of each
other and well within the margin of error.

The Disclosure data have substantially more categories
(11 categories) than the Dutch Patient Joe data (4 categories).
Nonetheless, the statistics in Table 4 are qualitatively com-
parable to the corresponding table for the Patient Joe data
(Table 2). This suggests that an increase in the number of
categories does not necessarily degrade overall accuracy. An
increased number of categories also increases computer run
time. The boosting algorithm fits one set of boosting trees



SEMI-AUTOMATED CATEGORIZATION OF OPEN-ENDED QUESTIONS 147

Table 2
Summary statistics for automatic categorization as a function of various thresholds for
the Dutch “Patient Joe” data. Margin refers to the half width of a 95% confidence
interval

Fraction Auto Achieved
Threshold Categorization E(Auto Accuracy) Margin Auto Auto Accuracy

0.9 0.05 0.92 0.068 0.88
0.8 0.24 0.86 0.039 0.85
0.7 0.47 0.81 0.031 0.80
0.6 0.66 0.76 0.028 0.76
0.5 0.89 0.71 0.026 0.72
0 1.00 0.68 0.025 0.69

Table 3
Categories in the sample. Categories with less than 10 observations in the sample
were combined (and are not listed)

Training Data Size

1 Believes in research generally 16
2 Wants to be helpful / express opinion 144
3 General altruism 67
4 I’d learn something, interested in results, curiosity 16
5 The money (incentive) 67
6 Topic-related (interesting, issues important) 59
7 Survey doesn’t take much time, short survey 23
8 Other survey characteristic 12
9 No objection 24
10 Uncodable response, ambiguous 25
11 Rare categories combined 47

500

for each category; therefore running time increases linearly
with the number of categories.

Figure 2 shows the distribution of all categories based on
the gold standard, fully-automatic categorization and semi-
automatic categorization with a threshold of 0.6 (the lowest
threshold exceeding an expected accuracy of 0.8). The indi-
vidual ratings of the human raters were not available. The
distribution of the gold standard matches the distribution of
the semi-automatic categorization very well. The fully auto-
matic categorization again over-estimates the percentage of
the most frequent category (2).

7 Time Savings

Some rough calculations may clarify the potential for time
savings over manual coding for this approach. Assuming a
total of 1,500 open-ended answers, 500 answers to be used
as training data, and half of the 1,000 answers in the test data
can be categorized automatically, then 500 answers can be
categorized automatically. For the Dutch data, manually cat-
egorizing 100 text answers took about 1.4 hours. In prac-

0 .1 .2 .3 .4

11
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2

1

Gold standard Semi-automated .6
Fully automated

Figure 2. Distribution of the 11 categories based on the gold
standard, semi-automated categorization with a threshold of
0.6, and fully-automated categorization. Category numbers
match those in Table 3
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Table 4
Summary statistics for various thresholds for the Disclosure data. Margin
refers to the half width of a 95% confidence interval

Fraction Auto- Achieved
Threshold matically Categorized E(Accuracy) Margin Accuracy

0.9 0.15 0.94 0.045 0.95
0.8 0.31 0.90 0.040 0.90
0.7 0.46 0.85 0.038 0.87
0.6 0.58 0.81 0.037 0.82
0.5 0.70 0.76 0.035 0.76
0 1.00 0.65 0.031 0.65

tice, assuming two independent categorizations, automati-
cally categorizing 500 observations would therefore save ap-
proximately [(1, 500 − 500) · 0.5 · 2 · 1.4]/100 = 14 hours.
To the extent that human categorizations differ from one an-
other, the two categorizations need to be reconciled either by
a third human coder or by other means. This is not required
for automated categorization and a modest amount of addi-
tional time could be saved. Assume a total of 10,000 open-
ended answers, the same calculations would yield a time sav-
ing of [(10, 000− 500) · 0.5 · 2 · 1.4]/100 = 133 hours or 16.6
eight-hour work days.

In the Disclosure data, categories with fewer than 10 an-
swers in the training data were combined. To the extent that
this combined category is predicted, answers in this category
still need to be classified manually even when the probabil-
ity is above the threshold. This reduces the time savings by
about 10%. (In the Disclosure data 10% of the answers were
classified in the combined “rare” category.)

Time savings also need to be weighed against the human
time and expertise to create variables from the text answers
and to run the statistical learning algorithm. Even taking the
setup into account, these are substantial savings.

Computer running time for learning the boosting model is
not typically a concern because the training data set is small
for typical applications. Prediction does not increase running
time much. If the size of the training data is the same, a data
set with 10,000 observations will not take much longer to run
than one with 1,000 observations. Running time increases
in particular with small shrinkage values and with a larger
number of categories. In our experience, running time of the
Stata implementation of the boosting algorithm is generally
under 2 hours with shrinkage as low as 0.01 with a couple
dozen categories.

8 Discussion

Automatic categorization of open-ended questions is often
not sufficiently accurate for analysts’ needs. The proposed
semi-automatic method for the categorization of open-ended
questions requires fewer manual categorizations while still

achieving a high level of accuracy. The expected accuracy
can be controlled as a function of the threshold. To target
an expected accuracy of 80%, thresholds of 0.7 and 0.6 were
sufficient in the examples.

The distribution of categories obtained by the proposed
procedure is comparable to that of human categorizations.
In contrast, for full automation the most frequent category
is sometimes over-predicted. Answer texts with high uncer-
tainty are disproportionally assigned to the most frequent cat-
egory which can distort the distribution.

The method lends itself in particular to Web surveys be-
cause the open-ended text is already in machine-readable
format. This is also true for computer-assisted interviewing
(CATI or CAPI) as the interviewer would have already tran-
scribed the respondent’s answer. The method is most useful
for larger data sets or for questions where categorization is
unusually time consuming.

The two examples were trained on 500 observations. This
number will usually suffice for a training data set, though
some more complex problems with many categories may re-
quire larger training data. For less complex problems, addi-
tional savings attained by reducing the training data set from
500 to a smaller number like 300 or 200 have to be weighed
against the risk of a model not fitting as well. On balance,
one might prefer a training data set a little larger to be on the
safe side.

Choosing a meaningful threshold probability requires that
predicted probabilities are approximately unbiased. Ap-
pendix B contains a simulation using different combinations
of values for tuning parameters for all 3 examples. On av-
erage, predicted probabilities were approximately unbiased
(Figure B1) when shrinkage is used (avoid shrink=1) and
when higher order interactions are fit rather than just main ef-
fects (avoid interaction=1). Shrinkage is known to reduce the
categorization error (Hastie, Tibshirani, & Friedman, 2009),
but this is not the same as estimating approximately unbi-
ased probabilities. Fitting 3-way and 5-way interactions also
increases the fraction of data that can be automatically cate-
gorized.

In the computer science literature automatic coding of
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open-ended questions using statistical learning is well known
(Esuli, Fagni, & Sebastiani, 2010; Giorgetti & Sebastiani,
2003; Macer, Pearson, & Sebastiani, 2007). The computer
science literature is mostly focused on multi-response cate-
gorization (Martinez-Alvarez, Bellogin, & Roelleke, 2013,
2012). In multi-response categorization a text can be classi-
fied into multiple categories (e. g. a movie can be both “inde-
pendent” and a “drama”). In single-response categorization a
text is classified in only one category (e. g., hair color cannot
be both black and blond, the patient Joe response cannot be
both “passive” and “proactive”). Multi-response questions
have different challenges because there are multiple thresh-
olds and prediction uncertainties.

In summary, it is possible to automatically categorize a
portion of open-ended survey questions without compromis-
ing accuracy. This makes the proposed procedure preferable
to fully-manual coding. Because of the additional time re-
quired for setting up the proposed method the number of text
answers should be 1,500 or greater before meaningful time
savings can be realized.
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Appendix A
Expected accuracy of categorized answers

We can compute the expected accuracy of manual and auto-
matically categorized answers as a function of the threshold
probability. Accuracy refers to the fraction of observations
that are correctly coded. Neither manual coding nor auto-
matic coding is 100% accurate. Denote the coding of texti
by

Xi =

1 coding is correct
0 otherwise

Xi follows an independent Bernoulli distribution with ex-
pected value E (Xi) = pi if texti is coded automatically and
E (Xi) = pman if texti is coded manually, i = 1, . . . , n where n
is the total number of texts. That means for automatically
coded texts different texts are presumed to have different
probabilities of being coded correctly; i. e. some answers
are easier to code than others.

Then the expected percentage of correctly coded texts
is

E(X̄) =
1
n

 ∑
i∈S man

pman +
∑

i∈S auto

p j


=

nman

n
pman +

nauto

n

 1
nauto

∑
i∈S auto

p j


=

(
1 −

nauto

n

)
pman +

nauto

n
p̄auto (1)

where S man and S auto denote the set of texts which are manu-
ally and automatically coded, respectively, nman and nauto are
the number of manually and automatically coded texts, re-
spectively; and the sum of all coded texts is n, nman+nauto = n.
The variance Var(X̄) is as follows:

Var(X̄) =
1
n2

n∑
i=1

pi(1 − pi)

=
1
n2

nman pman(1 − pman) +

nauto∑
i=1

pi(1 − pi)

 (2)

and a 95% confidence interval can be computed as usual as
E(X̄) ± 1.96

√
Var(X̄). In the example data sets expected ac-

curacy are compared with achieved accuracy for automat-
ically coded texts. This is possible because in the exam-
ples presented all data were categorized manually (not just
the training data). The expected accuracy for automatically
coded texts is as follows

E(X̄auto) =
1

nauto

∑
i∈S auto

Xi = p̄auto (3)

The corresponding variance is

Var(X̄auto) =
1

n2
auto

∑
i∈S auto

pi(1 − pi) (4)

The achieved auto-accuracy (percentage of correctly catego-
rized observations) is

1
nauto

nauto∑
i=1

Xi (5)

Equation 2 uses estimates of individual probabilities that are
obtained from the statistical learning algorithm. For back-
of-the-envelope calculations that do not require the statisti-
cal learning algorithm, a lower bound on the expected per-
centage of correctly coded texts may be useful. Noticing
p j ≥ pthres for all j in S auto:

E(X̄) ≥
(
1 −

nauto

n

)
p̄man +

nauto

n
pthres (6)

In practice, the true categories are not known. Instead, a
“gold standard” is constructed from multiple manual catego-
rizations where any differences have been resolved (e. g. by
an expert coder). If the “gold standard” were 100% accurate
equation 6 becomes

E(X̄) ≥
(
1 −

nauto

n

)
+

nauto

n
pthres = 1 −

nauto

n
(1 − pthres) (7)

This means the combined accuracy depends only on the
threshold probability and the fraction of texts that can be
coded automatically. For example, if a threshold probability
of 90% is assumed, and 50% of the data can be categorized
automatically, then the lower bound for accuracy from 7 is
1 − 0.5(1 − 0.9) = 0.95 or 95%. If manual categorization
accuracy of 90% instead of 100% is assumed, the expected
percentage of accurately coded texts based on equation 6 ex-
ceeds 0.5 · 0.9 + 0.5 · 0.9 = 0.9 or 90%.

Appendix B
Sensitivity of boosting tuning parameters

Like all statistical learning techniques, boosting has some
tuning parameters. Here we investigate whether the predicted
probabilities are approximately unbiased and how the frac-
tion of answers that can be predicted automatically varies for
a range of values for tuning parameters. Approximately un-
biased predicted probabilities is important for setting mean-
ingful thresholds.

We conducted a factorial experiment with 3 values for
shrinking (1 “no shrinking”, 0.1, 0.01), 3 values for inter-
actions (1 “main effects only”, 3, 5), and 2 values of bag-
ging (0.5, 1 “no bagging”) and 15 replications for a total of
3 · 3 · 2 · 15 = 270 runs for each of the three data sets. Each
replication corresponds to a different random set of the train-
ing data (n = 500).

Figure B1 displays box plots of the difference of pre-
dicted accuracy minus the achieved accuracy in the test data
by different combinations of tuning parameters for all three
examples. A difference of zero implies perfect prediction.
Differences greater than zero imply conservative estimates
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of the predicted accuracy; the achieved accuracy was larger.
Boxplots centered on zero corresponding to unbiased esti-
mates are preferred, those centered on positive values are
conservative, and those centered on negative values are un-
desirable. Figure B1 shows that shrinking (0.1 or 0.01) is
necessary. Among runs with shrinking, bagging (bag=0.5)
tends to have little or no influence on whether the estimates
are approximately unbiased.

The fraction of test data that can be automatically cat-
egorized using a threshold of 0.8 is shown in Figure B2 for
the same combinations of shrinking, bagging, and interac-
tions. Among the runs with shrinking, higher interactions
(interaction=3, 5) and bagging (bag=0.5) tend to increase
the fraction of test data that can be categorized automatically.
Overall, taking into account both criteria, bagging (bag=0.5),

shrinking (0.1 or 0.01) and greater interactions (3 or 5) may
be preferable.

The fraction of the test data that can be catego-
rized automatically (“automated fraction”) varies substan-
tially both within and between examples. The examples
in sections 4 to 6 used the following tuning parameters:
shrink=0.1; bag=0.5; interaction=5. For these parameter set-
tings, the “automated fraction” in the simulation range any-
where from 20% to 70% for the Patient Joe data, and be-
tween 10% to 40% for the Disclosure data. This “automated
fraction” is known after running the boosting algorithm and
appropriate counter measures could be taken if the fraction
is deemed too low. Such counter measures might include
increasing the size of the training data.
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Figure B1. Box plots of the difference of predicted accuracy minus the achieved accuracy in the test data by different combi-
nations of shrinking (3rd row), bagging (2nd row) and interaction (1st row)
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Figure B2. Box plots of the fraction of test data that can be automatically categorized using a threshold of 0.8 by different
combinations of shrinking (3rd row), bagging (2nd row) and interaction (1st row)
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