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The present study discusses the usage of non-linear constraints in regression models with mul-
tiple categorical outcomes. Within this approach, equality restrictions are specified in the form
of proportionality constraints in order to take potential differences in residual variation between
equations explicitly into account. In this context, it can be shown that the techniques reviewed
by Williams (2010) are conjointly equivalent to the specification of non-linear constraints in
multivariate regression models. However, the application of non-linear constraints extends
these approaches into a structural equation modeling framework, which allows the researcher
to address a broader range of research questions.
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1 Introduction

In comparison with standard linear models, the fixation
of the unobserved error variance imposes several pitfalls in
the application of nonlinear regression methods. Since the
coeflicients of these models are inevitably rescaled so that
the respective residual variance equals 1 (probit) or n?/3
(logit), a naive comparison of coefficients of nonlinear mod-
els between different groups can lead to false conclusions.
While a variety of studies evaluate the difficulties of effect
comparisons within the limits of single dependent variables,
the present study focuses on nonlinear models with multiple
outcomes, e.g. dyadic logit and probit models in a struc-
tural equation modeling framework. In this context, it can
be shown that comparisons of coefficients between different
equations are invalid when the assumption of equal residual
variances is not met. Thus, in this case even effect compar-
isons within the specified model are an error-prone task.

Against this background, the aim of this study is twofold:
First, the usage of non-linear constraints in multivariate re-
gression models with categorical outcomes is discussed as
a means for testing effect differences across equations (cf.
Sobel & Arminger, 1992). In this context, it is demonstrated
that the specification of non-linear constraints enables the re-
searcher to impose various sets of equality restrictions, which
— given the assumption of “true” effect equality across equa-
tions — take potential differences in residual variation explic-
itly into account. Second, the SEM-based approach outlined
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in this paper is related to previous techniques that have been
developed in the context of group comparisons with nonlin-
ear models. Here, building on Williams (2010), it is shown
that the techniques proposed by Allison (1999), Hauser and
Andrew (2006) and Williams (2009) are conjointly equiv-
alent to the specification of non-linear constraints in mul-
tivariate regression models. Therefore, the application of
non-linear constraints extends these methods into a structural
equation modeling framework, while — however — involving
the same restrictive limitations.

This paper is organized as follows: The next section (2)
briefly outlines the problems of effect comparisons in stan-
dard logit and probit models and provides a short review of
previously proposed (single equation) correction methods. In
the following section (3), difficulties of effect comparisons
are discussed in the context of structural equation models
with multiple categorical outcomes, resulting in the introduc-
tion of non-linear constraints. The empirical application of
this technique is exemplified in section 4, whereas in sub-
section 4.1 non-linear constraints are related to the methods
outlined in section 2 within the application of a dyadic logit
model, followed by an example using an extended SEM-
structure (subsection 4.2). The paper closes with a summa-
rizing discussion concerning the advantages and limitations
in the application of non-linear constraints (section 5).

2 Effect comparison in logit & probit models

The application of logit and probit models is characterized
by a number of substantial, distinctive features. Due to im-
plicit assumptions in the context of model identification, par-
ticularly the comparison of coefficients across different mod-
els and/ or groups involves some difficulties. These problems
can be demonstrated referring to a latent response variable y*,
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which is considered causal for the observed value of y within
a threshold model (Allison, 1999):
0 if —o<y' <t
Vi = . . ey
Lif 7<yl<oo
Consequently, y; equals 1 if y: exceeds a threshold value
7, whereas T is typically restricted a priori to zero (t = 0).
The following linear model can be specified for y;:

y?:ﬁ0+ﬁ]xi|+...+,B]Xij+0-'9i (2)

Here, &; is an error term with constant variance and o is
a non-fixed scale parameter. Thus, og; allows for a variable
error variance. However, since the scale of y; is unknown
and o¢; therefore not determinable, the following model is
based on implicit assumptions about &;:

glP(yi = D] =By +B1xit + ...+ Byxiy 3)

Assuming ¢&; has a logistic distribution with E(g) = 0
and V(e) = %2, g corresponds to the “logit-link” so that
P(y; = 1) = A(xB").! The assumption of & ~ N(0, 1) leads
to P(y; = 1) = O(x]B"), so that g corresponds to the “probit-
link” function.” The relation between the “true” coefficients
B and §* is given by:

5= )
o

Thus, the 5*-coefficients of logit and probit models are im-
plicitly rescaled by o due to the fixed error variance. Com-
pared to 8 they therefore additionally depend on the extent
of unobserved residual variation. Consequently, the identi-
fication assumptions of nonlinear models — (1) 7 = 0, (2)
E(€) =0,03) V(e = % respectively V(¢) = 1; Long (1997)
— do not allow for naive comparisons of coefficients between
different model specifications, groups, points in time or sam-
ples if the value of o differs between the corresponding mod-
els (see also Mood, 2010).

The difficulties concerning effect comparisons between
different (nested) model specifications (case 1) result from
the fixation of the error variance component in the context of
variance decomposition. Here, the fixed error variance does
not allow for a decrease in residual variation as compensation
for an elevated explained variance in models with additional
explanatory variables. In consequence, the total variance of
»y* must be adjusted and thus differs between the models.
There have been different attempts at solving this problem,
for example the usage of (fully) standardized S-coefficients,
average marginal effects (AME’s) or the KHB method (Karl-
son, Holm, & Breen, 2012); see also the overview in (Best &
Wolf, 2012).> Correspondingly, comparisons of coefficients
between different groups (case 2) can be complicated by dif-
ferences in explanatory power (of the same model specifica-
tion) between these groups. In this case, the 8*-coefficients

refer to y*-variables with different (group specific) scales.
Furthermore, it is possible that the (“true” ) error variances
differ between groups in spite of equal explanatory power, so
that the rescaled S*-coefficients cannot be compared either
(Hoetker, 2004; Williams, 2010). Due to this circumstance,
specific approaches have been developed in the context of
case 2.

Given the outlined difficulties, Allison’s (1999) solution
for the inter-group comparison of coefficients in nonlinear
regression models is based on the expansion of the standard-
logistic model by the additional parameter . In an attempt to
compare the coefficients of a logit regression of promotion to
associate professor between gender, he develops the model:*

PO =1) = ABy+ ) B x (1+6G) (5
By + 2Bjxij

1/(1 +6G;)
_ A[ﬂa + Zﬂ;xij)

gi

1
1+ 5Gl‘ ’

Here, G; is a dummy variable which indicates the affili-
ation to the respective group and ¢ is an adjustment factor
(with 6 > —1) that allows the group G; = 1 to deviate from
the fixed residual variance with o; = 1/(1 + 6G;) (for G; = 0,
o; equals 1). Furthermore, the model contains the grouping
variable in ) ,Bj.x,» ;» enabling group-specific intercepts. Based
on the assumption that several (at least one) variables exert
the same “true” influence in both groups, the corresponding
coefficients are rescaled by the same factor in groups with
unequal error variances, whereas the latter is integrated into
equation (5) as a function of §. If group specific error vari-
ances are discovered (e.g. through a y?-difference test be-
tween models with and without ¢) the model can be extended
with (at max J — 1) interaction effects between x;; and G; to
detect differences in effects between the groups while taking
differences in residual variances into account.

with o; =

Hauser and Andrew (2006) propose a similar model, yet
in a completely different context. Their “logistic response
model with proportionality constraints” (LRPC) includes the

'A = cumulative distribution function (cdf) of the standard lo-
gistic distribution.

2® = cumulative distribution function (cdf) of the standard nor-
mal distribution.

3A correction procedure concerning multilevel logit and probit
models can be found in (Hox, 2010).

4Analogue to Allison’s (1999), Hauser’s (2006) and Williams’
(2009) focus on logit models, subsequent examinations are based
on the usage of logit-link functions. Furthermore, comparisons be-
tween two groups are considered.
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additional parameter Ay:

PO = 1) = ABjo + & ) Byxi)) (©)
2B i
Ok

= A(,B,fo +

ith oy, = —.
with o, 2

Even thmf gh the model has originally been conceptualized
to fit k = 1, ..., K educational transitions, it can be applied to
analyze K = 2 groups. In that case, 5, contains two group
specific intercepts, thus the grouping variable is not included
in 3 Bjxi; as additional explanatory factor. As a key fea-
ture of equation (6), the coeflicients of group 2 can deviate
from the analogue coefficients of group 1 due to A, which is
restricted to 1 in group 1 (4; = 1). A comparison of equa-
tions (5) and (6) immediately illustrates the analogy between
Allison’s approach and the LRPC in the case of two groups,
whereas 4, = 1 + J. A relaxation of the proportionality as-
sumption of the LRPC can be made with the introduction of
interaction terms between x;; and the corresponding group-
ing variable (“logistic response model with partial propor-
tionality constraints”; LRPPC).

Finally, a third approach involves the specification of a
“heteroscedastic logit model” (as a special case of “hetero-
geneous choice” models), which has been put forward by
Williams (2009) as a response to Allison’s (1999) technique:

Pl = 1) = A| 2T 7
(yi_ )_ m ()
:A(Zﬂjxu—‘r]
o

with o; = exp(Gyy).

Compared to the former models, equation (7) imposes
the restriction By =0, thus the threshold 7 is estimated in-
stead of the intercept. In the context of inter-group com-
parisons, a grouping dummy G; can be (additionally) in-
cluded in the choice (X f}x;; — 7) and — most importantly
—in the scale equation (exp(G;y)), enabling a deviation from
the fixed residual variance within the group G; = 1 through
the parameter y (given the assumption of “true” equal effects
between the groups for at least one variable).> A comparison
of the equations (5), (6) and (7) illustrates the equivalence of
the heteroscedastic logit model and the previously outlined
techniques, whereas y = In(1/(1 + ¢)) and vy = In(1/4,)
(Williams, 2010). As it was the case in the previous meth-
ods, interaction terms between x;; and G; can be added to the
choice equation of the heteroscedastic logit model in order to
conduct “adjusted” tests for effect differences across groups.

Even though all three outlined techniques can be used to
fit empirically equivalent models, one should note that both
Allison’s approach and the heteroscedastic logit model are

based on entirely different rationales of the existing group
differences compared to the LRPC. While the first two ap-
proaches initially assume that the difference between the
groups lies within the error variances (which results in ap-
parently different effects across groups), the LRPC attributes
(real) effect differences instead of group specific residual
variances to the very same mechanism (Williams, 2010; see
also Mare, 2006).% Since these interpretations are not em-
pirically distinguishable from each other, the underlying as-
sumptions of each model need to be considered carefully
when these methods are applied.’

3 SEM-Extension

So far, difficulties of effect comparisons in logit and probit
models have been discussed in the context of single depen-
dent variables. However, it can easily be seen that these prob-
lems extend to models with multiple outcomes. Consider the
structural equation model

n=p+Ix+e¢ (8)

where 7 represents a (K X 1) vector of latent dependent vari-
ables, p is a (K X 1) vector of intercepts, I' contains a (K X J)
matrix of regression slopes, x is a (J X 1) vector of (observed)
independent variables and € is a (K X 1) vector of residuals
with & ~ N(0,Q).2 For simplicity, the following deriva-
tions focus on the limiting case of two dependent variables
(K = 2). In this case, equation (8) contains:

w+xXy +e 9)

o +Xy, + &

m =
mn

Here, y, is a (/X 1) vector of regression coefficients which
relates x to 17; and y, is a (Jx1) coefficient vector relating X to
1, respectively. With categorical y-variables, the n-variables
are related to their observable counterparts with a threshold
model (cf. y* in section 2). In the following, two binary y-
variables are considered, where y; = 1 if n; > 7, y; = 0 if
n<tT,y2= 1 lf)’]z > T2 andy2 = 01f7’]2 < T3.

Since a simultaneous specification of all intercepts and
thresholds leads to identification issues, restrictions have to

3Originally, the heteroscedastic logit model is given by P(y; =

_ ZBjxij-T
b= A(exp(Zliﬂj)

be included in the scale equation (Williams, 2009).

6Similarly, Rohwer (2015) shows that a simple heteroscedastic
logit model formally corresponds to an ordinary logit model with an
interaction term with the grouping variable, which in turn implicates
an effect-focused interpretation.

7 Alternative approaches to this set of problems can further be
found in Long (2009) and Breen, Holm, and Karlson (2014).

8For a related discussion of model structures which cover rela-
tionships between the p-variables (via Br), see (Stein & Pavetic,
2013).

), thus several variance conditioning variables can
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be imposed on these parameters. In this derivation, the re-
striction g* = 0 is specified. Furthermore, identifying as-
sumptions have to be made concerning the unobservable er-
ror variances in £, whereas in the following the standardiza-
tion & ~ N(0,¥") with diag(¥*) = I is imposed. Given
these restrictions, equation (8) results in a multivariate probit
model:’

- =IT"x+¢&" (10)

The error covariance and coefficient matrices of equation
(8) and (10) are related as follows:

¥ = AQA (11)
* = AT (12)

where A contains the inverted standard deviations of the un-
observed residuals &:

-1
_ (0] 0
Sk

Using scalar notation, equation (12) implies that "= Zr—ll’

and y;j = Z—ZZ’, which corresponds with the well-known prob-
lem outlined in section 2; see equation (4). However, in a
SEM-framework the fixation of the unobserved error vari-
ances poses problems concerning effect comparisons within
the specified model (i.e. effect comparisons between equa-
tions). Consider the hypothesis y;; = y»;, assuming that the
effect of a given predictor is equal in both equations. Such ef-
fect comparisons may be of particular interest in e.g. dyadic
models, where the dependent variables of two partners are re-
lated to the same set of actor-specific independent variables
(Kenny, Kashy, & Cook, 2006). With categorical outcomes,
such hypotheses must be formulated in terms of I'* (Pavetic,
2009; Sobel & Arminger, 1992; Stein & Pavetic, 2013):

?’yfjo'l 7;10-2
Yij = ;172]' (13)
)/Tj = /l)’;j

Thus, it can be seen that with the specification of y*l‘j =
/ly;j, the relation of the unobserved error variances is taken
into account within the imposed equality restriction, given
the assumption of equal y-effects for at least one pair of ex-
ogenous variables. The empirical implementation of equa-
tion (13) results in the specification of non-linear parameter
constraints, imposing proportionality restrictions on the co-
efficients of interest through the introduction of A. Subse-
quently, the constrained model can be compared with a less
restrictive model specification in order to draw conclusions
concerning the postulated hypothesis of equal effects across
equations for specific coefficients. In this context, different
sets of parameter restrictions (i.e. multiple hypotheses) can
be tested in a stepwise manner.

The outlined procedure of (sequenced) effect comparisons
in nonlinear multivariate regression models requires SEM-
software which allows the specification of non-linear con-
straints. Examples of statistical software packages with cor-
responding capabilities include MECOSA (Arminger, Wit-
tenberg, & Schepers, 1996) and Mplus (L. K. Muthén &
B. O. Muthén, 1998-2012), whereas the latter is used for the
empirical applications of this study.!”

4 Application

In this section, the previously outlined technique will be
exemplified within some empirical applications. In this con-
text, it is useful to distinguish between two types of mod-
els, which are illustrated in Figure 1. Model type 1 en-
compasses a simple dyadic model structure, where the non-
metric dependent variables of two partners (male & female)
are related to a set of individual-level and household-level
predictors. Without the specification of additional partner-
related effect structures (and given the availability of a dis-
tinct partner identification in the data set), this model can
be fitted either in a structural equation modeling framework
(data in “wide format”) or within a simple group comparison
between gender using standard logit models (data in “long
format”). Thus, any previously outlined technique is appli-
cable for model structures of type 1. However, dyadic re-
search typically involves the specification of partner effects
and the consideration of error covariances, which leads to an
elaborated model structure (model type 2). Since models of
this type inherently imply the usage of specific SEM estima-
tion methods, the specification of non-linear constraints is the
remaining method of choice concerning effect comparisons
between gender in this context.

The following empirical application consists of two steps,
covering both model types of Figure 1. At first, the anal-
ogy of the previously outlined approaches will be illustrated
within a simple dyadic model structure of type 1 (example
1, section 4.1). Subsequently, the usage of non-linear con-
straints will be exemplified in more detail based on an ex-
tended model specification of type 2 (example 2, section 4.2).
In both cases, an example from mobility research is used
where the (binary) dependent variables represent the mobil-
ity disposition of partner 1 (male; y;) and partner 2 (female;
y2).'" The exogenous variables affiliated with the mobility
dispositions and the corresponding y-parameters which are

°In this case, the probability of e.g. y;, = 1 is given by
P(yy = 1) = ®(ty — E(my)).

In this case, non-linear constraints can be easily specified
within Mplus® MODEL CONSTRAINT subsection (L. K. Muthén
& B. O. Muthén, 1998-2012).

"'The y-variables are based on the question “Could you imag-
ine moving away from here because of family or career reasons?”
with the dichotomized response categories 0="“No/It depends” and
1="Yes”.
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Table 1

Description of exogenous variables (Example 1 & 2)

Variables

Actor effects Partner effects

male female male female

X1, X16 Age

Y11 Y216

X2, x17  Education (in years) Y12 Y217 Y7 Y22
x3, x1g  marginal Emp. (Ref: full / part-time Emp.)  y3 V218 Y118 V23
X4, X9 Non-Working (Ref: full / part-time Emp.) Y14 V219 Y119 Vo4
x5, X9 Life Satisfaction Yis Y220
X6, Xo1  Risk Tolerance Y16 Y221
X7 Household Income (in Euro) Y17 Y27
Xg Household Size Y18 Y28
Xo Household Size? Y19 Y29
X10 Owner (Ref: Renter) Y110 Y210
X11 Tenure (in years) Y Y211
X12 Local ties (Contact with neighbors) Y112 Y212

X13 Number of Children < 6y.
X14 Number of Children 6-16y.
X1is Mover 2008 (Ref: Stayer)

Y113 Y213
Y114 Y214
Y115 Y215

(a) Model type 1

- x HH- Level -
x Partner 1 x Partner 2

R Vs
y" Partner 1 y" Partner 2

(b) Model type 2

- x HH- Level o
x Partner 1 x Partner 2

RN Vs

y" Partner 1 y" Partner 2

- v

Figure 1. Dyadic model structures with non-metric outcomes

specified in the dyadic models are outlined in Table 1. Here,
standard mobility predictors are used, assuming e.g. higher
migration intentions of the young and qualified, whereas lo-
cal “ties” such as homeownership, (pre-)school aged children
and strong neighborhood bonds are typically associated with
lower moving desires (e.g. Kern, 2014). While both applica-
tions include the same set of independent variables, the mo-
bility dispositions of example 2 are assumed to be addition-
ally dependent on individual characteristics of the respective
partner, introducing additional partner effects as indicated in
the last two columns of Table 1.

The empirical investigations are based on data from
wave z (2009) of the German Socio-Economic Panel Study
(GSOEP), which started in 1984 and is an extensive lon-
gitudinal survey of the German population containing a
wide spectrum of topics measured at both household and
individual-level (Wagner, Frick, & Schupp, 2007). In the
following applications GSOEP-Subsamples A-I are used,
whereas the data set has been restricted to include individu-
als aged 18 to 65 living in private households. Since GSOEP
data allows a distinct partner matching through the usage of
partner identification codes, dyadic models which align with
both model types of Figure 1 can be fitted on this basis.

4.1 Example 1: Comparison of correction methods

In order to compare the techniques reviewed in section 2
with the SEM-based approach of section 3, the same model
specification has been fitted using Allison’s (1999), Hauser
and Andrew’s (2006) and Williams’ (2009) methods. In ad-
dition, an equivalent model has been implemented in Mplus,
using non-linear constraints as proposed in this paper. In all
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Table 2
Comparison of correction methods
LRPC Heterosced. logit model Mplus model with
Allison (1999) (Hauser & Andrew 2006) (Williams 2009) non-linear constraints
0 s.e. ALRPC S.€. 0% S.€. AMplus s.e.
Estimate —0.051 0.094 0.949 0.094 0.052 0.099 1.053 0.110
1 1
i = 1.054 - =1.054 7y) = 1.054
Sigma 146G, 05 y 05 exp(Gyy) 05
LL -3721.903 -3721.903 -3721.903 -3721.903

cases, the mobility disposition of both partners (male & fe-
male) are assumed to be solely dependent on actor-related
individual features and household characteristics, so that the
model can either be implemented within a dyadic (two equa-
tion) SEM-framework or with a simple group comparison
between gender using standard (single equation) logit regres-
sion. In this context, the same effect structure is implied for
both gender, thus a fully restricted Mplus model is estimated
and the single equation models are fitted without any gender
interactions.'?

Selected results of the four model specifications are pre-
sented in Table 2. It can be seen that apparently not only
the first three approaches produce empirically equivalent re-
sults (cf. Williams, 2010), but also that the model fitted with
Mplus using non-linear constraints (and ML estimation with
a logit link) induces the same LogLikelihood as the former
models. Thus, in this case (i.e. applying models of type
1) all four techniques generate the same empirical results.
However, following (Williams, 2010) it should be noted that
these results may be interpreted quite differently: From the
perspective of Allison’s (1999) and Williams’ (2009) meth-
ods, one would conclude that the standard deviation of the
error term is 5.1% (6) lower for the male partner in compar-
ison with the respective error variation of the female part-
ner, or — equivalently — that o, is exp(y) = 1.054 times
larger for women than for men. On the other hand, the
LRPC implies that the gender-specific effects differ by .949
(ﬁ?emale = /lLRPCﬂfnale) or 1.054 (B:nale = ﬁﬁ;male)’ re-
spectively. Finally, in line with the derivations of section 3,
the Mplus model with non-linear constraints constitutes that
the ratio ‘T;T'“l' of the (unobserved) error standard deviations
equals Anpius = 1.053, which corresponds with the perspec-
tive of Allison’s (1999) and Williams’ (2009) techniques.

4.2 Example 2: Non-linear constraints in dyadic probit
models

As with model structures of type 1, non-linear constraints
can be easily implemented in extended dyadic models with
partner effects and error covariances (type 2 models). Fur-
thermore, for both model types, series of variously restricted
models can be specified in order to test effect differences of

specific sets of parameters while taking potential differences
in residual variation into account. This procedure has its
analogy in the inclusion of interaction terms with the group-
ing variable within the single equation approaches discussed
in section 2.13 In the context of SEM-structures, this practice
requires a fully constraint model to be fitted first, followed by
a set of less restrictive models. Subsequently, y>-difference
tests can be carried out in order to test which specification
(i.e. hypothesis) should be preferred.

Turning to the previous example from mobility research,
the outlined testing procedure with non-linear constraints
is illustrated on the basis of an extended dyadic model of
type 2 (including partner effects and a specified error co-
variance).'* In this context, five model versions have been
specified: Starting from the fully constraint model 1, model
2 relaxes the assumption that the partner effects y;;7 and y2»
(partner effects of education) are proportionally equivalent.
The next set of partner effect restrictions (concerning the ef-
fects of employment status) is relaxed in model 3, thus in
this case only the actor-related individual- and household-
level effects are constraint to be (proportionally) equal across
equations. Finally, model 4 solely poses restrictions on the
individual-level actor effects, whereas in model 5 no con-
straints are specified.

The results of the corresponding SB-corrected y>-
difference tests (Satorra & Bentler, 2001) are summarized in
Table 3. It can be seen that the relaxation of the first restric-
tion induces a significant improvement in model fit (10%-
level), thus from the perspective developed here, it can be ar-
gued that substantial differences between the gender-specific
partner effects of education can be observed which cannot
be solely attributed to differences in residual variation (since
these differences are already accounted for by 1). Given the

2More formally, the restrictions y;, = Ay} ... ¥ig = A¥5y, and
Yi; = A3y .. V115 = AY¥;,s are imposed in the multivariate Mplus
model (cf. Table 1).

BTherefore, the present strategy bears the same restrictions and
assumptions as outlined by Williams (2009).

4The following results are based on Mplus® WLSM estimation
procedure, which uses the probit link (e.g. B. O. Muthén, 1998-
2004).
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Table 3
Scaled y*- difference tests
Model Restriction X’ df  x2 Diff. p r}?l ryz2
Ly = Wy Ve = Ayt 23426 23 0.127 0.123
717 = ’17’;1 v Vs = ’17’;151)
Vs = 470
T =47
Y17 = W
2 Y =W Y =AYy, 19852 22 2839 0092 0.124 0.128
73:7 = /17’;1 < Yhis = Ways
7118 = /1733
Y19 = oy
3y =Y =AY, 18545 20 1388 0500 0122 0.131
Y17 = Wa7 -+ Vis = Ways
4 Y =W Y=, 9487 11 9521 0391 0127 0.131
5 6.050 6 3509 0.622 0.124 0.134

a Actor effects  ®HH-effects € Partner effects

insignificant test result of the next y?-difference test (model
2 vs. model 3), it becomes clear that such differences can-
not be observed concerning the partner effects of employ-
ment status. Furthermore, also the relaxation of the next two
sets of parameter restrictions (actor effects of individual- and
household-level predictors) do not induce any substantial im-
provement in model fit, thus on the basis of the conducted y>-
difference tests model 2 provides the best balance between
model fit and parsimony.

The preferred model 2 of the previously outlined model
series is illustrated in Table 4 in more detail. Here, all coef-
ficients except for the partner effects of education (y;7 and
7y22) are constrained to be proportionally equal across equa-
tions, with Yiale = Wiemaer AS in the previous example,
A 1is considered to reflect differences in residual variation be-
tween gender, whereas in this case ‘:T‘:‘:‘e =1.071. As aresult
of the imposed restrictions, symmetric partner effects can be
observed concerning the coefficients of the employment sta-
tus dummys, which show a positive effect of a non-working
spouse on the mobility disposition for both gender. In con-
trast, the unconstraint partner effects of education exhibit a
different effect pattern: Here, higher levels of education of
the male partner are related to an increase in the willingness
to move of the female partner, whereas a corresponding effect
cannot be observed in the male’s equation. Thus, as indicated
in the previous section, substantial effect differences can be
observed in this case. Additionally, it can be seen that the in-
clusion of 7, (error covariance) accounts for substantial in-
terdependencies between both partners, underlining the util-
ity of an extended model specification in applications with
dyadic data structures.

M

5 Discussion

In the present study, effect comparisons in nonlinear mod-
els have been discussed from a structural equation model-
ing perspective. In this case, it has been shown that the
well-known problems which arise in the context of standard
(single equation) logit and probit regression extend to mod-
els with multiple non-metric outcomes. More specific, the
fixation of the unobserved error variances poses substantial
problems concerning effect comparisons between equations
when the assumption of equal residual variances is not met.
As aresult, a naive (direct) comparison of coefficients across
equations can lead to false conclusions. Against this back-
ground, the usage of non-linear constraints in multivariate
probit and logit models has been discussed, with which po-
tential differences in residual variation can be taken into ac-
count within the imposed equality restrictions. However, this
perspective is based on the implicit assumption of “true” ef-
fect equality across equations, which may then be relaxed for
specific coeflicients in a stepwise manner.

Furthermore, the technique outlined in this paper has been
related to previously proposed methods which have been
(mainly) developed in the context of group comparisons with
single non-metric outcomes (Allison, 1999; Hauser & An-
drew, 2006; Williams, 2009). It has been shown that these
approaches induce the same empirical results concerning
model specifications which can be fitted either in a nonlin-
ear SEM-framework or within simple group comparisons us-
ing standard logit regression. Thus, the application of non-
linear constraints involves the same advantages as well as
limitations as the considered single equation techniques (cf.
Williams, 2009): On the one hand, markedly different in-
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Table 4

Dyadic probit model with non-linear constraints

CHRISTOPH KERN AND PETRA STEIN

Partner 1 (Male)

Partner 2 (Female)

v* s.e. y§xy v s.e. 7;@
Actor effects
Age -0.009" 0.004 -0.081 -0.008" 0.003 -0.076
Education 0.037°"  0.008 0.097 0.034™"  0.007 0.085
Marginal Emp.? 0.033 0.078 0.005 0.031 0.073 0.009
Non-Working® 0.107" 0.048 0.036 0.100" 0.045 0.042
Life Satisfaction -0.049""  0.011 —-0.078 -0.046""  0.010 -0.073
Risk Tolerance 0.061°  0.009 0.122 0.057""  0.008 0.106
HH-effects
HH-Income (x1072) 0.063™" 0.011 0.123 0.059™ 0.011 0.114
HH-Size -0.100"  0.032 -0.102 -0.093""  0.029 —-0.095
HH-Size? 0.047° 0.014 0.112 0.044™" 0.013 0.104
Owner® -0.3117"  0.050 -0.141 -0.290""  0.048 -0.132
Tenure -0.008""  0.003 —-0.087 -0.008""  0.002 -0.081
Local ties -0.119""  0.025 —-0.093 -0.1117"  0.024 —-0.086
Children < 6 y. 0.030 0.052 0.014 0.028 0.049 0.013
Children 616 y. 0.017 0.039 0.012 0.015 0.037 0.012
Mover 2008¢ -0.156 0.087 —-0.034 —-0.145 0.081 —-0.032
Partner effects
Education 0.015 0.011 0.037 0.042" 0.011 0.111
Marginal Emp.? 0.105 0.074 0.029 0.098 0.069 0.013
Non-Working? 0.105" 0.047 0.043 0.098" 0.044 0.033
A 1.071 0.122
v, 0.558"  0.024
T 0.713 0.058 0.700 0.059
yz 0.124 0.128
X’ (22) 19.852
RMSEA 0.000
CFI 1.000
TLI 1.005
n 3631

aRef.: full / part-time Emp.  ®Ref.: Renter ¢ Ref.: Stayer 2008
"p<005 Tp<001 p<0.001

terpretations of the same (constrained) model result are pos-
sible.!> Correspondingly, the hypothesis of unequal effects
may be falsely rejected in models with homogenously dif-
ferent effect patterns between equations, because these ef-
fect differences can be absorbed into A. On the other hand,
the specification of non-linear constraints protects against
the false rejection of the hypothesis of equal effects in cases
where apparent effect differences are induced by differences
in residual variance. Given the latter capability, the proce-
dure outlined in this paper provides a flexible technique con-
cerning effect comparisons in nonlinear multivariate regres-
sion models. However — as with the corresponding single
equation approaches — the underlying assumptions should be

considered carefully when non-linear constraints are empiri-
cally applied.
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