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McFadden’s random alternative sampling conditional logit estimator permits researchers and
survey designers to estimate a random utility choice model observing information about a subset
of available alternatives. We quantify the extent to which a small sample size and a reduction in
the number of sample alternatives lead to bias and loss of statistical power. The sample size
must be small and choice probabilities must be weakly correlated with choice characteristics for
there to be substantial bias and low power. Finally, we find that there is a sharply decreasing
marginal gain from increasing the number of sampled alternatives. We provide an empirical
example on the choice of health insurance plans that verifies our conclusions.
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Introduction

Economists often study what choices people make among
a fixed set of alternatives, each with its own set of pertinent
characteristics such as price and quality. The conditional
logit model is perhaps the most popular econometric model
used to analyze how changes in characteristics affect choice
probabilities. Given the well-known maximum utility inter-
pretation of the conditional logit model, such popularity is
justiﬁed.1 However, the traditional conditional logit model
poses substantial data requirements. For each alternative
available to each consumer, the analyst must know all of its
characteristics. In a survey context, collecting such complete
data on all available alternatives may be too costly.

McFadden (1973, 1978) provides an appealing way to
circumvent the data requirements of a traditional conditional
logit model. Based only on information about the alternative
chosen by the consumer and a random subset of the non-
chosen alternatives, it is possible to consistently estimate
model parameters. The cost of this approach is a loss of
statistical power, which is unsurprising since less information
is used by the econometrician in estimation. However, we
are unaware of any study to date that has investigated how
much statistical power is lost. Nor has there been any investi-
gation of bias and statistical power of this random alternative
sampling conditional logit (RASCL) estimator when sample
sizes are small. Because it is common for economists to
analyze consumer choices with less than infinite samples and

Contact information: Jay Bhattacharya, Center for Primary Care
and Outcomes Research, Stanford Medical School, 117 Encina Com-
mons, Stanford, CA 94305-6019 (jay @stanford.edu) and Baoping
Shang, RAND, 1700 Main Street, Santa Monica, CA 90401 (bp-
shang @ gmail.com)

145

with information about only a small subset of the available
alternatives, these are important gaps in the literature. Using
Monte Carlo methods, this paper fills these gaps. We find that
in many common situations, the RASCL estimator loses sur-
prisingly little statistical power relative to the full information
conditional logit estimator.

To make this argument, we organize the paper as follows.
We start, in Section 2, with a brief non-technical introduction
to random alternative sampling and a consideration of the
practical problems that arise in applying random alternative
sampling to the problem of survey design. In Sections 3 and
4, we formally describe random alternative sampling and the
design of our Monte Carlo exercise. In Section 5, we convey
the results of the Monte Carlo exercise. In Section 6, we
describe an empirical example on the choice of health plans
by experts in managed care. In that section, we estimate the
loss in statistical power that would have occurred had the
surveyors (including one of the authors of this paper) used
random alternative sampling. Finally, Section 7 concludes.

Random Alternative Sampling in
Survey Research

At first sight, the random alternative sampling might seem
an unlikely tool to use in the context of survey research. While
it would certainly be less expensive to collect information
about a random subset of alternatives than it would be to
collect information about every alternative, nevertheless there
are some serious practical difficulties with random alternative
sampling. First, a researcher would need to know about the
existence (though not any other details) of all the alternatives
available to every survey respondent in order to randomize
over those alternatives. Finding out about even the existence
of the alternatives may be prohibitively expensive. In that
case, of course, it would also be prohibitively expensive to

! See McFadden (1973), Maddala (1983) or any recent advanced
econometrics textbook for a discussion of this point.
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collect information about all the alternatives. However, there
are some important situations when collecting information
about a subset of alternatives would not be expensive. There
are strategies researchers can use to reduce these costs that we
will discuss shortly. Second, if the set of alternatives is small
and all survey respondents face a common set of alternatives,
it will be likely that each alternative will have been picked
by at least one respondent. In that case, there is no gain
from random alternative sampling — to estimate a logit choice
model every alternative must be investigated.

Perhaps the most important situation where random al-
ternative sampling might be useful for survey designers is
when the number of alternatives is much larger than the num-
ber of respondents. For example, Train (1987) use random
alternative sampling to analyze consumer choice among local
telephony plans where consumers pick from the same set of
more than a million alternative plans. Unless there are special
circumstances, it would be impossible to collect information
about all those plans.?

A second situation where random alternative sampling
might be useful is when each respondent faces a different set
of alternatives. Even if the number of alternatives faced by
each respondent is small, the total number of available alterna-
tives may be quite large, making it prohibitively expensive to
collect detailed information about all the alternatives. This is
a very common situation faced by labor economists and health
economists who are analyzing worker choice from a menu of
fringe benefits such as health insurance. For example, Dowd
(1995) and Chernew (1998) analyze the choice of health plans
by consumers who, because they work for different employ-
ers, each must pick from a different set of plans. In those
studies, the authors had available to them full information
about the details of every available plan (deductible amounts,
copayment rates, limits to coverage, and so on). If random
alternative sampling had been used instead, the same logit
choice parameters could have been estimated at lower cost.

One of the authors of this paper has been involved in
two survey collection efforts where the cost of collecting
information about a complete set of available alternatives
was acutely felt. In the data collection effort that led to the
paper by Studdert (2002), the largest costs of surveying in-
volved contacting the employers of the surveyed workers to
find out the characteristics of the available plans. Collecting
detailed information about plan characteristics would have
entailed extensive efforts on the part of contacted employers
and hence to non-response. For that study, the authors decided
instead to reduce the number of plan characteristics analyzed,
which greatly limited the set of research question that could
be addressed using these data. While the survey designers
considered random alternative sampling, fears that using this
technique would greatly compromise statistical power in this
small scale study led to rejecting the technique. In this paper,
we reanalyze these Studdert (2002) data using RASCL to
examine whether these fears were well founded.

The Health Care for Communities (HCC) dataset also
involved administering a survey to workers and then contact-
ing the employers of these workers to learn details about the
health plans available to workers — see Sturm (1999). In this

second survey collection effort involving one of the authors
of this paper, the survey designers decided explicitly to not
ask employers about any of the alternative plans available
to workers to limit the response burden placed on employ-
ers. As a result of this decision, while the HCC is useful for
many other purposes, it cannot be used to analyze health plan
choices by workers.

Though it is beyond the scope of this paper to comprehen-
sively discuss practical strategies for implementing random
alternative sampling in a survey setting — we are primarily in-
terested here in the statistical power properties of the RASCL
estimator against a full information estimator — we discuss a
few such strategies here. As we noted above, an important
practical problem is that the researcher much know what all
the alternatives are in order to randomly pick from among
them. In our experience, it is often possible to solve this
problem by asking survey respondents which alternatives are
available to them. This poses only a small additional burden
on the respondent relative to asking about the characteristics
of all the available alternatives (many of which the respondent
will know nothing about). Then, a researcher who wants to
analyze respondent choices can contact the providers of a
random subset of these alternatives to garner the necessary
information about alternative characteristics.

What if survey respondents cannot be relied upon to ac-
curately report available alternatives? In that case, it is often
possible to garner this information from other sources. In the
examples we discuss above, employers know which health
plans are available to their workers even if workers do not.
Another important example is a study of what school charac-
teristics cause parents to pick one school for their children
over the others available to them. Parents may not be able
to enumerate a complete list of public and private schools
available in a city, but local city officials will certainly have
this information. These same officials, though, may not have
readily attainable information about detailed characteristics
about the school in an easily attainable form. Researchers
who want to use random alternative sampling can contact the
city officials to get the universe of available schools and then
contact the schools themselves to get detailed information
about each sampled school.

We finish this section by noting one important caveat
about using random alternative sampling in a survey context.
Surveys collected using the technique require researchers to
use logit methods to analyze respondent choice. The logit
choice model works in this setting because it has built in it an
assumption that relative choice probabilities do not change
when irrelevant alternatives are removed. Though we do not

?In that study, the cost of collecting information about the alter-
native plans was actually nil. The telephone plans differed on the
basis of a small number of characteristics, but millions of different
combinations of these characteristics were available to consumers.
The authors categorized the available plans by simply listing all
the possible combinations of the characteristics. They justified the
use of random alternative sampling by arguing that limitations in
computing power made estimating a full information multinomial
logit model prohibitively expensive. Such an argument would be
less persuasive today than it was in 1987.
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elaborate on the issue here, random alternative sampling may
also help in situations where the independence of irrelevant
alternatives (ITA) assumption is violated, such as in a nested
logit model. It would be straightforward to organize a survey
sampling scheme around a nested logit. The basic idea is
that within nests, the IIA property applies, although across
nests it does not. A survey designer would do random alterna-
tive sampling within each nest. The trade-off would be that
the surveyor would have to sample a larger random set of
alternatives — at least one choice within each nest. In some
applications, this might be worth it. Other choice models,
such as the multinomial probit (McFadden 1989) require full
information about all the characteristics of all the alternatives,
and so are not suitable for use with surveys where random
alternative sampling is used.

Random Alternative Sampling
Conditional Logit Estimator

We start the discussion with the full information condi-
tional logit (FICL) estimator, mainly to introduce our notation.
The setting is the well-known random utility model. Let i
be the index over the consumers in the dataset, let M be
the number of alternatives available to each consumer, and
let j be an index over the alternatives,? X; ;j 1s a vector that
characterizes each alternative j for person i, 8 is a vector
of parameters to be estimated, and g;; is an error term that
represents the determinants of choice that are unobserved by
the econometrician. Let consumer utility be a linear function
of X;;, and suppose that consumer i chooses by maximizing
utility over all available alternatives. Suppose further that
g;;j follows an independent and identically distributed type I
extreme value distribution, then the probability of choosing j
in a FICL model is given by:

, ' X i
Plj= 1= PR (1)

'21 exp(B'Xij)
=

With (1) in hand, it is easy to estimate 8 using maximum
likelihood methods, as long as we observe consumer choices
and X;; for each alternative j.

We turn next to the RASCL estimator. The data require-
ments for the RASCL estimator include the characteristics
of the chosen alternative, as well as the characteristics of a
suitably picked random subset of the non-chosen alternatives.

Let A be the set of alternatives that we gather X;; informa-
tion about, and let j' continue to denote the chosen alternative
(among the M alternatives). RASCL requires j € A. In
addition, let ji, k = 1...K, be a set of K other alternatives
randomly picked by the econometrician to include in A. Thus,
using RASCL, we need to collect information about X;; from
only K + 1 < M alternatives. Let B 2 A represent the set of
all alternatives available to the consumer.

Following McFadden (1978), we define m(A|j) as the con-
ditional probability of constructing a particular set A, given
that the chosen alternative is j. We calculate the joint proba-
bility of the consumer choosing a particular choice, j , from

A, and the econometrician constructing a particular random
set of alternatives A:

n(j’,A) = n(j A)PIA] = m(Alj YP[j = j] 2)

Since A consists of information about the chosen alter-
native and K non-chosen alternatives and since the chosen
alternative is always in A by definition, w(A|j) = O for j ¢ A.
By Bayes’ rule, the conditional probability of j being chosen,
given the randomly picked subset of K + 1 alternatives in A,
is:

n(Alj)PLj = J']

K
m(AlJIPL = 1+ 1;1 m(AljOPLj = Jil

n(j'1A) = 3)

McFadden (1978) shows that any predetermined algo-
rithm to randomly pick K non-chosen alternatives to construct
A yields consistent estimates of 8. For instance, suppose that
n(Alj) > 0 for all j.* Plugging (1) into (3) yields:

n(j1A) =
exp(B' X,y + In(z(Alj ) (4)

K
exp(B’Xij + In(z(Al}))) + gl exp(B'Xij, + In((Alji)))

In this paper, we impose an additional assumption (called
the uniform conditioning property) to simplify the exposi-
tion:

7(Alj) = n(Alj) Vj e A (5)

We can derive the probability of picking j* out of A by plug-
ging (1) and (5) into (3) to obtain:

exp(B’X;j)

X
exp(B'Xiy) + 1;1 exp(B’'Xij,)

n(j1A) = (6)

3 To streamline the discussion, we assume here that each con-
sumer faces the same number of alternatives. This assumption can
be relaxed and the conditional logit model extended to handle varying
numbers of choices for the consumers. See Amemiya (1985), ch. 9
for a discussion of this case.

* This assumption is known as the positive conditioning property
(see Haab 2002 for a discussion of this nomenclature).

*In a previous version of this paper, we estimated the statistical
power loss from the RASCL estimator in which we assume only the
positive conditioning property - equation (4). For those estimates, we
assumed the probability of selecting a plan into A was proportional
to the popularity of the plan in the population. The results from those
Monte Carlo experiments showed qualitatively similar power loss
when compared with experiments in which we assume the uniform
conditioning property. As one might expect, imposing the additional
uniform conditioning property assumption tends to raise statistical
power. Results with the positive conditioning property are available
upon request from the authors.
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A simple algorithm to implement the uniform condition-
ing property involves randomly picking K non-chosen alter-
natives, ji, k = 1...K, to include in A. Given the choice by
the consumer of alternative j', all of the other alternatives are
equally likely to be picked for inclusion in A.°

Using (6), it is easy to estimate 8 by maximum likelihood
methods. Since equation (6) contains information only on
alternatives j and the randomly picked (by the econometri-
cian) K non-chosen alternatives, we do not need information
about any other alternatives to obtain consistent estimates
of 5. Note that since M does not enter (6), the asymptotic
variance of 8 will depend only on K (the number of non-
chosen alternatives about which the econometrician observes
attributes X;;), not on M (the number of alternatives available
to person i). However, relative to the FICL model in equation
(1), the estimate of 8 using (6) should be less efficient (since
it is based on less information), though from econometric
theory alone it is not clear how inefficient it will be in finite
samples.

Monte Carlo Evaluation

While it is encouraging to know that we can estimate the
relationship between characteristics and choice with informa-
tion from a random subset of the alternatives, it is not the end
of the story. Finding a consistent estimate for 8 would be use-
less if the estimate was so inefficient that we would not be able
to perform powerful hypothesis tests. It seems intuitively true
that we will lose some efficiency and power using RASCAL
since we estimate 8 on a subset of the information needed
for FICL. The main aim of the Monte Carlo experiment is to
characterize how much efficiency is lost under a wide variety
of conditions.

The first step in conducting a Monte Carlo experiment is
to specify the data generating process. In this case, the process
we use is suggested by the random utility interpretation of
the conditional logit model. To focus the study, we suppose
that there are two covariates, X;; and Z;;, determining choice.”
Suppose there are N individuals making choices among M
alternatives, which are characterized by X;; and Z;;:

X;j ~ Uniform[0,1]
Z'. ~ Uniform[0,1] @)

lj~
[ 0ifZ;<075
U\ 1 Z, > 075

While everyone draws from the same distribution of char-
acteristics, one consequence of (7) is that no two people
choose from the same set of alternatives. Everyone in the
dataset, however, does share the same values of coefficients
(as is the case in any conditional logit estimation). The differ-
ences in the utility functions across people and alternatives
arise from the idiosyncratic portion of utility, &;;, which is
drawn from a Type I Extreme Value distribution that is inde-
pendent of the X;; and Z;; draw. To generate the &;; draws,
we first draw a number, z, from a Uniform [0,1] distribution.
Then we set:
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&j=F'[z]=~In(-Inz) (8)

where F is the cumulative distribution function for a type I
extreme value random variable.

Using the random draws on X;;, Z;; and &;;, we calculate
each person’s utility from each alternative:

Ul'jz ,-j,8+Z,-ja/+s,-ji=1...N,j=1...M (9)

As usual, we designate the alternative with the maximum
utility as j, the chosen alternative. From the design of the
experiment, we have a value for @ and 3.

Next, we throw away all the information that we would
normally not have as analysts. Thus, we estimate the FICL
model using information on X;; and Z;; for each alternative
and j — we ignore &;; and Uj;, except as revealed through
choice. We next calculate the RASCL estimators using the
same dataset as in the FICL analysis, except we randomly
pick K of the non-chosen alternatives (ji) for each person in
the dataset. Then, using only information on j and the K
non-chosen alternatives, we estimate o and 8 by maximizing
the likelihood function implied by (6). In the RASCL case,
each person in the dataset faces the same set of alternatives
as they do in the FICL case. The only difference is that when
estimating RASCL, we ignore information on the non-picked,
non-chosen alternatives, while when estimating FICL we use
these data. Thus, any differences in the precision of the a and
[ estimates in these analyses should arise from not using the
full information set typically available in a conditional logit
analysis.

With this data generating process, there are no problems
caused by misspecification of the econometric model. In fact,
the only correctly specified econometric model we could use,
given the data generating process we assume, is a conditional
logit model (and modifications of it). Any error in estimat-
ing @ and S using equation (1) is due entirely to the error
introduced by sampling. Any increase in the standard error
of the estimate of 8 using equations (6) must be due to the
additional sampling error introduced by random sampling
from the non-chosen alternatives.

To limit the influence of random sampling variation, we
repeat the experiment over 1.000 trials. That is, we generate
1.000 random datasets for each combination of parameters we
evaluate, and estimate both models.

Given the data generating process, there are only a few
parameters that affect the outcome of the experiment. In this
study, « takes a fixed value of 0.1, and we vary the number
of individuals in the dataset (/V), the number of choices each
hypothetical person faces (M), number of selected non-chosen
alternatives (K) and the strength of the association between
the covariate X;; and the probability of choice (8). We allow

® That is, equal probability sampling over the alternatives without
replacement.

"The results (not shown) are similar if only one covariate is
included. These results are available on request from the authors.
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B to take 5 values: 0.1, 0.2, 0.3, 0.5 and 0.9.3 For these values
of B, the covariates explain 0.16%, 0.32%, 0.57%, 1.36%,
and 4.05% of the variance in U. We allow M to be 3, 4, 5,
10, 20 and 50; and we allow K tobe 1, 2, 3, 4, 9, 19 and
499 Our strategy, for any particular fixed combination of M,
K and g, is to estimate the minimum sample size needed to
achieve statistical power of 80% and 50%. We use a binary
search algorithm to locate the smallest sample size for a given
statistical power.

Results

In this section, we present the results of our experiment.
Sections 5.1 and 5.2 discuss the small sample bias and statis-
tical power of the RASCL model.

Small Sample Bias

For both models — FICL and RASCL — we use a maxi-
mum likelihood estimator of 8. For each of these estimators,
there are standard asymptotic results that assure us of the
consistency (and efficiency relative to the information set) of
the B estimates. What is unclear from these asymptotic results
is how applicable they are in small samples. It is certainly
possible that, despite the theorems about consistency, it takes
a larger value of N for the partial information estimators to
attain a small bias in the estimated 3 than it does for the full
information estimators.

Table Ishows the small sample bias of sample size 50
and 500 for various combinations of M, K, and 8. The first
column is the total number of alternatives (M), and the second
column is the number of non-chosen alternatives included in
the estimation (K). For example, when N = 50 and 8 = 0.1,
the small sample bias of the RASCL estimator is —0.0281 (the
third column) or -28.1% of the true value of 8. In that case,
the FICL model is also similarly biased — the row with M = 3
and K = 2 corresponds to the FICL model. Generally, our
results indicate that small sample bias varies with neither M
nor K, though it decreases with sample size and 8. As sample
size increases from 50 to 500, the small sample bias, averaged
across all combinations of M and K, decreases from 14.80%
to 3.81% when 8 = 0.1; from 3.53% to 0.62% when 8 = 0.5;
and from 3.50% to 0.46% when 8 = 0.9. The small sample
bias can be as high as 34% when N =50 and 8 = 0.1. As N
increases to 500 or 8 increases to 0.5 or 0.9, the small sample
bias is well within 10% in most of the scenarios.

However, since these numbers are averaged over 1.000
trials, they might be misleading — in real life, we only have
access to a single trial. By averaging over so many trials, we
allow the cases of positive bias to cancel the cases of negative
bias. This concern will be addressed in the next section by
examining the estimation precision or estimation efficiency in
B over the trials given the experimental parameters.

Statistical Power

Depending on the experimental parameters, the relative
loss in statistical power!® moving from full information model
to partial information model with K = 1 ranges from 14% to
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38% and this loss increases with M. This is consistent with
the intuition that when M is larger and K held fixed, more
information is “thrown away” by the RASCL estimator. For
example, when 8 = 0.1 and N = 4.000, the absolute statistical
power for RASCL (M =4, K = 1) is 0.511 and for the FICL
model (M = 4 and K = 3) is 0.689; the relative statistical
power of the RASCL model is 0.742 which is a loss of 25.8%
relative to the statistical power of FICL.

Figure 1 shows how statistical power compares across
different combinations of M and K, holding fixed . For all
sample sizes, the absolute statistical power does not seem
to change with K. For example, M4K1'' and M50K 1 have
almost identical statistical power over the entire range of
sample size N. This should not be surprising since M does
not enter the RASCL likelihood function at all — see (6)— so
(holding K fixed) statistical power should not vary with M..
Conditional on sample size, however, FICL with M = 50
(MS50K49) has much larger absolute statistical power than
FICL with M = 4 (M4K3). These results demonstrate that,
conditional on sample size and 3, absolute statistical power
increases with K. The larger power loss associated with larger
M for the RASCL estimator is due to more statistical power
in the corresponding full information model, and does not
imply that, for the same K, survey designs with larger M need
larger sample sizes to achieve the same levels of statistical
power than those with smaller M. Large M only means there
is more information available and if we do not fully use it,
the relative loss or opportunity cost will be high. We can
increase statistical power by two ways, one is to increase
sample size and the other is to increase the number of non-
chosen alternatives included. The gain in statistical power
from increasing sample size does not depend on M, but larger
M offers more room to push the boundary up.

Table 2 shows decreasing marginal gain in statistical
power from increasing the number of non-chosen alternatives
included. The pattern does not seem to vary with sample size.
It is also true that, conditional on statistical power for the
full information model and M, relative power loss does not
depend on 3 (for the range of 8’s we examine).!?

To better assess the trade-offs between sample size (V)
and number of non-chosen alternatives included in the estima-
tion (K), we compare the minimum sample sizes needed to
achieve certain levels of statistical power between the partial

8 The range of B values we consider in this study spans only the
range where there is a weak correlation between the explanatory
variable and choice. In experiments (not reported here) where X
and U are strongly correlated, both estimators exhibit high levels of
statistical power even with small sample sizes.

> Of course, we exclude cases where K > M.

10 Statistical power is defined as the percentage of trials that reject
a hypothesis of zero effect of Z;; on choice (that is, a hypothesis that
B = 0 with the alternative 8 > 0).

' Total number of alternatives is 4 and number of non-chosen
alternatives included in the estimation is 1.

2 We use relative power loss here because we cannot set the in-
crement in sample size too small due to computational burden, and
therefore are unable to hold statistical power exactly the same across
specifications.
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information models and the full information model. Neces-
sary sample size to achieve a fixed level of power is a more
intuitive measure of the costs of adopting a RASCL estimator
over a FICL estimator.

Table 2 shows the minimum sample sizes necessary to
achieve 50% and 80% statistical power for each combina-
tion of 8, M and K. These minimum sample sizes decrease
with 8. It is relatively easier to achieve a desired level of
statistical power with a relatively small sample size when X;;
is strongly correlated with choice probabilities. The results
also show that the relative increase in required sample size
increases with M and does not seem to depend on 8. This
is consistent with our finding that there is more power loss
associated with larger M when moving from full information
model to partial information model. The relative increase
in sample size moving from the case K = M — 1 (the FICL
estimator) to K = 1 (the least information model) range from
20% to 130% depending on the specification. With additional
information on the costs of data collection, the results can
be used to assess the trade-off between sample size (N) and
number of non-chosen alternatives included in the estimation
(K) to reach the most cost-effective survey design (minimal
costs to achieve a given level of statistical power).

Health Plan Choice: An
Empirical Example

For our empirical example, we reanalyze data from the
Studdert (2002) study of the health plan choices of managed
care experts. Based upon computerized literature searches
using Medline, the investigators identified the set of 20 uni-
versities in the United States that had produced the greatest
number of published research papers on the topic of managed
care. From these same searches, the investigators identified
the set of researchers at each university responsible for those
studies. The researchers also randomly chose a control set of
law, math, and philosophy professors at the same university
who had never published on managed care.

The researchers contacted the human resources division
within each university to find out the set of health insurance
plan choices available to university employees at each uni-
versity. Based on these contacts, the investigators found key
details about each health plan choice, including the plan type
— whether the plan offers a health maintenance organization
(HMO), preferred provider organization (PPO), point of ser-
vice plan (POS), a fee-for-service plan (FFS), or catastrophic
plan — and the premium charged for choosing a plan (which
typically differs for families and single people).

Finally, Studdert and his colleagues contacted by email
each managed care expert and control professor to find out
which plan each had selected. Studdert (2002) provide more
detail about this dataset. Their main finding was that, with
the exception of junior social scientists, most managed care
experts were less likely than controls choose a managed care
plan. By far, the most expensive part of the survey involved
getting information from the human resources divisions about
the features of each plan at each university. Here, we reana-
lyze these data to find the effect of premiums on plan choice,

and we ask what effect using a RASCL estimator rather than
a FIML estimator would have on the findings.

After dropping individuals with missing information, the
sample contains 416 individuals. An individual can face as
many as five types of health plans: HMO, PPO, POS, FFS,
and Catastrophic. Among the 416 individuals, 166 have two
choices, 103 have three choices and 147 have four choices.
The plan-level characteristics that we analyze are premiums
for individual coverage and for family coverage.

In FICL estimation, we use premium information on all
the choices each individual was facing. In RASCL estimation,
for individuals with more than two choices, we only include
the chosen type and a randomly picked type among the non-
chosen types. In our specification, we interact premiums
with whether an individual is in the control group or in the
experimental group. Our results are shown in Table 1.

We find higher family premiums, but not premiums for
single people, reduce the likelihood of plan choice. Managed
care experts and control professors do not differ statistically
in their demand elasticity. The RASCL estimates are typically
close to the FICL estimates, though as one might expect,
the standard error estimates from the RASCL estimator are
slightly larger than those from the FICL estimator. Conse-
quently, the RASCL and FICL estimates produce similar
results for statistical inference.

To further evaluate how the standard error estimates from
RASCL compare with the standard error estimates from FICL,
we drew 10.000 bootstrap samples with replacement and re-
peated the FICL and RASCL estimation. For every bootstrap
replication and for every coefficient estimate, the 95% confi-
dence interval from RASCL overlaps with the 95% confidence
interval from FICL.

Conclusion

If data were costless to collect, it would be ideal to have
information about all available choices to analyze the effect
of choice characteristics on choice probabilities. Even though
McFadden’s random alternative sampling conditional logit
(RASCL) estimator permits researchers and survey designers
to limit these potentially onerous data requirements, there are
costs. Theoretically at least, having information about only a
few alternatives can lead to loss of precision and small sample
bias. Of course, data collection is not costless and researchers
often face difficult choices about resource allocation in the
conduct of research. Our results provide a quantification of
this trade-off.

We find that small sample bias and loss of statistical
power become important concerns with the use of the RASCL
estimator only when both sample size is small and choice
probabilities and choice characteristics are only weakly cor-
related. Furthermore, we find that the performance of the
RASCL estimator does not degrade when the number of alter-
natives rises. For example, if a researcher solicits information
about choice characteristics about only two alternatives, one
might think that more information is thrown away when fifty
alternatives are available than when there are only three. This
is true but only because there is more information contained in
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Table 3: Health Plan Choice Parameter Estimates

Covariate FICL RASCL
Individual Premium 0.0043 0.0037
(0.0057)  (0.0057)
Individual Premium*Experimental Group 0.0023 0.0038
(0.0073)  (0.0075)
Family Premium -0.0040"  —0.0039"
(0.0023)  (0.0023)
Family Premium*Experimental Group -0.0003  -0.0010
(0.0030)  (0.0030)

Standard errors in parentheses.
indicates the coefficient is statistically significant at p < 0.10.

the full information model when the number of alternatives is
large (holding sample size fixed). Our primary finding is that
there is a sharply decreasing marginal gain from increasing
the number of sampled alternatives.

Applying random alternative sampling may thus be an
attractive option for survey designers who are interested in
analyzing the determinants of a choice when the costs of
collecting information about all alternatives is prohibitively
expensive (and when that choice can be fruitfully modeled
with a logit in the tradition of McFadden (1978)).

Acknowledgements

We thank Roland Sturm and Naihua Duan for their comments
and encouragement. We also thank the editors of this journal
and the referees for very helpful suggestions. Bhattacharya’s
work on this project was funded by the National Institute
of Mental Health. Shang’s work was funded by the Robert

Woods Johnson Foundation. All errors are ours.

References

Amemiya, T. (1985). Advanced econometrics. Cambridge, MA:
Harvard University Press.

Chernew, M., & Scanlon, D. P. (1998). Health plan report cards and
insurance choice. Inquiry, 35(1), 9-22.

Dowd, B., & Feldman, R. (1995). Premium elasticities of health
plan choice. Inquiry, 31(4), 438-444.

Haab, T., & McConnell, K. E. (2002). Valuing environmental and
natural resources: The econometrics of non-market valuation.
Northampton, MA: Edward Elgar.

Maddala, G. S. (1983). Limited-dependent and qualitative variables
in econometrics. Cambridge, UK: Cambridge University Press.

McFadden, D. (1973). Conditional logit analysis of qualitative
choice behavior. In P. Zarembka (Ed.), Frontiers in econometrics.
Academic Press.

McFadden, D. (1978). Modeling the choice of residential loca-
tion. In A. Kar-1quist, L. Lundqvist, F. Snickars, & J. Weibull
(Eds.), Spatial interaction theory and planning models (p. 75-96).
Amsterdam: North-Holland.

McFadden, D. (1989). A method of simulated moments for estima-
tion of discrete response models without numerical integration.
Econometrica, 57(6), 995-1026.

Studdert, D., Bhattacharya, J., Warren, B., Schoenbaum, M., &
Escarce, J. J. (2002). Health insurance choices of managed care
experts. Medical Care, 40(6), 375-386.

Sturm, R., Gresenz, C., Sherbourne, C., Bhattacharya, J., Farley,
D., Young, A. S., et al. (1999). The design of healthcare for
communities: A study of health care delivery for alcohol, drug
abuse, and mental health conditions. Inquiry, 36(2), 221-233.

Train, K. E., McFadden, D. L., & Ben-Akiva, M. (1987). The
demand for local telephone service: A fully discrete model of
residential calling patterns and service choices. Rand Journal of
Economics, 18(1), 109-123.



JAY BHATTACHARYA AND BAOPING SHANG

152

Table 1: Small Sample Bias: Conditional on Same Sample Size for Each

N=50 N=500
p=0.1 =05 =09 B=0.1 B=05 B£=09
Covariates explain Covariates explain Covariates explain Covariates explain Covariates explain Covariates explain

0.16% of Var(U) 1.36% of Var(U) 4.05% of Var(U) 0.16% of Var(U) 1.36% of Var(U) 4.05% of Var(U)
M K Bias % Bias Bias % Bias Bias % Bias Bias % Bias Bias % Bias Bias % Bias
3 1 —-0.0281 -28.05 0.0282 5.64 0.1445 16.06 0.0060 5.99 0.0083 1.66 0.0117 1.30
3 2 —-0.0285 -28.54 —-0.0082 -1.63 0.0228 2.53 —-0.0031 -3.07 0.0049 0.99 0.0024 0.26
4 1 0.0245 24.48 0.0400 7.99 0.0683 7.59 —-0.0015 -1.45 0.0056 1.12 0.0048 0.54
4 2 0.0033 3.28 0.0092 1.84 0.0384 4.26 0.0028 2.82 0.0040 0.80 0.0134 1.49
4 3 0.0076 7.59 —0.0058 -1.16 0.0209 2.32 —-0.0018 -1.82 0.0023 0.46 0.0038 0.42
5 1 0.0217 21.68 0.0723 14.46 0.0859 9.54 —-0.0015 -1.52 0.0016 0.33 0.0115 1.28
5 2 0.0057 5.67 —-0.0055 -1.11 0.0216 2.40 0.0033 3.34 —-0.0035 -0.70 —-0.0066 -0.74
5 3 —-0.0062 -6.19 0.0066 1.32 0.0196 2.18 0.0041 4.13 —-0.0039 -0.78 —-0.0023 -0.26
5 4 -0.0103 -10.32 —-0.0172 -3.44 —0.0003 -0.03 0.0019 1.89 0.0002 0.04 —0.0023 -0.26
10 1 0.0152 15.23 0.0362 7.25 0.0813 9.03 0.0027 2.70 0.0013 0.27 —0.0022 -0.24
10 2 -0.0255 -25.50 0.0078 1.57 0.0549 6.11 —-0.0043 -4.33 -0.0001 -0.02 0.0029 0.32
10 3 -0.0071 -7.10 —-0.0146 -291 0.0025 0.27 —-0.0048 -4.81 0.0016 0.31 0.0030 0.33
10 4 —-0.0323 -32.33 -0.0100 -2.01 0.0179 1.99 —-0.0076 -7.64 0.0014 0.27 0.0008 0.09
10 9 -0.0187 -18.72 0.0036 0.71 0.0042 0.47 -0.0089 -8.87 —-0.0028 -0.57 0.0005 0.05
20 1 0.0027 2.67 0.0542 10.84 0.0357 3.97 —0.0067 -6.68 0.0044 0.88 0.0090 1.00
20 2 0.0027 2.72 0.0095 1.89 0.0307 3.41 —0.0065 -6.55 —0.0008 -0.16 0.0045 0.50
20 3 0.0106 10.58 0.0113 2.27 0.0181 2.01 —-0.0007 -0.74 —-0.0012 -0.24 —0.0043 -0.48
20 4 -0.0149 -14.93 -0.0114 -2.28 0.0054 0.60 —-0.0034 -3.36 —-0.0037 -0.75 0.0005 0.05
20 9 —-0.0045 -4.53 0.0046 091 —-0.0001 -0.01 —0.0045 -4.48 0.0047 0.94 0.0023 0.26
20 19  -0.0163 -16.29 —-0.0138 -2.77 —-0.0165 -1.83 —-0.0003 -0.28 —-0.0021 -0.43 0.0018 0.20
50 1 —0.0038 -3.79 0.0293 5.86 0.0656 7.29 0.0016 1.61 0.0064 1.27 —0.0030 -0.34
50 2 —-0.0166 -16.58 0.0165 3.29 0.0382 4.24 —-0.0018 -1.79 0.0052 1.03 0.0017 0.19
50 3 -0.0016 -1.63 0.0219 4.39 0.0305 3.39 -0.0059 -5.92 0.0013 0.25 0.0094 1.05
50 4 —-0.0342 -34.18 -0.0129 -2.58 0.0151 1.68 —-0.0022 -2.17 0.0036 0.72 0.0037 0.42
50 9 -0.0122 -12.25 -0.0150 -2.99 0.0034 0.38 —0.0088 -8.81 —-0.0024 -0.49 0.0002 0.02
50 19  -0.0323 -32.32 -0.0079 -1.58 0.0036 0.40 -0.0055 -5.47 —0.0033 -0.66 0.0005 0.05
50 49  -0.0125 -12.52 0.0031 0.62 —-0.0039 -0.43 0.0006 0.64 —0.0033 -0.67 0.0014 0.16
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Figure 1.
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Statistical Power and the Number of non-Chosen Plans
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Note: 8 = 0.1 (covariates explain 0.16% of Var(U)) in this graph. The graphs are qualitatively similar for other values of 3.

Figure 2. Statistical Power Loss and Sample Size
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Note: 8 = 0.1 (covariates explain 0.16% of Var(U)) and M=50 in this graph. The graph is qualitatively similar for other values of 8 and M.




