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Providing double protection for unit nonresponse with a nonlinear
calibration-weighting routine
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Given a randomly drawn sample, calibration weighting can provide double protection against
the selection bias resulting from unit nonresponse. This means that if either an assumed lin-
ear prediction model or an implied unit selection model holds, the resulting estimator will
be asymptotically unbiased in some sense. The functional form of the selection model when
using linear calibration adjustment is dubious. We discuss an alternative, nonlinear calibration-
weighting procedure and software that can, among other things, implicitly estimate a logistic-

response model.
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1 Introduction

Calibration weighting is a method for adjusting the
weights in probability-sampling theory by forcing the
weighted sum of each of a set of variables to equal speci-
fied targets. There are at least two reasons to calibrate survey
weights. One is to make estimators unbiased under a linear
prediction model. This will often reduce their mean squared
errors under probability-sampling theory as well. The other
is to adjust for selection bias caused by unit nonresponse or
by coverage errors in the frame.

Although it is natural to justify calibration weighting as
a nonresponse adjustment tool with a prediction model, it is
more common in the survey-sampling literature to argue that
a unit’s calibration weight adjustment implicitly estimates
the inverse of its probability of response. See, for exam-
ple, Lundstrérm and Sérndal (1999) or Section 5.1 of Fuller
(2009). Unfortunately, the functional form of the selection
model in a linear-calibration weighting adjustment allows the
implied estimated selection probability to be less than O or
greater than 1.

The possibility of negative weights is a problem with
linear calibration in general, even for surveys without non-
response. Huang and Fuller (1978) were the first to suggest a
method for removing them. Other methods, like that in Park
and Fuller (2005), have followed.

We describe here a particular nonlinear calibration-
weighting procedure that includes the implicit estimation of
the logistic-response model as a special case. This pro-
cedure, an extension of the logit (£, u) generalization of
raking (Deville and Siarndal 1992; Deville et al. 1993) is
dubbed here the “generalized exponential form”. It is avail-
able in the WTADJUST procedure of the computer package
SUDAAN®, but has not been directly treated in the refereed
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literature. For a rigorous treatment of nonlinear calibration
in the absence of nonresponse, the reader is directed to Kim
and Park (2010). Kott (2006) briefly discussed using nonlin-
ear calibration when there is nonresponse.

We will see that using the generalized exponential form
provides double protection against nonresponse bias. This
means that if either a linear prediction model or an implied
selection model holds, then the resulting estimator is asymp-
totically unbiased in some sense. The term was coined in
Kim and Park (2006), but the concept appears to have origi-
nated simultaneously in Kott (1994) and Robins et al. (1994)
in the treatment of item nonresponse.

In developing what they called the “generalized expo-
nential model” for a stand-alone forerunner to WTADJUST,
Folsom and Singh (2000) only discussed near unbiasedness
under the combination of probability-sampling theory and a
selection model, although they refer to a “superpopulation
model”, a term usually used to justify prediction modeling
in the survey-sampling literature. See, for example, Sidrndal
(1978). The SUDAAN® manual (RTI International 2008)
followed suit, calling WTADJUST “model-based” but like-
wise not addressing the prediction-model properties of its
use. We hope to clear up the confusion this has caused for
some readers.

Section 2 introduces linear calibration weighting and
its relationship to the general regression estimator (GREG).
Section 3 discusses double protection against nonresponse
bias.  Section 4 describes some nonlinear calibration-
weighting routines and Section 5 the generalized exponential
form. Section 6 addresses unified variance estimation under
either the selection or prediction models, while Section 7 ex-
plores a small empirical example. Finally, Section 8 offers
some comments and concluding remarks.

2 Linear Calibration Weighting

Suppose we have a randomly drawn sample S from a
finite population U. In the absence of nonresponse (or mea-
surement error), calibration weighting creates a set of analy-
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sis weights, {wy |k €S}, not dependent on the survey values of
interest that
1. are close to the original design weights, dy = I/my,
where 7 is the probability of selection for the k”* se-
lected sampling unit; and
2. satisfy a set of linear calibration equations, one for
each component of x;, a vector of auxiliary variables:

Z WXy = Z Xk (D

keS keU

By “close”, we mean that as the sample grows arbitrarily
large, the difference between wyand dj, vanishes in probabil-
ity. For a formal treatment of the assumed asymptotic struc-
ture, see Isaki and Fuller (1982) or Kott (2009).

When estimating a population total, 7 =}, v, with
T = 3¢ wiyk or a population mean, jy = T/N, with yy =
s Wivk/ 2.5 Wk, calibration weighting will tend to reduce
mean squared error under probability sampling theory when
vk is correlated with the components of x;. See, for example,
Rao (2005).

More formally, T is an unbiased estimator for T under the
linear prediction model:

Ve =X B+ € 2)

where E (g | X¢) = 0 whether or not k is in the sample. For
our purposes, assuming E (g | X;) = 0 means that the design
is ignorable (given x;), although that assumption is techni-
cally a bit stronger requiring & |x; to not depend on whether
k is in the sample. Since T is itself random under the predic-
tion model, unbiasedness in this context means E(T—T) = 0.

The simplest way to compute calibration weights is linearly
with

S 1+(ij_2djxj]r(zdjxjxf]_lxk] -

jeu jes jes

dr [1 + gTXk],

which also produces the generalized regression (GREG) es-
timator:

TGREG = Z WYk =

keS
T -1
Z iy + [Z Xj = Z d,»xj] (Z dejX,T] Z Xy
keS jeu jes jes keS

discussed in Sérndal et al. (1989).

As Deville and Sarndal (1992) noted when they coined
the term, there are many calibration routines where w; =
dif (ngk), but f(ngk) # 1+ g'x;. These are asymp-
totically equivalent to the GREG when f(0) = f'(0) = 1,
| f ”(0)| is bounded, and g’x; converges to zero as the sample
size grows arbitrarily large.

Calibration routines are nonlinear when the weight-
adjustment factor, f(.), is nonlinear. Despite being nonlinear,

these routines produce estimators that are unbiased under the
linear prediction model in equation (2).

Although the right-hand side of equation (1) is written as a
sum, calibration weighting can be used when the population
totals for the auxiliary variables come from an outside source
rather than a frame where the individual x-values are known.
For our purposes, we will assume that this outside source
provides a measure for ) ;; X that has no error.

3 Linear Calibration Weighting
for Unit Nonresponse

Most surveys experience unit nonresponse beyond a statis-
tician’s control. One is forced to assume, either explicitly or
implicitly, some type of model to adjust for the nonresponse.
A prediction model (also called an “outcome model”) on the
survey variable usually assumes the response/nonresponse
mechanism, like the sampling design, is ignorable. A selec-
tion (or response) model assumes the response mechanism
behaves like a phase of Poisson sub-sampling. Double pro-
tection means that if either the prediction or selection model
is specified correctly, the estimator will be nearly unbiased
in some sense.

The sample S is replaced by the respondent sample R in
defining the GREG,

ToreG= Z WEYk= Z di(1 + g"x)yk,
keR keR

where g is now

. {Z d,x,x;]_l {Z v-3 d,x,.]

JER jeu JER
or

g= [Z djxjij.]_1 [Z djx; — Zdjxj)

JER jes JER

depending on whether the respondent sample is calibrated to

the population:
Diwexe = > (3)
keR keU

or to the original sample

WXy = diXy. 4
IREEDY

keR keS

When calibrating to the population, the estimator Tgreg is
unbiased under the prediction model in equation (2) whether
or not k is in the respondent sample (i.e., the response mech-
anism is ignorable). When calibrating to the sample, it is
not hard to see that the estimator is unbiased under a com-
bination of the prediction model and the original sampling
design (i.e., probability-sampling theory). We need the latter
because when calibrating to the sample, equation (1) need
only hold on average across all samples.
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Either way, as Fuller et al. (1994) observed the estimator
is also nearly unbiased under the quasi-sample design that
treats response as a second phase of random sampling as long
as each population unit’s probability of response if sampled
has the form

1

P T

and g is a consistent estimator for y. Put another way,

o 1
TGRreG = Z Wik = Z dlek)’k = Z di(1 + g" x)yk.

keR keR keR

Notice that with nonresponse g’ x; does not converges to 0
when calibrating for nonresponse.

4 Nonlinear Calibration

4.1 Raking

Raking is a form of nonlinear calibration in which effec-
tively the calibration weights have the form:

wi = drexp(g’ xi). )

Traditionally, the components of x; are 0/1 indicator vari-
ables, and an iterative proportional fitting routine is used to
solve the calibration equations (Deming and Stephan 1940).
The components do not have to be binary, however, although
a component of x; should contains all 1’s or the equivalent
(i.e., there should be a vector q such that q”x;,=1 for all k).
Following Folsom (1991), an iterative process of successive
linearizations — Newton’s method — can often find a g that
satisfies either the calibration equations in (3) or (4).

Using raking to adjust the weights results in a calibration
estimator, T = Y wiyx, with the same unbiasedness prop-
erties with respect to the linear prediction model in equation
(2) as the GREG. When combined with the original sam-
pling design, however, the quasi-random selection model un-
der which the estimator is nearly unbiased has a slightly more
reasonable form than the GREG. It is

P = exp(—y" xp),

which cannot be less than 0, although it can annoyingly ex-
ceed 1.

Raking produced an estimator that is asymptotically equiv-
alent to the GREG when there is no nonresponse or when
the population is divided into mutually exclusive groups and
each population unit in a group is equally likely to response
when sampled (i.e., under a conventional poststratification or
reweighting-cell environment). Otherwise, it may not.

4.2 A Logistic-Response Model

Folsom (1991) also proposed using Newton’s method to
find a g that forces the wy to satisfy either equation (3) or
(4) such that

we = di[1+exp(-g"x,) |. (6)

Like with raking, the calibration estimator, 7= s Wik, has
the same unbiasedness properties as the GREG with respect
to the linear prediction model in equation (2). Now, how-
ever, the estimator is also nearly unbiased under the combina-
tion of the original sampling design and the logistic-response
model:

r A\ exp (7 ! Xk)
Pk = [l"rCXp(-')’ Xk)] = m,
where g is a consistent estimator for . Although not a
maximum-likelihood (ML) method, Kim and Riddles (2012)
showed empirically that finding the g satisfying equations (6)
and (4) can produce a better estimator for 7" than estimating y
using maximum likelihood. This was likely the result of the
calibration-weighted estimator, but not the one using ML, be-
ing unbiased under the combination of the original sampling
design and a linear prediction model that roughly held in the
data they were analyzing.

The weight-adjustment factors in equation (6) are “cen-
tered” at 2 in the sense that f(0)= 2. By contrast, raking
and GREG adjustments are centered at 1.

4.3 Some Generalizations

Observe that the logistic weight-adjustment factor in equa-
tion (6) cannot be less than 1, while the raking weight ad-
justment in equation (5) cannot be less than 0. The GREG
weight-adjustment factor, by contrast, can be negative. None
of the three weight-adjustment factors have an upper bound.

A useful generalization of raking, called the “logit (£, u)”
by Deville et al. (1993) and implemented by them in the
SAS program CALMAR, bounds the weight-adjustment fac-
tor between ¢ and u:

L — 1)+ u(l - £) exp(AgTx;)
(u—=1)+ (1 -0 exp(Agixy) ~

fg"x) = (7)

where
u—=

T U-0u-1

and co > u > ¢ > 0. This choice of A simplifies finding a
derivative for f (.), which is needed for the series of lineariza-
tions made when applying Newton’s method. We will have
need of that derivative in the next section.

Raking is the extreme case of equation (7) where {=0 and
u=c0. Like raking, however, the logit (¢, u) is centered at
1. In fact, when there is no nonresponse, it is asymptotically
equivalent to the GREG.

A further extension of the weight-adjustment factor in
equation (7) found in Kott (2006) replaces 1 with a centering
parameter c:

Eu—c) + u(c — £) exp(AgTx;)

To N _
fg x) = (u—c)+(c—C)exp(Aglxy) °

®)
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where now

B u—-=
C(c-Ow-c)

and oo > u > ¢ > 1. Equation (6), the weight-adjustment factor
for the logistic-response model, is the special case of equa-
tion (8) where u=co,c =2, and £ = 1.

By using equation (8) to adjust for nonresponse, not only
can the weight-adjustment factor be centered at a value other
than 1, the probabilities of response can be bounded from
below by 1/u and from above by 1/¢.

When adjusting for nonresponse, it seems to make sense to
center the weight adjustment at the inverse of the overall re-
sponse rate as suggested by Folsom and Witt (1994). It turns
out the choice of ¢ doesn’t matter as long as it is between
¢ and 1 and x; contains an intercept term or the equivalent
(i.e., there is a vector q such that q” x; =1 for all k). A little
algebra shows that and any choice of ¢ between ¢ and u is
equivalent to assuming a response model of the form.

exp(y" %)
u

T+ exp (y'x;)’

Since [u(c—€)/(u—c)] exp(q) = exp(loglu(c—0)/(u—c)l+q),
the choice of ¢ only effects the coefficient of the intercept in

T
Y Xk

1+
Pk

5 The Generalized Exponential
Form

Equation (8) is actually a special case of the generalized ex-
ponential form in Folsom and Singh (2000). Those authors
used the word “model” in place of “form”, but since their
factor can be used when there is no nonresponse and nothing
is being modeled, we call it a “form” here.

The generalized exponential form allows each k ro have its
own u, ¢ and € value:

T Oy — cx) + ug(cx — 6) exp(Arg xi)
= , 9
Julg =0 (uy — cx) + (cx — ) exp(ArgTx) ©)

where

_ Up — fk
(cx = ) — cx)’

and oo > u; > ¢ > £ = 0. Although the centering and
bounding parameters can vary across the k, the g is a con-
stant. To find it using Newton’s method, it is helpful to real-

12z€

Ag

(i = fi()(fi(2) = )
(e = ci)er = Ge)
which is both always positive and bounded from above.
Since the weight-adjustment factors in equations (6), (7), and

(8) are special cases of (9), their derivatives are special cases
of (10). The form of the weight-adjustment factor in equation

fi@) = ; (10)

(9) allows the user to bound the weights themselves. For ex-
ample, setting €, = 1/d; forces all weights to be no smaller
than unity. Similarly, setting u; = Q/(dxyx), when possible
(recall u; must exceed c), keeps the weighed survey totals
for a key survey variable — the wyy; — no greater than Q. No-
tice, however, that strict unbiasedness under the prediction
model is lost with this upper bound because the calibration
adjustments depend on the survey values.

When calibrating for consistency with outside sources or
for mean squared error reduction in the absence of nonre-
sponse, one can center at 1, like the GREG, and make use of
the bounding properties of the weight-adjustment factor in
equation (9) to reduce the impact or large weights on mean
squared errors. When adjusting for nonresponse, however,
it appears more appropriate to employ the special case of
the generalized exponential form in equation (8) where the
bounding parameters are each constant across k and the cen-
tering parameter doesn’t matter.

6 Variance Estimation

We have been claiming that g is a consistent estimator for
v under the combination of the original sample design and
the selection model (with mild restrictions on the population
and design). We will now sketch the reasoning behind that
claim when the unit respondents are calibrated to the original
sample assuming that the selection model for unit response
implicitly assumed by the parameter settings of the gener-
alized exponential form is correct. In the absence of frame
errors or unit nonresponse, g “estimates” 0.

The derivative in equation (10) is always positive and
bounded from above. As a result, the mean value theorem
tells us that there is a 6; between g’ x; and Y7 x; such that
fe@"x0) =iy x)+f{(6)(g — ¥) Xk Since the calibration
equations in (4) hold:

-1
g—y =— [Z dkfk'(é’k)xkx,f) [Z dkfk(’yTXk)Xk - Z dixy |,

keR keR keS

as long as Y pdy fk’(Gk)ka,{ is invertible. If in addition,
>R Ak f,:(@k)xka/N converges to a positive definite matrix
F and Va(Crdifi(yTx0)x, — S dixi)/N converges to a
bounded vector as the sample size n grows arbitrarily large
(the latter because the implicitly assumed response model
holds), g is a consistent estimator for y such that g — y =
Op(1/+/n). For simplicity, we are assuming that when the
sample is multistage, the number of primary sampling units
grow in proportion to the sample size.

Since Y » dkfk’(ek)ka,{/N is within Op(1/+/n) of F under
mild conditions we assume to hold,

1
Var(g) =~ ﬁF_] Var [Z dkfk()/TXk)Xk - Z dek] F_]

keR keS

1, 1 B

= WF Var [kz deTka - Z dek)F .
€R keS

(1)
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Notice that the last expression on the right-hand side of equa-
tion (11) has only one measurable source of randomness:
>Rk p,:'xk as an estimator for )¢ dyX; under the selection
model (when calibrating to the population, ) d p,;lxk is an
estimator for )’ x; under the original sample and the selec-
tion model). To estimate the variance/mean-squared-error es-
timator for g, useful for determining which variables are sig-
nificant causes of selection bias if untreated, we can replace
the fixed F by the nearly identical g di f(g] xi)xX; /Nand
Sy %) by fi(g"xp). A

Developing an estimator for the variance of T = Y p wiyx
is simpler when assuming the prediction model than when
assuming the selection model. This is because when the pre-
diction model holds the estimator can be rewritten as 7' =
YR WXL B+ Yr wikek =X diXi B+ wisk. The prediction-
model variance of 7" is the variance of Y wyey, while the
added variance due to the original sampling design is the
design variance of Y ¢ dkx,fﬂ. Any weighted regression es-
timator b can be used in variance estimation in place of
prediction-model parameter 8 while y,—x;” b is used in place
€k.

We can do something seemingly analogous in develop-
ing a variance/mean-squared-error estimator for 7' under the
combination of the original sampling design and the selec-
tion model. One important difference is that we focus on
a particular form of the “weighted regression estimator’:

b = [Srdif; (€ xexex] | 'Y di f (8" X)Xy yx for a reason
that will become clear in the next few paragraphs.

Since we are no longer assuming the prediction model
holds, b does not converge to the model parameter . In-
stead, we assume that under the combination of the original
design and the selection model, b converges to a value b* and
that b — b*=0p(1/ V).

The calibration estimator can be expressed as:

T = Yies dix[ D" + Tyer dicfi(@8 )i — X[ b%)

= Ykes X[ D" + Yier die iy X (v — X) b*)+
Yker S OI(E€ = V) X ]k — X[ b*)

= Dkes de;{b* + Yper iy X)) — X;{b*)

+ Yker i Sy (8 X))k — X D)[(8 — ¥)"xi] + Op(1/n)
= Ykes AiX D" + Yper diepy (k= X b*) + Op(1/n).

The key step here is that b has been defined so that rdifi’
(g"x)xe (k=% b)= 0. .

The variance/mean squared error of 7" under the original de-
sign and the selection model is the equivalent of the variance
Ssdizi*, where z;* = x{ b* + p'(yk — X/ b"); and I = 1
when k is a unit respondent and 0 otherwise. For many de-
signs, this can be estimated by replacing b* with b, and es-
timating the variance of Xy d;z; under the original design as
if the z; = x; 'b+p; ' (yx—x; " b)I; were constants. As Kott

(2006) observed, this estimator can also serve as an estima-
tor for the combined variance of 7' under the original design
and the prediction model.

7 A Small Empirical Example

We performed a limited simulation study similar to the one
in Kim and Park (2010). An artificial finite population of size
N= 10,000 was created. Population value were generated
from z; ~ exponential (1), and ylzx = 2 + zx + ek, where
the e¢; came from a the standard normal distribution. Sam-
ples in each of 10,320 simulations were drawn with size n =
200, and respondents generated using the logistic-response
function: py = 1/(1 + .2exp{2[log(zx) + .51}). Response rates
varied from 57 to 81.5%, with an average of roughly 70%.

We created calibration weights in six different ways. We
calibrated to the sample three times using equation (4) with
x; = (1 log(zx))". In the first, we used linear calibration
(wx = di(1+g7x;)), in the second the raking form in equation
(5), and in the third the logistic form in equation (6).

We also calibrated to the population three times using equa-
tion (3) with x; = (1 ).

Only the third calibration used the correct form (or the se-
lection model), but the fourth, fifth, and sixth produces an
unbiased estimate of the population mean of the y; under
the prediction model since the expectation of y; [xy is X B,
where B = (2 1)7, for both respondents and nonrespondents.

The results in Table 1 bear this out. We discarded slightly
less than 1% of the simulations because calibration was not
achieved (model did not converge) using one of the nonlin-
ear methods after 20 iterations. The table displays averages
among a random 10,000 of the remaining 10,205 simula-
tions.

Using the last four calibration methods, the relative (em-
pirical) biases of the population y-mean estimates are trivial
components of (empirical) relative mean squared errors. Us-
ing either of the first two, by contrast, results in a meaningful
negative bias. Thus, as expected, if either the selection or
prediction model used in the calibration is correct, the result-
ing estimates are nearly unbiased. If, however, the survey
value is not a linear function of the calibration variables in
the selection model, it appears important to specify the func-
tional form of the selection model correctly.

The variance estimates described in Section 6 also seem to
work adequately for the last four calibration methods (recall
that we are really interested in root mean squared errors), al-
though each under-estimates. This is likely caused by using
sample residuals (i.e., yx— x;” b) in place of prediction-model
errors (e) or infinite-population residuals (y;— x;b*). See
Kott (2009) for a further discussion of this problem.

Since our simulations featured with equal probabilities of
selection and e, with constant variances, it should not be sur-
prising that linear calibration to the population on x; = (1
7)T produced the estimated y-means with the smallest mean
squared errors overall. Using this method of calibration pro-
duced, on average, only 0.4 respondents with negative cali-
bration weights, although 52.8, on average, had calibration
weights less than the design weight of 50.
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Table 1: Results for estimating =V yi/N from 10,000 Simulated Simple Random Samples

Relative Bias

Relative MSE  Estimated Variance

Calibration Method %100 x10000 x10000
To the sample
with x;=(1 log(z;))”
Linear -6.7468 58.351 13.058
Raking -5.3947 42.593 13.655
Logistic 0.4442 18.504 15.858
To the population
with sz(l Zk)T
Linear -0.0383 11.157 10.787
Raking -0.0147 11.726 10.295
Logistic -0.0256 15.298 11.519

N=10,000; n= 200; response probability: py= 1/(1 + .2exp{2[log(z) + .51}).
zx ~ exponential (1), yklzx =2 + 2 + ek, and e, ~ N(0, 1).

Using the raking method and calibrating to the population
could never return negative calibration weights, but 42.4 cal-
ibration weights were smaller than 50, on average. When
calibrating to the sample on x; = (1 log(z))”, raking had
31.5 respondents with calibration weights less than 50, on
average, while linear calibration had 24.7 with calibration
weights below 50, 2.0 of which had negative values.

8 Some Comments and
Concluding Remarks

8.1 Coverage Errors

Suppose there is undercoverage or duplication in the frame
but the population totals for the components of the vector
of auxiliary variables x are (assumed) known. Calibration
weighting can be used to adjust for the coverage errors. In
the absence of nonresponse, the calibration equations are ex-
pressed by (1), while the prediction model remains equation
(2).

From a selection modeling viewpoint, finding the g in equa-
tion (8) that satisfies equation (1) can be viewed as implicitly
estimating the expected number of times population unit k is
on the frame, which has the form:

(1= c) + (c = O) exp(Ay"xp)
(u—c) + u(c — ) exp(AyTxy)

er'x0) = (12)

When there is potential frame duplication, the estimated
value e(g”x;) can be greater than 1, and £ should accordingly
be set at a value less than 1. As with calibration weighting for
unit nonresponse, when either the prediction model or selec-
tion model in equation (12) is correct, the resulting estimator
is unbiased in some sense.

8.2 Weight Trimming

WTADIJUST allows the user to trim “extreme’ (most often,
unusually large) weights before calibration adjustment (e.g.,

replace di in wy = di.f (ngk> with a smaller value). As long

as the decision about what constitutes an extreme weight is
not dependent on the y-value, weighting trimming of this sort
does not affect the unbiasedness of an estimator under the
prediction model in equation (2) when calibrating the post-
trimmed weights using (1) or (3) since the right-hand sides
of the calibration equations are unaffected by the trimming.
It is more difficult, however, to justify pre-calibration weight
trimming under probability sampling theory.

Since probability-sampling theory depends on asymptotic
principles, one can mount a probability-sampling defense of
weight trimming if it is done rarely. The rule used to de-
termine when a weight needs trimming should be such that
the determination tends to disappear as the sample grows ar-
bitrarily large. One such rule would be to trim any dj that
is over a fixed proportion (say 5%) of the population size.
A common asymptotic framework in probability sampling
theory assumes that the ratio d; /N approaches 0 as the sam-
ple size grows infinitely large. For an establishment survey
with a size measure, 7z, one might want to trim any dy where
drzi/Zs djz; or dyzi/Zyz) is overly large.

8.3 Concluding Remarks

Although we have argued here that using particular pa-
rameter settings of the generalized exponential form for
the weight adjustment factor can provide double protection
against the selection bias due to nonresponse, it is important
to remember George Box’s maxim: All models are wrong —
but some are useful. It is unlikely that all the survey vari-
ables of interest follow the same linear prediction model, es-
pecially categorical ones. Moreover, even if the selection
model were correctly specified by the inverse of the general-
ized exponential form, what is the likelihood that the bound-
ing parameters have been set correctly? Still, to the extent
that either the linear prediction model or the specified se-
lection model approximates reality, calibration weighting as
described in the text should, at least, reduce the impact of se-
lection bias due to nonresponse. With this in mind, allowing
different setting for the bounding parameters when adjust-
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ing for nonresponse is a sensible strategy. For some insight
into this issue based on practical experience see Chen et al.
(2000).

One problem we did not address is that there may be more
than one calibration step. Folsom and Singh (2000), for ex-
ample, envisioned calibrating the unit respondents first to the
full sample to adjust for nonresponse and then to the popula-
tion to make the estimates consistent with outside sources or,
perhaps, adjust for coverage errors in the frame. In addition,
there can be nonresponse at multiple points in some surveys,
at a screening pre-survey, at the household for screener re-
spondents, and at the individual for household respondents.
Each point can require its own calibration step. Vaish et al.
(2000) describe a clever way to linearize the variance under
the combination of the original design and the various selec-
tion models. Using some form of replication may be more
advisable in this context, however.
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