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Clarifying Some Issues in the Regression Analysis of Survey Data
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The literature offers two distinct reasons for incorporating sample weights into the estimation
of linear regression coefficients from a model-based point of view. Either the sample selection
is nonignorable or the model is incomplete. The traditional sample-weighted least-squares
estimator can be improved upon when the sample selection is nonignorable, but not when the
standard linear model fails and needs to be extended.
Conceptually, it can be helpful to view the realized sample as the result of a two-phase process.
In the first phase, the finite population is drawn from a hypothetical superpopulation via simple
random (cluster) sampling. In the second phase, the actual sample is drawn from the finite
population. In the extended model, the parameters of this superpopulation are vague. Mean-
squared-error estimation can become problematic when the primary sampling units are drawn
within strata using unequal probability sampling without replacement. This remains true even
under the standard model when certain aspects of the sample design are nonignorable.
Keywords: Error term; standard linear model; extended linear model; nonignorable; sample
design

1 Introduction

How best to estimate the coefficients in a linear model when
the observations derive from a sample survey has generated
considerable interest in the literature. Kott (1996) provides
one model-based argument for incorporating sample weights
into the linear regression estimator.

We will restrict our attention here to a semi-parametric
model, by that we mean a stochastic model where the func-
tional form of the distribution of the error term is not as-
sumed. We will reformulate the argument in Kott within a
fully stochastic framework that weakens the standard linear
model by assuming only that the error term is uncorrelated
with the explanatory variables. We will call this the “ex-
tended model” (Kott’s term, but given a stochastic definition
here).

Under the extended linear model, a simple estimating
equation leads to an obvious solution: the traditional sample-
weighted regression estimator. This is the sample-based ana-
logue to an old result in the econometrics literature (White
1980). Adding the stronger assumption of the standard linear
model, E(ε |x) = 0, allows the construction of more efficient
estimators.

An alternative rationale for using traditional sample-
weighted least squares assumes the standard model holds
but allows the error terms to be correlated with the sampling
weights. Under this framework, Magee (1998) and Pfeffer-
mann and Sverchkov (1999) show how the sample-weighted
least-squares estimator can be improved upon. When mea-
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suring the mean squared error of estimated regression co-
efficients based on a sample from a finite population, it is
often helpful to assume the realized sample derives from a
two-phase process. In the first phase, the finite population is
drawn from a hypothetical superpopulation via simple ran-
dom (cluster) sampling. In the second phase, the actual sam-
ple is drawn from the finite population. Some think that the
standard practice of treating the (cluster) sample as if it was
drawn with replacement from the finite population is roughly
equivalent to the full two-phase process. That is not always
the case. Under stratified sampling, the standard practice
can miss a component of variance (see Korn and Graubard
(1976), although that component will be small when the fi-
nite population is large compared to the sample size and can
often be “defined away” by conditioning on realized stratum-
population fractions. An addition problem is encountered
when there are unequal selection probabilities among the pri-
mary sampling units within the strata as we will see.

Section 2 lays out the basic framework of the extended
and standard linear models. Section 3 provides a simple ex-
ample of how a zero-meaned error term can be uncorrelated
with an explanatory variable but have a mean other than zero
when conditioned on it. Section 4 contains some needed
asymptotic (both large population and large sample) theory.
The notion of a complex random sample is first introduced
in Section 5. Section 6 addresses variance estimation, where
stratification can have confounding effects. Section 7 dis-
cusses how to create a more efficient estimator under the
standard model when the data derives from a complex sam-
ple. Section 8 extends the previous analysis to a particular
class of non-linear models. Section 9 provides some con-
cluding remarks. Our primary goal throughout is conceptual
clarity rather than mathematical rigor. Many of the missing
proofs can be found by adapting arguments in Binder (1983).
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2 The Framework

Suppose we are interested in estimating the following ex-
tended linear model describing a relationship among vari-
ables in a population:

yi = xiβ + εi, (1)

where i (= 1, ..., M) denotes an element of the popu-
lation, xi = (1, z′i), zi is a (p-1)-component vector of vari-
able values associated with element i, β is an unknown p-
component column vector, and ε i is a random variable with
mean zero.

Our weak assumption about the error term ε i in equation
(1) is E(x′iε i) = 0p for all i. This is much weaker − and thus
more general − than the assumption in the standard linear
model, E(ε i|xi) = 0 for every possible xi. The latter implies
that ε i is not only uncorrelated with the components of xi but
also with any function of the components of xi.

If every member of the population is an equally likely
realization of the model in equation (1), then E[

∑
x′i(yi −

xiβ)] = 0p. This suggests we estimate β with the vector b
that satisfies the estimating equation,

∑
x′iyi =

∑
x′ixib. A

unique solution to this equation exists when
∑

x′ixi is invert-
ible, which we assume to be the case for convenience. That
solution is the ordinary least squares (OLS) estimator, bOLS
= (

∑
x′ixi)−1∑x′iyi, which is consistent under the extended

model given the asymptotic framework to be described in
Section 4. The OLS estimator is not necessarily unbiased if
xi is a random variable.

The derivation of bOLS results directly from the weak as-
sumption, E(x′iε i) = 0p. If, however, we add that E(ε i|xi) =
0, then E[(x′iε ig(xi)] = 0p for any function of xi. Indeed, sup-
pose E(ε|X) = 0M, where ε = (ε1, ..., εM)′, and X is the M
x p matrix with xi in its ith row. This is a slightly stronger
assumption than E(ε i|xi) = 0 in principle, but effectively the
same in practice. Observe that now E[X′G(X) ε] = 0p, where
G in any M x M matrix function of X. This last equality sug-
gests the estimating equation:

X′G(X)(y − Xb) = 0p, (2)

where y = (y1, ..., yM)′.
It is not hard to see that solving equation (2) for b pro-

vides a consistent estimator of β; namely, bG = [X′G(X)
X]−1X′G(X) y. In fact, bG is unbiased given X under the
standard model. Moreover, it is well known that the most ef-
ficient solution obtains when G(X) is related to the variance
of ε; in particular, when E(εε′| X) = Ω = [kG(X)]−1 for an
arbitrary constant k. Consequently, the form given to G(X)
in practice usually reflects some estimate of, or belief about,
Ω.

In truth, Ω is rarely known even up to a constant.
Throughout the text, we will take the position that one can
have some reasonable hypothesis about Ω and incorporate
it into the choice of G(X). Nevertheless, the hypothesis is
potentially in error, and variance estimation schemes should
protect against that possibility.

In principle, we may want to hypothesize that Ω de-
pends, at least in part, on population variables that are not
functions of xi. The implied extension to the argument of
G(.) adds nothing substantive to the discussion and will be
ignored here.

Notice that when G(X) in equation (2) is set equal to
IM, the equation becomes the estimating equation for the ex-
tended model. Moreover, the equation, E(X′ε) = 0p is pre-
cisely the weak assumption of the extended model stated in
matrix form.

3 An Example

The following example shows why the weaker assumption,
E(x′iε i) = 0p, can be a useful alternative to the standard model
assumption, E(ε i|xi) = 0. Suppose we have a population in
which the relationship yi = zi

γ for γ , 1 is strictly satisfied.
We do not know this, however, and try to set xiβ in equation
(1) equal to β1 + β2zi.
The OLS estimates for β2 and β1 are

b2 =

∑
zγ+1

i −
∑

zγi
∑

zi/M∑
z2

i − [
∑

zi]2/M
,

and

b1 =
∑

(zγi − b2zi)/M,

respectively. We make the relatively mild assumption
that the series

∑
zi
α/M converges to a constant, say z(α), as

M grows arbitrarily large, where α can have any of the fol-
lowing values: 1, 2, γ, or γ+1. Under this assumption, b2
and b1converge to

β2 =
z(γ+1) − z(γ)z(1)

z(2) − [z(1)]2 ,

and

β1 = z(γ) − β2z(1),

respectively. It is now easy to see that

εi = zγi − (β1 + β2zi)

= (zγi − z(γ)) −
z(γ+1) − z(γ)z(1)

z(2) − [z(1)]2 (zi − z(1)).

Although ε i can have mean zero and be uncorrelated
with zi, E(ε i|zi) can not be equal to zero for all zi. In fact,
ε i is clearly a function of zi.

The example shows that the weak assumption E(x′iε i) =
0p allows a flexibility in model construction that is unavail-
able with E(ε i|xi) = 0. Since reality very seldom fits a pos-
tulated model, this flexibility is fortuitous. In our example,
when E(ε i|xi) = 0 is assumed, the model yi = β1 + β2zi +
ε i is simply wrong, and its parameters cannot be estimated.
When E(x′iε i) = 02 is assumed, however, the parameters of
the model can be estimated. Many will argue that we should
not estimate parameters for ”‘wrong”’ models, but aren’t all
models wrong?
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4 Some Asymptotic Theory

In this section, we develop some theory for bG under the
standard linear model. It is straightforward to do the same
for bOLS under the extended model by setting G(X) equal to
IM.

For bG to be a consistent estimator for β, a number of
asymptotic conditions must be satisfied. It is sufficient that
as M grows arbitrarily large

lim
M→∞

(X′G(X)X/M) = F, (3.1)

and

plim
M→∞

(X′G(X)ε/ � M) = d, (3.2)

for some positive definite matrix F and bounded vector
d. Under these conditions – referred to collectively as equa-
tion (3), one can easily show that bG − β =Op(�[1/M]). These
assumption do no require G(X) to have a particular form. It
should prove helpful, however, for only OP(M) of the terms
in the M x M matrix to be non-zero, so that each entry of the
matrix X′G(X) X would be the sum of no more than OP(M)
terms.

Let Di be an M x M with zeroes everywhere but the ith di-
agonal, which is 1. Let ui =X′G(X) D′iε (this vector depends
on the choice for G(.), but we suppress that in the notation).
Suppose the population can be grouped into J mutually ex-
clusive clusters, denoted C(1), ..., C(J), such that E(uiu′k|X)
is non-negative definite when i and k are in the same cluster
and equal to 0pxp otherwise. An analogous assumption about
E(uiu′k) is needed under the extended model. Although we
will relax many assumptions in this discussion, we will not
allow the ones above to fail, at least not when variances need
to be estimated.

In many practical situations, the M elements in the pop-
ulation will serve as the J clusters. In others, there will be
a clear need to collect elements whose error terms can not
be assumed uncorrelated into clusters, as we shall see in the
following section.

In practice, a good choice for G(X) will mimic the clus-
ter structure. That is to say Gik(X) will be zero when i and k
are in different clusters. We will assume that to be the case
for the remainder of the text. Moreover, we will assume G to
be symmetric.

The “sandwich estimator” for the variance of bG is

V = [X′G(X)X]−1
J∑

j=1

R j+R′j+[X′G(X)X]−1 (4)

where Rj+ = X′G(X) Dj+(y − XbG), and Dj+ is a diago-
nal matrix with 1’s in the rows corresponding to elements of
cluster C(j) and 0’s everywhere else. Note that Rj+ approxi-
mately equals the sum of the ui across the elements in C(j). If
J/M converges to a positive constant as M grows arbitrarily
large, then it is not difficult to show under the assumptions
we have made that V is an asymptotically unbiased estimator
for the variance of bG.

5 Random Sampling

Solving equation (2) to derive an estimator for β assumes that
the M elements in the population are generated by a process
that produces elements satisfying equation (1). Moreover,
were the process allowed to continue, the two parts of equa-
tion (3) would likewise be satisfied.

Following Fuller (1975), we will treat the J clusters in
the population as if they were a simple random sample from
a putative infinite population, each of whose elements satisfy
equation (1). Moreover, as the number of these clusters (and
therefore M) grows arbitrarily large, equation (3) continues
to hold.

We are now ready to address the main concern of this
paper. Sometimes analysts do not have access to information
on all the variables in equation (1) for the entire population.
Instead, a probability sample is drawn, and a complete set of
variable values is collected only for the sample. We will con-
centrate here on a stratified, multi-stage sample and ignore
the possibility of element or item (i.e., variable) nonresponse.

Suppose that, before sampling, the J clusters in the pop-
ulation are separated into H mutually exclusive strata (H may
be 1). A probability sample of nh clusters is selected within
each stratum h without replacement (from now on, all sam-
ples are assumed to be drawn without replacement). The n
=

∑
nh sampled clusters are called primary sampling units

(PSU’s). Probability samples of elements are drawn inde-
pendently within each PSU. We allow the possibility that all
the elements in a PSU are drawn into the sample or that the
PSU’s are themselves elements. Let S denote the element
sample and m be the size of S.

If E(ui|X; i ∈ S) = 0p, then solving X′DSG(X)DS(y −
Xb) = 0p for b, where DS =

∑
SDi, provides an unbiased

and consistent estimator for β under mild conditions. The
assumption that E(ui|X; i ∈ S) = 0p, that sample selection
is ignorable, effectively means that there is no information
about yi in the element selection probabilities not captured
by xiβ.

What if that is not the case?
The solution is well-known in the literature on

randomization-based inference (see, for example, Binder
1983). Let ti be the sample-inclusion indicator for element
i,a random variable equal to 1 when i ∈ S and 0 otherwise.
Furthermore, let πi be the selection probability of i (i.e., E(ti)
= πi), and wi be its sample weight, 1/πi. Call the M x M
diagonal matrices with ti and wi in their ith position, T and
W, respectively. (Note that after the sample is drawn,
T = DS.)

Suppose the vector bwG solves the equation:

X′G(X)TW(y − Xβ) = 0p. (2’)

When X′G(X)TWX is invertible, bwG = [X′G(X) TWX
]−1X′G(X) TWy. Applying equation (2’) in its most general
form requires knowledge of the complete X matrix. That will
often not be the case in practice, but there remains a host of
viable choices for G(X). We return to the issue of choosing
G(X) in Section 7.
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If we assume that the variables and sample design are
such that

lim
n→∞

(∑
X′G(X)TWX/M

)
= Fw, (3.1’)

and

plim
n→∞

(∑
X′G(X)TWε/ � M

)
= dw, (3.2’)

for some invertible matrix Fw and bounded vector dw,
then under mild conditions, bwG − β = Op(�[1/n]). Note,
however, that it is possible for bwG − β conditioned on a par-
ticular sample to not approximately equal zero. The near
asymptotic unbiasedness of bwG occurs when we average
over all possible samples.

In order to apply equation (3’), we need to impose an
asymptotic framework on the sample design. We do this by
assuming an infinite sequence of samples and populations,
{Sν} and {Pν}. Let mν denote the number of elements in Sν,
Mν the analogous size of Pν, nν the number of PSU’s in Sν, Jν
the number of clusters in Pν, Hν the number of strata in both
Sν and Pν, and nhν the number of PSU’s from stratum h in Sν.

As ν grows arbitrarily large, so does nv. The ratios,
mν/nν, Jν/nν, and Mν /mν all converge to positive constants.
When H is small, it makes sense to assume an asymptotic
framework in which Hν stays the same as ν grows, and the
nhν/nν converge to positive constants. Otherwise, the nhν can
be assumed stay the same while Hν/nν converges to a positive
constant It is important to realize that full-population equa-
tion (3) with Mν replacing M is assumed to hold for each
value of ν.

6 Variance Estimation for bwG

6.1 Ideal circumstance
Suppose E(uiu′k|X) = E(uiu′k|X; i, k ∈ S) = 0pxp when i and
k are from different clusters and non-negative definite oth-
erwise (for the extended model, replace E(uiu′k|X; . ) with
E(uiu′k; . )). Under mild conditions, we can estimate the
variance/mean squared error of bwG with an analogue of V in
equation (4), namely,

V∗ = [X′G(X)TWX]−1
J∑

j=1

Rw j+R′w j+[X′TWG(X)X]−1

(5)
where Rwj+ = X′G(X) TWDj+(yj+ − Xj+bwG). In many

applications, however, E(uiu′k|X; i, k ∈ S) may not equal 0pxp
when i and k are from different clusters.

6.2 Stratification
Before discussing a more general variance or mean-squared-
error estimator (the former expression is used exclusively
from here on), we first investigate the potential effect of strat-
ification on estimation under the extended model. Analogous
arguments can be made for the standard model.

Let Γi be an integer from 1 to H indicating which stratum
contains i. It is tempting to assume that stratification is ignor-
able in the sense that E(ui| Γi = h) = 0p (heuristically, there
is no additional information in the stratification not already
captured by the model). This assumption is problematic in
some applications, especially those with a large number of
strata. The more general assumption that E(ui| Γi = h) = qh
appears to be an attractive alternative, but it is not very help-
ful under multi-stage sampling when the implicit estimate of
the population size for a stratum is random.

Instead, we will again adapt the pragmatic approach of
invoking the randomization-based properties of the estima-
tor. That is to say, we will treat the ti as random variables
rather than conditioning on the realized sample − the usual
practice in most of statistics, but not survey sampling. Math-
ematically, this changes the goal of variance estimation from
E[(bG − β)(bG − β)′|S] for every S to E[(bG − β)(bG − β)′].

Let uhj+ be the sum of the ui ( ≈ X′G(X)Diε) across all
the subsampled elements in PSU j of stratum h. The expec-
tation of uhj+ is constant across the sampled PSU’s within a
stratum, but can vary across strata. Consequently, we need to
assume that Nh/N, where Nh is the number of clusters in stra-
tum h, stays constant as N =

∑HNh, and M grow arbitrarily
large in equations (3) and (3’). This means that the fraction
of the population clusters in each stratum does not change as
the population grows arbitrarily large. If it did, there could be
another component of variance not captured by the variance
estimator to be discussed below. For more on the missing
variance component, see Korn and Graubard (1976).

The randomization-based variance estimator for bwG
(see, for example, Binder (1983)) is

VRB = [X′G(X)TWX]−1
H∑

h=1

nh

nh − 1

∑
j∈S ∗h

Rw j+R′w j+ − n−1
h∑

j∈S ∗h

Rw j+


∑

j∈S ∗h

Rw j+


′

[X′TWG(X)X]−1 (6)

where S∗h is the set of sampled PSU’s in stratum h. It is
asymptotically unbiased under mild conditions when PSU’s
are selected using stratified, simple random sampling condi-
tioned on the realized Nh/N values. This is because within
each stratum h, the R′wj+s selected for the sample are esti-
mates of the same value and asymptotically uncorrelated.

Observe that when H =1 in equation (6), VRB will be-
come asymptotically indistinguishable from V∗ in equation
(5) when

∑
S∗Rwj+ = 0p, as happens when G is the identity

matrix.
If E(uiu′k|X; i, k ∈ S) = 0pxp when i and k are from dif-

ferent clusters, then VRB can easily be shown to be, like V∗,
asymptotically unbiased given any sample. It is not as effi-
cient, however.
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6.3 Unequal probability sampling
In most practical situations, VRB will be reasonable − al-
though not necessarily asymptotically unbiased − when
PSU’s are selected with unequal probabilities within strata.
For simplicity, we restrict our attention to a single-stage sam-
ple in this section.

Denoting E(titk) as πik, observe that E(ε iεk|X) = 0 for i
, k does not imply E(witiε iwktkεk|X) = E(ε iεkπik/[πiπk]|X)
= 0 when πik/[πiπk] varies across sampled elements. That is
to say, the joint inclusion indicators may be nonignorable for
some designs. This can cause a problem in variance estima-
tion when conditioned on a realized sample, but that problem
vanishes when averaging across all possible samples as we
did in the previous subsection.

Again for simplicity, consider the simplest version of the
model in equation (1), where xi = xi = 1. The model parame-
ter of interest is the scalar β. Given an unclustered population
of size M, the full-population estimator for β is b =

∑
U yj/M.

Now given a probability element sample S, the conventional
sampled-weighted estimator for β is

bw =

∑
S

y j

π j∑
S

1
π j

Suppose the M elements in the finite population were
chosen using without-replacement simple random sampling
from a hypothetical superpopulation of size M∗, which we
allow to grow arbitrarily large. The sample itself becomes
the second of a two-phase sampling process.

Let each unit j have (second-phase) selection probability
πj, and assume that no joint selection probability, πij,is zero
(which rules out systematic sampling). We are interested
here in the (randomization) mean squared error of

b∗w =

∑ y j

π(M/M∗)∑ 1
π j(M/M∗)

as M∗ grows arbitrarily large.
We can rewrite

b∗w as β +

∑ εj
πj(M/M∗)∑ 1
πj(M/M∗)

≈ β + (M∗)−1
∑ εj

πj(M/M∗)

under the conditions in equation (3’), which we assume
to hold. Särndal et al. (Särndal 1992:348, equation 9.3.7)
provide an unbiased mean-squared-error estimator for the
two-phase estimator b∗w given a population of size M∗:

var(b∗w; M∗) = M−2
(

1 − M
M∗

)∑
j∈S

ε2j

π j
− (M − 1)−1M−2

(
1 − M

M∗

) ∑
j,k

j,k∈S

ε jεk

π jk

∑
j∈S

(1 − π j)ε2j
π2

j

+ M−2
∑
j,k

j,k∈S

( 1−π jπk

π jk
)ε jεk

π jπk

where S denotes the sample which has size n. Taking
the limit as M∗ grows arbitrarily large, and rearranging terms
yields the estimator:

var(b∗w;∞) = v0 + A (7)

where

v0 = M−2
∑
j∈S

ε2j

π2
j

− M−2(n − 1)−1
∑
j,k

j,k∈S

(
ε j

π j

) (
εk
πk

)

= M−2 n
n − 1

∑(
ε j

π j

)2

− n−1
(∑ ε j

π j

)2
and

A = M−2 n
n − 1

∑
j,k

j,k∈S

(
ε jεk

π jk

) {
π jk

π jπk
− (n − 1)

M
n(M − 1)

}

When the expectation (under the model and across all
possible samples) of A in equation (7) is zero, then mean
squared error of b∗w can be estimated with v0; that is, as if
the sample had been drawn with-replacement from an un-
stratified finite population. It is not hard to see that if all the
unknown ε i in v0 were replaced with their sample analogues
(ei = yi − bW), then the resulting variance estimator would
be a special case of V∗ in equation (5).

Now

E(A) = M−2 n
n − 1

∑
j,k

j,k∈U

E(ε jεk)
{
π jk

π jπk
− (n − 1)

M
n(M − 1)

}

is zero under simple random sampling without replace-
ment. It is also zero when E(ε jεk) = 0.

When is E(ε jεk), j,k, not zero? When the stratification
is nonignorable so that E(ε j | Γj= h) , 0, it is unlikely
E(ε jεk| Γj = Γk= h) will be zero. Consider a stratified sam-
pling scheme, where Sh denotes stratum h (h = 1, ..., H) con-
taining Mh population and nh sample units. If as M∗ grows
arbitrarily large the relative stratum sizes of the hypothetical
superpopulation, the M∗h, grow in proportion, then it is not
hard to see components of equation (7) can be reformulated
as

var(b∗w;∞) = vS T + AS T ,

where

vS T = M−2
H∑

h=1


∑
j∈S h

ε2j

π2
j

− (nh − 1)−1
∑
j,k

j,k∈S h

ε j

π j

εk
πk


= M−2

∑ nh

nh − 1

∑(
ε j

π j

)2

− n−1
h

(∑ ε j

π j

)2

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and

AS T = M−2
H∑

h=1

nh

nh − 1

∑
j,k

j,k∈S h

ε jεk

π jk

{
π jk

π jπk
− (nh − 1)

Mh

nh(Mh − 1)

}

If all the unknown ε i in vST were replaced with their sam-
ple analogues, then the resulting variance estimator would be
a special case of VWR in equation (6). Observe that E(AST)
= 0 when there is simple random sampling within strata,
but the equality does not necessarily hold otherwise unless
E(ε jεk| Γj = Γk= h) = 0 is as well. Nevertheless, the expec-
tation of the strictly nonnegative vST is likely to dominate
the ambiguously-signed E(AST) in practice. Moreover, un-
der several popular unequal-probability-of-selection designs,
πjk/(πjπk) −(nh −1)Mh/[nh(Mh −1) in E(AST) will be approx-
imately zero within strata where Mh >> nh and no πi is too
large. See Asok and Sukhatme (1976) for a discussion of
Sampford sampling and systematic unequal probability sam-
pling from a randomly-ordered list.

7 Choosing G(X)

Under the extended model, G(X) is set equal to IM. The re-
sulting estimator, bwLS, is called the “sample-weighted least
squares” solution. Under the standard model, however, we
are free to choose G(X) to minimize the mean squared error
of bwG. When the wi are not all equal for i ε S, the choice
is not obvious even when E(εε’) is known up to a constant.
Moreover, we are usually constrained in practice to G(.) that
are functions only of the xi in the sample.

One obvious viable choice for G(.) is a diagonal matrix
with g(xi) in the ith diagonal. Magee (1998) considers the
case where E(εε′) = Ω has an unknown diagonal matrix. He
proposes using a quasi-Aitken procedure to choose g(.) from
among a family of functions of the form g(xi; α) (note: in a
quasi-Aitken procedure, one chooses α seeking to minimize
the estimated variances of the components of bwG directly
rather than through an estimate of Ω). It is unclear how to
generalize this procedure when E(εε’) is not diagonal, how-
ever.

On the surface, Pfeffermann and Sverchkov (1999) ad-
dress an even simpler situation: the case where Ω = σ2IM.
They suggest setting each g(xi) equal to the inverse of an es-
timate for E(wi|xi; i ∈ S). Effectively, they propose “filtering
out” from the sampling weight wi that part explainable by xi
(their method of arriving at this proposal is much different
from ours, but that need not concern us here). With their ap-
proach, generalization to more complex Ω appears straight-
forward. Let E(X) be an estimate of, or belief about, Ω up to
a constant. Furthermore, let H(X) be a diagonal matrix with
an estimate for E(wi|xi ; i ∈ S) in the ith diagonal. Then G(X)
can be set equal to [E(X)H(X)]−1.

Problems remain, however. If xf is unknown when f is
not in the sample, we need to replace

bwG = [X′G(X)TWX]−1X′G(X)TWy

with something like

bwG∗ = [X′TG(X)TWX]−1X′TG(X)TWy.

At the heart of this is replacing G(X)TW with T
G(X)TW. The former has an expectation equal to G(X), a
function of X. The expectation of the row-i-column-k com-
ponent of the latter is Gik(X)E(tk| i ∈ S). This is a function
of X only when E(tk| i ∈ S) is. Moreover, for bwG∗ to be
viable, Gik(X) with i and k in S must be a function of only
those xf with f ∈ S. Finally, bwG∗ need not be optimal in any
sense even when bwG would be unless the E(tk| i ∈ S) are all
constant.

A tempting alternative to computing a general bwG∗ is
to choose a diagonal G(.), based on the (assumed) diagonals
of E(.) and suffer the loss of efficiency that may imply. No
matter how bwG∗ is computed, if it is a consistent estimator
for β, its variance can be estimated using equation (6) with
TG(.) replacing G(.) everywhere including the definition of
the Rwj+:

VRB = [X′TG(X)TWX]−1
H∑

h=1

nh

nh − 1

∑
j∈S ∗h

Rw j+R′w j+ − n−1
h∑

j∈S ∗h

Rw j+


∑

j∈S ∗h

Rw j+


′

[X′TWG(X)TX]−1 (6’)

where Rwj+ = X′T G(X) TWDj+(yj+ − Xj+bwG).
Returning to a diagonal G(.), either because the sam-

ple is single-stage or because the hypothesis of a diagonal
Ω seems plausible with the data at hand, Magee’s approach
is the more straightforward, but it is not clear where the func-
tional form, g(xi; α), is supposed to come from. Magee pro-
vides an empirical example where the “wrong” choice does
not hurt very much; that is to say, his method is nearly un-
biased and much more efficient than sample-weighted least
squares.

One appealing attribute of the Pfeffermann-Sverchkov
approach is that the sampling weights are shown to be ig-
norable when each wi can be fully expressed as a function of
xi. A practical example of this is when selection probabilities
are proportional to zi1, the first component of zi.

When selection probabilities are proportional to the yi,
it makes sense to estimate E(wi|xi; i ∈ S) up to constant by
xibwLS. Similarly, when the ε i are uncorrelated, and E(ε i 2)
is thought to be proportional to (xiβ)α, one can replace the
unknown β by bwLS, and use an Aitken or quasi-Aitken tech-
nique to choose α. An iterative scheme may return an even
more efficient estimator.

8 Nonlinear Models

In this section, we consider the following mild generalization
of the model in equation (1):

y1 = f (xiβ) + εi, (8)
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where f is a monotonic, twice-differentiable function.
An estimating equation for β under the standard model as-
sumption, E(ε| X) = 0M, is

X′G(X)[y − f(Xβ)] = 0p, (9)

where f(Xβ) = ( f(x1β), ..., f(xMβ) )’. We again call the
solution to equation (9) bG.

Under the extended model, where only E(X′ε) = 0p is
assumed, the arbitrary G(X) is replaced by IM. Alternatively,
choosing G(X) proportional to F(X)Ω−1, where F(X) is the
M x M diagonal matrix with ∂f(xiβ)/∂(xiβ) in the ith diago-
nal, minimizes the objective function: [y − f(Xβ)]′Ω−1[y −
f(Xβ)]. For the special case of logistic regression with an
unclustered population, the best choice for G(X) under this
criterion is simply IM. The choice for b under the standard
and extended models coincide.

The rest of the analysis of estimating the model
in equation (8) closely follows that of the linear mod-
els in the previous sections. The big difference is that
the [X′TG(X)TWX]−1 in equation (6’) gets replaced by
[X′TG(X)TWF(X)X ]−1.

9 Some Concluding Remarks

In the conventional study of linear models, one usually sup-
presses concern with the sampling mechanism and concen-
trates entirely on the stochastic nature of the model. In survey
sampling, the reverse is often true: the model is suppressed
and attention is directed exclusively at the sampling mecha-
nism. The question then is what is being estimated?

Fuller (1975) may have been the first to describe how
one can estimate the parameters of a linear model without
actually assuming the model. He concedes that an unknown
model may have generated the data in the finite population,
but he is loath to say much about that model. Kott (1991)
attempts to flesh out that model. Borrowing from White
(1980), we have put that attempt into a fully stochastic frame-
work here, calling it “the extended model.” The key is that if
one starts with the linear model in equation (1) and assumes
only that ε i and xi are uncorrelated, then the parameter β is
estimable in most situation because we have an estimating
equation with p equations and p unknowns.

The stronger assumption that E(ε i| xi) = 0 is what can
easily fail in the standard linear model. Adding it allows one
to construct a more efficient estimator for β than results from
ordinary least squares. Without it, many argue we have no
model to estimate at all.

Magee (1998) and Pfeffermann and Sverchkov (1999)
address how to efficiently estimate the parameters of a stan-
dard linear model when the sampling mechanism can not be
ignored; in particular, when ti is correlated with ε i. It is dif-
ficult to extend their results to situations where the element
errors are clustered, as we have seen.

Both Magee and Pfeffermann and Sverchkov discuss
variance estimation, but their results most easily apply un-
der Poisson sampling. Stratification and unequal probability
sampling complicate matters, as we have seen.

Several additional points about variance estimation need
to be emphasized. When the sampling mechanism is ignor-
able (effectively that ti and ε i are uncorrelated and E(ε i| Γi =
h) = 0), VRB in equation (6) is an unbiased estimator for the
variance of bwG, which is also unbiased, conditioned on the
realized sample. When E(ε i| Γi = h) , 0 is a possibility, one
can abandon conditioning on the realized sample and draw
inferences about the hypothetical superpopulation using the
randomization-based methods described in the text (equa-
tions (6) and (6’)). These methods average over all possible
samples. Their use is appropriate when the finite- population
size is very large compared to the sample size or when one
condition on the relative stratum sizes as the superpopulation
grows arbitrarily large.

There are situations where such conditioning makes
sense, for example, when the stratum divisions are
politically-determined regions. The other extreme is when
strata are determined using the yi values. This can happen
when the yi are known for the entire population, and sam-
pling is only needed for the collection of corresponding xi
values. In that situation, one will often need to measure
the additional variance component discussed in Korn and
Graubard (1976). Graubard and Korn (2002) explores this
matter as well.

The last point about variance estimation is that the clus-
ters in the population described in Section 4 need not be
the sampling clusters (PSU’s) of Section 5. We can assume
they are, but that forces us to make an unverifiable assump-
tion. Moreover, this assumption does not always render VRB
asymptotically unbiased when the sampling mechanism is
not ignorable.

Both the extended and standard linear models were eas-
ily generalized to a class of non-linear models (see equa-
tion (9)). Pfeffermann et al. (1998) generalize the stan-
dard model to hierarchical structures. The applicability of
the extended model in the hierarchical context is less clear.
There are some assumptions about the structure that simply
have to be made. Similarly, Kott (1996) provides a not-very-
satisfying treatment of instrumental-variable regression un-
der the extended model. Again, the problem is that addi-
tional assumptions have to be made that violate the spirit of
the extended model. The standard model has great appeal
when, due to random errors in the explanatory variables, one
chooses to use instrumental-variable regression. Conducting
an instrumental-variable regression with survey data is a dif-
ferent matter entirely from using an instrumental variable in
calibration. The latter (only) is discussed in Kott (2003).

References

Asok, C., & Sukhatme, B. V. (1976). On Sampford’s procedure of
unequal probability sampling without replacement. Journal of
the American Statistical Association, 71, 912-918.

Binder, D. A. (1983). On the variances of asymptotically normal
estimators from complex surveys. International Statistical Re-
view, 51, 279-292.



18 PHILLIP S. KOTT

Fuller, W. A. (1975). Regression analysis for sample survey.
Sankhya-The Indian Journal of Statistics, 37(Series C), 117-
132.

Graubard, B. I., & Korn, E. L. (2002). Inference for superpopu-
lation parameters using sample surveys. Statistical Science, 17,
73-96.

Korn, E. L., & Graubard, B. I. (1976). Variance estimation for
superpopulation parameters. Statistica Sinica, 8, 1131-1151.

Kott, P. S. (1991). A model-based look at linear regression with
survey data. The American Statistician, 45, 107-112.

Kott, P. S. (1996). Linear regression in the face of specification
error: a model-based exploration of randomization-based tech-
niques. SSC Proceedings of the Survey Methods Section, 39-47.

Kott, P. S. (2003). A practical use for instrumental-variable calibra-
tion. Journal of Official Statistics, 19, 265-272.

Magee, L. (1998). Improving survey-weighted least squares re-
gression. Journal of the Royal Statistical Society, 60(Series B),
115-126.

Pfeffermann, D., Skinner, C. J., Holmes, D. J., Goldstein, H., &
Rasbash, J. (1998). Weighting for unequal selection proba-
bilities in multilevel models. Journal of the Royal Statistical
Society, 60(Series B), 23-40.

Pfeffermann, D., & Sverchkov, M. (1999). Parametric and semi-
parametric estimation of regression models fitted to survey data.
Sankhya-The Indian Journal of Statistics, 61(Series B), 166-186.

Särndal, C.-E., Swensson, B., & Wretmann, J. (1992). Model as-
sisted survey sampling. New York: Springer.

White, H. (1980). Using least squares to approximate unknown
regression functions. International Economic Review, 21, 149-
170.


