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Social surveys often must estimate the sizes or the proportions of many small groups and
differences among them. The discussion of the needed precision of the estimators and the
corresponding sample size is difficult, in particular when lay persons are involved. Two mea-
sures are developed which help in this discussion of the precision. These measures are called
precision resolutions. The first of these measures, the size resolution, is derived from approx-
imations to the probability of not observing a group in a sample and the second measure, the
difference resolution, addresses the difference of two proportions. The precision resolutions are
operationalisations of the smallest group or difference which can be estimated from a sample.
Since they embody elements of statistical hypothesis tests without the need of a complete test
specification they are simple to specify and nevertheless contain the necessary elements for
sample size determination. The precision resolutions lead to the determination of the sample
size for simple random samples but extensions to more complex samples are possible with
the help of the design effect. The precision resolutions were developed for the planning of
the Swiss Population Survey and this survey as well as the European Social Survey serve as
examples of their application.
Keywords: resolution, sample design, precision, relevance, small proportion, small group,
small difference

1 Introduction

During the discussion on the sample size for a survey
multiple objectives have to be taken into account. In social
surveys often the main purpose is to estimate the size of par-
ticular groups for various domains. For example, the num-
ber of persons which care for an elderly person should be
estimated for the districts of a canton. The traditional for-
mula for the sample size when estimating one proportion is
not sufficient when many rather small proportions and differ-
ences between proportions must be estimated. This was the
case for the discussion of the sample size of the Swiss Pop-
ulation Survey, a large scale survey which partially replaces
the Swiss Census from 2010 onwards. Other examples are
surveys to estimate the prevalence of a set of diseases or sur-
veys to estimate the size of various consumer segments.

In principle, the problem of the necessary size of a sim-
ple random sample without replacement when the sampling
proportion is used to estimate an unknown population pro-
portion is solved by applying the formula n = p̃(1 − p̃)/Ṽ ,
where p̃ is an advance guess of the unknown proportion and
Ṽ is the desired variance to achieve. In addition, a finite pop-
ulation correction may be used. In the case where no advance
guess p̃ is available, or when many different proportions have
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to be estimated, often the maximizing value p̃ = 0.5 is used.
An alternative approach is proposed by Noble et al. (2006)
by assuming a Beta-binomial distribution of the guessed p̃
and derive an expected minimum sample size. Of course the
specification of a distribution is more involved than specify-
ing p̃ alone. However, the major problem seems to be that
often the client cannot specify his desired precision Ṽ . For
example Cochran dedicates a chapter to the determination of
sample size (Cochran 1977, Chapter 4) but gives little guid-
ance on how to elicit the desired precision from the user. In
addition, often there are many clients which must reach an
agreement on the desired precision and worse, there are many
domains of different size for which estimates of proportions
are needed. Discussing how to reach at an advance guess of
the variance S 2 = p̃(1− p̃) when determining the sample size,
Kish (1965:52) says that the “statement on the ‘adequacy’
or ‘desired’ variance is generally subject to more vagueness
than is S 2 itself. This is especially true when the survey has
several objectives, with conflicting demands on the desirable
sample size.” The discussion on sample size may then be-
come very difficult. To assist such discussions with more in-
tuitive measures of precision, the precision resolutions were
developed during the design of the Swiss Population Survey.
The precision resolutions are general measures, applicable
for many surveys. The Swiss Population Survey and the Eu-
ropean Social Survey are used as a illustrative examples here.

The specification of a precision requirement is based on
the theory of statistical hypothesis tests (see, for example
Bickel and Doksum 1977). The reason why clients have
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problems in specifying the needed precision even of a single
proportion is that, implicitely, he or she must formulate a hy-
pothesis test. The client must have in mind a null hypothesis
and an alternative hypothesis which he or she would like to
distinguish from the null hypothesis because he or she would
decide differently in case of the alternative than the null hy-
pothesis. In addition the client must specify the maximum
risk of wrong decisions he or she is willing to take. In other
words the probabilities of the error of type I and type II of a
hypothesis test must be specified. In short, a statistic should
be sufficiently precise to be able to detect a relevant differ-
ence with sufficient reliability. This is equivalent to saying
that the power of a test for a null hypothesis should be suf-
ficiently large at a relevant alternative. Clients are seldom
trained to specify the power of a test (cf. for example Lenth
2001). In addition there is a wealth of approximations avail-
able for the calculation of the power (Sahai and Khurshid
1996) which are difficult to distinguish for the lay person but
concentrate on the technical problem of approximation and
not on the problem of communication with users. The pre-
cision resolutions proposed here should facilitate the discus-
sion about the needed precision of a survey without power
calculations and specification of a desired variance.

Two surveys are used to illustrate the concepts: The
Swiss Population Survey and the European Social Survey
2008 in Switzerland. The Swiss Population Survey is based
on a yearly sample of 200 000 persons and a sampling rate
of f = 0.0274. The sample is stratified by municipalities and
has proportional allocation with slight modifications to en-
sure a minimal sample for each municipality. In the discus-
sion about the sample size the resolution has been an impor-
tant support to arrive at an agreement. The European Social
Survey 2008 is a stratified random sample with 1 819 respon-
dents, which corresponds to a sampling rate of f = 0.000283.

The sample design considered in the article is stratified
random sampling with proportional allocation. Extensions
to more complex sample designs with equal probability se-
lection are covered with the help of the design effect (Kish
1965).

In this article we concentrate on the precision of an es-
timator and do not consider accuracy. Accuracy is measured
by the mean squared error, i.e. accuracy includes bias, while
precision is measured by variance alone. Of course, in prac-
tice, once the question of precision is settled the question of
bias is the next preoccupation (or even first). We treat only
the variance of estimators assuming, at least for planning pur-
poses, that the estimators are unbiased.

We do not treat estimation with quantitative variables
though the variability of quantitative variables may be more
important for the determination of sample size than estima-
tors of proportion. The search for a compromise between
different requirements on precision, be it for the variance of
means of quantitative variables, of regression coefficients or
of proportions, is rather a policy issue than a statistical prob-
lem and will not be treated here.

We propose two related measures: the size resolution
and the difference resolution. The estimation of the size of
a small group in a domain of the population is treated in

Section 2. First, the probability of not observing any mem-
ber of a group and tolerance intervals for proportions are
discussed. Then Section 2.3 introduces the size resolution,
which is based on a normal approximation of the probability
of not observing any member of a group. The comparison of
proportions and a corresponding difference resolution is dis-
cussed in Section 3. The size resolution and the difference
resolution are applied to the Swiss Population Survey and to
the European Social Survey of 2008 in Section 4. Section 5
draws some conclusions.

2 Estimation of a group size

The first problem we consider is the estimation of the
size NA of a group A in a domain D of size ND. Thus A is a
subset of the sub-population D, A ⊂ D, and NA < ND. The
sample design considered is stratified random sampling and
we assume for simplicity that the sample size nD in the do-
main D is fixed, in other words, that the domain is a stratum.

For example, in 2000, NA = 158 was the number of
Italian speaking persons in the municipality Veyrier with
ND = 8 892 inhabitants. The sample size of the Swiss Popu-
lation Survey in Veyrier, corresponding to the planned sam-
ple size n = 200 000 on the level of Switzerland, is nD = 244.
Are we able to estimate NA with sufficient precision by a
simple random sample of that size in Veyrier? What exactly
means sufficiently precise? A variant of the size-estimation
problem is the estimation of the proportion pA = NA/ND of a
group. The proportion of Italian speaking persons in Veyrier
was 1.8% in 2000. Can we specify how precise we want to
estimate such a proportion?

2.1 Unobserved groups

It may happen that a group of the population is not rep-
resented at all in a sample, i.e. there is no person of the group
in the sample. In that case we can say that the group has not
been detected by the sample. We now look at the probability
of such an event in a domain which is a stratum of the sam-
ple design. The sample size is nD = fDND in D for domain
sampling rate fD. For each possible sample a different num-
ber nA of members of the group A may be observed. Due
to the simple random sampling without replacement in D the
number nA has a hypergeometric distribution. The probabil-
ity that A is not detected is the probability of nA = 0. This
probability should be reasonably low, say maximum 5%, for
a group whose size is considered relevant.

Table 1 shows for different sample sizes nD the min-
imal group sizes NA in order to achieve the requirement
P[nA = 0] ≤ α, i.e. the probability that no member of A
is in the sample is at most α, with α = 0.025 or 0.05. The
size of the minimal observable group depends mainly on the
sampling rate and less on the domain size ND. For example
with a sample of size nD = 28 in a domain of size ND = 1000
the minimal observable group size is NA = 121 (α = 0.025)
while for nD = 274 at ND = 10 000 it is NA = 123. Thus the
probability that a small group is not observed in the sample
sets a lower limit to what should be considered a relevant
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group size. However, the direct calculation of the tail prob-
ability of the hypergeometric distribution is not suited as a
simple measure for the discussion with the users of a survey.

2.2 Tolerance interval for the sample proportion
In order to determine a simple expression for the mini-

mal group size, which can be expected to be observed, we
use the tolerance interval of a proportion which is based on
the variance of the estimator of a proportion. The estimation
of the proportion pA = NA/ND of a group A ⊂ D based on
a simple random sample of size nD is a standard problem in
survey sampling (Cochran 1977:50). The number nA of per-
sons from sup-population A in the sample can be written as a
sum over an indicator variable 1{i ∈ A}which is 1 for persons
from A and 0 otherwise, i.e. nA =

∑nD
i=1 1{i ∈ A}. The classical

estimator is the sample proportion p̂A = nA/nD, which is the
sample mean of the indicator variable and thus the Horvitz-
Thompson estimator. Under simple random sampling p̂A is
an unbiased estimator of pA.

The variance of p̂A under simple random sampling with-
out replacement is

σ2(p̂A) = (1 − fD)
pA(1 − pA)

nD

ND

ND − 1
. (1)

The variance of the sample proportion is the same
whether one estimates p or (1 − p) and we may switch to
(1 − p) when p > 0.5. Therefore we do not treat explicitly
proportions larger then 0.5. The size of the group A is esti-
mated by N̂A = ND p̂A and the variance of N̂A is N2

Dσ
2( p̂A).

We may try to elicit requirements on the precision of p̂A
from a user by directly asking him or her how small the vari-
ance σ2(p̂A) or the standard deviation σ( p̂A) should be. The
answer of the user would depend on the problem he or she
has in mind, in particular on the group A of interest and the
domain or municipality D and their respective sizes. A user
may have many situations in mind and give many different
answers. There is no simple answer to the requirement of a
single user and less so for the many different users of multi-
purpose multi-user surveys.

Often the question on the needed precision of a sample
is posed in the form of a confidence interval. Then the user
must decide what is a relevant width of a confidence interval
(see, for example Cochran 1977:75). Here we are planning
the survey and we may use a tolerance interval instead of
the confidence interval to simplify the treatment. A tolerance
interval is a central region of the distribution of p̂A which
contains a specified proportion, for example 95% of the out-
comes. More generally a tolerance interval for a random vari-
able X is an interval I which fulfils P[X ∈ I] = 1 − α for a
small positive proportion α. Note that the tolerance interval
is a statement on the distribution of X, not on the parameters
of the distribution. Often a tolerance interval must be esti-
mated from the sample but here we know that the distribution
is hypergeometric and we assume known the proportion pA.
Values which are not included in the tolerance interval are
very rarely observed. A trained user may state at which dis-
tance from the true value he would need the values to have

only a small probability of being observed. We then may
say that an estimator is sufficiently accurate when the sample
yields a tolerance interval which respects this relevant dis-
tance.

An approximate tolerance interval for p̂A based on the
assumption of a normal distribution is

[pA − z σ( p̂A), pA + z σ( p̂A)], (2)

where the constant z is a quantile of the standard normal
distribution, i.e. z = Φ−1(1 − α/2) for some small α > 0.
The width of the tolerance interval depends on the sample
size through σ(p̂A). For a 95% tolerance interval we have
α = 0.05 and thus z = 1.96. In other words the numbers be-
tween pA − 1.96 σ( p̂A) and pA + 1.96 σ( p̂A) make up a 95%
tolerance interval. Of course we could use another constant
than z = 1.96 to obtain a different tolerance level. The lower
limit of the tolerance limit (2) is set to 0 at least and the upper
limit to 1 at most to prevent absurd results for extreme cases.

The true distribution of p̂A is (scaled) hypergeometric
and the normal distribution is an approximation only. The
quality of the approximation of the hypergeometric distribu-
tion of nA by the normal distribution depends on the popu-
lation and sample sizes and on the proportion pA to be esti-
mated. For small sample sizes nD and small pA the hyper-
geometric distribution is strongly asymmetric, giving a high
probability to a value of 0. For confidence intervals many
proposals to deal with the asymmetry when the number of
observed members of a group is small exist (see, for example
Korn and Graubard 1998). Fortunately the coverage property
for the tolerance interval (2) is better than for the correspond-
ing confidence interval because the parameters pA and σ( p̂A)
are known. We assume that the domain is not too small here,
say ND > 100. Then the coverage of the 95% tolerance inter-
val (2) is above 90% when the expected sample in A is larger
than 1, i.e. when nD pA > 1, and for moderate sample size
and group size the coverage is close to 95%. It seems reason-
able to assume that the expected sample of a group should be
at least 1 to consider its estimation. Phrased differently we
assume that we only consider group proportions pA which
are larger than 1/nD.

The tolerance interval (2) depends on pA, nD and fD. Ta-
ble 2 shows some tolerance intervals. A lower limit of 0 usu-
ally indicates that the formula (2) gives, in fact, a negative
lower limit, which is then set to 0 explicitly as mentioned
above. For example, with a domain of size ND = 500 and a
proportion of pA = 0.2, which corresponds to a group of size
NA = 100, we would still obtain a lower limit of the tolerance
interval of −3, which is set to 0. In other words we cannot
exclude with 95% of confidence that nobody from group A
would be in the sample. This aligns well with the probability
of 4% for this event under the hypergeometric distribution.
Note that in this case the expected number of elements from
group A in the sample is nA = fDND pA = 2.74 and the ap-
proximate 95% tolerance interval has a coverage of 0.958.
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Table 1: Minimal group size NA for which the probability of observing 0 is below α = 0.025 or 0.05.

α = 0.025 α = 0.05

nD ND = 1000 ND = 10000 ND = 1000 ND = 10000

28 121 1232 101 1014
50 70 710 57 581

100 35 361 29 294
274 12 123 10 108
500 6 72 5 59

Table 2: 95% tolerance intervals for N̂A = ND p̂A with fD = 0.0274.

ND pA = 0.005 pA = 0.01 pA = 0.05 pA = 0.20 pA = 0.50

500 [0 , 21 ] [ 0 , 31 ] [0 , 81 ] [ 0 , 203 ] [ 121 , 379 ]
1000 [0 , 31 ] [ 0 , 47 ] [0 , 131 ] [ 51 , 349 ] [ 314 , 686 ]
3000 [0 , 60 ] [ 0 , 94 ] [10 , 290 ] [ 344 , 856 ] [ 1180 , 1820 ]

10000 [0 , 132 ] [ 0 , 216 ] [245 , 755 ] [ 1533 , 2467 ] [ 4416 , 5584 ]
15000 [0 , 176 ] [ 8 , 292 ] [438 , 1062 ] [ 2428 , 3572 ] [ 6785 , 8215 ]

100000 [240 , 760 ] [ 633 ,1367 ] [4195 , 5805 ] [ 18523 ,21477 ] [ 48154 , 51846 ]
363273 [1320,2313] [ 2932,4333 ] [16630 ,19698 ] [ 69839 ,75470 ] [ 178117 ,185156 ]

2.3 Size resolution

The existence of a natural inferior bound for the detec-
tion of a group (see Subsection 2.1) stimulates the search
for a description of precision which is directly linked to the
estimation of the size of a small group. We look for an al-
ternative way to express the probability of not observing a
group, which is based on the tolerance interval and should be
simpler. In other words instead of limiting P[ p̂A = 0] under
the hypergeometric distribution we limit P[p̂A ≤ 0] under a
normal distribution.

How large must a sample be to ensure that P[ p̂A ≤ 0] ≤
α/2? Phrased as a requirement for the size of a group given
a particular sample size and with a tolerance interval: How
large must a group be such that a pA ± zσ(p̂A) tolerance in-
terval does not include 0? The constant z can be chosen sim-
ilar to a confidence interval: The probability of an estimate
p̂A = 0 should be sufficiently low, for example below 2.5%.
This choice leads to z = 1.96 = Φ−1(0.975). At the same
time as we give a low probability for the observed proportion
p̂A to be 0 we ensure a low probability that p̂A is larger than
a reasonable upper bound, namely roughly twice the theoret-
ical proportion. For example if pA = 2% we will have a low
probability of obtaining p̂A = 0 or p̂A > 4%. We think that
this is a reasonable band for probabilities up to about 10% or
even up to 25%.

The condition 0 < [pA ± zσ( p̂A)] implies more than
avoiding an empty group in the sample because the variabil-
ity σ( p̂A) is taken into account explicitly. Thus in addition
to limiting the probability of not observing a member of the
group also the variability of the estimator is limited. This
means that the condition 0 < [pA ± zσ( p̂A)] describes what
group sizes NA may be estimated with a certain minimal pre-
cision.

The condition 0 < [pA ± zσ( p̂A)] has a close relation to

hypothesis testing. Fixing the confidence level of the toler-
ance interval is equivalent to fixing the level of a test, i.e. the
probability of an error of type I. The test would have null
hypothesis p = pA and alternative p = 0 and we implicitely
state that pA−0 is a relevant difference. Under the alternative
hypothesis p = 0 the sampling proportion would be 0 always
and thus has a degenerate distribution. This implies that the
test for p = pA would have infinite power at the alternative
p = 0. Therefore, in a way, the requirement of the tolerance
interval not including 0 also specifies the power of a test.

Thus given the sample size we try to determine a size or
a proportion of a group which is just large enough to be es-
timated with sufficient precision from the sample. Sufficient
precision is embodied by the limitation on σ( p̂A) through the
condition 0 < [pA ± zσ( p̂A)]. We call this smallest estimable
size the size resolution of the sample in analogy to the capa-
bility of optical devices to distinguish objects which are very
small. We will derive the difference resolution in Section 3.1
where resolution is used in analogy to the capability of op-
tical devices to distinguish objects which are close together.
When it is necessary to distinguish the resolution measures
we develop here from other resolutions, for example from
sensor resolution, we call them precision resolutions.

We now proceed to derive a formula for the resolution
and approximations to it. We may assume that pA < 0.5 and
therefore only the lower limit of the tolerance interval must
be considered. The inequality that nD must fulfil is

pA−zσ(p̂A) = pA−z

√
(1 − fD)

pA(1 − pA)
nD

ND

ND − 1
> 0. (3)

Solving the inequality for pA we obtain

pA >
z2(1 − fD) ND

ND−1

nD + z2(1 − fD) ND
ND−1

=
a′

nD + a′
, (4)
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where a′ = z2(1− fD) ND
ND−1 . Multiplying both sides of inequal-

ity (4) by ND yields an inequality for the size NA = ND pA:

NA > ND
a′

nD + a′
. (5)

For practical purposes the approximation ND/(ND−1) =
1 is rarely problematic and we assumed that the domain
sizes of interest to us are larger then 100. Thus we use
a = z2(1 − fD) only instead of a′.

Now we define the size resolution:
Definition: The 100 · (1−α)% size resolution of a simple

random sample in a domain is

Rs(1 − α, fD,ND) = ND
z2(1 − fD)

fDND + z2(1 − fD)
(6)

where z = Φ−1(1 − α/2) is a standard normal quantile, fD is
the sampling rate and ND is the size of the domain.

We write the size resolution Rs with a subscript s to make
the distinction with the difference resolution Rd introduced in
Section 3. Of course fDND in the denominator is the sample
size (or expected sample size) in domain D. We use fDND
to make clear that there are, in fact, only two parameters
involved. Thus the resolution does not depend on the pro-
portion to estimate! This is a desirable feature because it
simplifies the determination of the sample size.

The size resolution is the smallest size of a group which
is estimable with a simple random sample. Here estimable
means that the probability of a sample estimate of the size
being larger than 0 and less than the double of Rs is approxi-
mately 1 − α and that the standard deviation of the estimator
is less than Rs/z.

Solving (6) for fD yields the sampling fraction necessary
to estimate a group of size Rs:

fD =
z2(1 − Rs/ND)

Rs + z2(1 − Rs/ND)
. (7)

The corresponding sample size is, of course, nD = fDND.
For a uniform sampling fraction we readily have the neces-
sary total sample size as n = f N. The fraction Rs/ND is the
proportion of the minimal estimable group in the domain.
For small groups, however, this dependence is weak. Also
the dependence of the size resolution Rs on the domain size
is weak and we will derive an approximate size resolution in
the following that gets rid of this weak dependence.

The size resolution still depends on the size ND of the
domain. Using the inequality 1 + a/nd > 1 we arrive at

NA > ND
a

nD + a
=

ND

nD

a
1 + a/nD

>
a
fD

=
z2 (1 − fD)

fD
. (8)

If NA fulfills (8) it also fulfills (3). Since a = z2(1 − fD) usu-
ally is small compared to nD, for example z2(1 − fD) = 3.75
for z = 1.96 and fD = 0.0274, the relaxation of inequality
(4) by (8) is often small. In inequality (8) neither the pro-
portion pA nor the size of the domain ND is directly involved

anymore. Knowing the sampling fraction fD and fixing z, for
example z = 1.96, we can calculate the minimal NA.

We may also drop the finite population correction for
small sampling rates fD. Assuming 1 − fD ≈ 1 the size reso-
lution becomes

R̃s = z2/ fD. (9)

We call R̃s the approximate size resolution when it must be
distinguished from Rs.

Using the approximate size resolution (9) we can de-
rive the necessary sampling fraction or sample size which
is needed to estimate a group of size R̃s:

fD >
z2

R̃s
. (10)

and the corresponding sample size is

nD >
z2

R̃s/ND
. (11)

Thus the simplest form to use the size resolution is to calcu-
late the desired proportion to estimate p = Rs/ND and to use
z2/p as the sample size.

Table 3 shows the 95% size resolutions at ND =
1 000, 10 000 and 100 000 for selected sampling rates. Sam-
pling rate f = 0.0003 corresponds to the European Social
Survey and f = 0.0274 to the Swiss Population Survey. For
low sampling fractions the size of the domain matters while
for moderate and large sampling fractions it is of minor im-
portance. For very low sampling fractions and low domain
size the sample is set to 1 at least resulting in a resolution of
NDz2/(1 + z2).

Setting, in addition, z2 = 4 we find an approximate 95%
size resolution

R̃s = 4/ fD = 4ND/nD. (12)

Solving for the sampling fraction we obtain that an approx-
imate 95% size resolution needs a sampling fraction fD >
4/R̃s, which corresponds to a sample size of

nD = 4ND/R̃s. (13)

This rough rule of thumb for the sample size yields nD = 400
for a proportion of Rs/ND = 1%. In other words with a sam-
ple of size 400 any group of relative size 1% is estimable.
This sample size is a customary result when requiring a 95%
confidence interval of half length 5% for a population pro-
portion of 50% (see, for example Cochran 1977:76). Note
that the derivation used here is different from this customary
derivation.

3 Estimation of a difference of
proportions

In this Section we treat the estimation of the difference
of the proportion of a group A in two disjoint domains D1
and D2 of size ND1 and ND2. Thus we have two groups A1 =
A ∩ D1 and A2 = A ∩ D2. We denote the size of the groups
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Table 3: 95% size resolution Rs and approximate 95% resolution R̃s.

Rs for ND =

fD 500 1000 3000 10000 15000 100000 R̃s

0.0003 397 794 2381 5615 6517 11349 12805
0.0010 397 794 1684 2774 3056 3696 3842
0.0100 217 276 338 367 371 379 385
0.0274 106 118 130 135 136 137 141
0.0500 64 69 72 73 73 73 77
0.1000 33 34 35 35 35 35 39
0.5000 4 4 4 4 4 4 8

in the two domains by NA1 and NA2 and the corresponding
proportions are pA1 = NA1/ND1 and pA2 = NA2/ND2. We are
interested in the difference of proportions δA = pA2 − pA1.
For example, we may want to know the difference of the pro-
portion of Italian speaking persons in Veyrier and Lausanne,
two municipalities of very different size. The difference in
proportions in the same domain but at two time points is
analogue if the sampling at the two time points is indepen-
dent. Thus for Veyrier the proportions of Italian speaking
persons for 1990 and 2000 are pA1 = 172/7039 = 2.44% and
pA2 = 158/8892 = 1.78%. The difference is δA = −0.66%.
How accurate do we have to estimate such a change by a par-
ticular Survey? Alternatively we may want to estimate the
absolute change ∆A = NA2 − NA1. But since the sizes of the
domain may be different usually the difference of proportions
is the interesting characteristic.

We assume that we have two independent random sam-
ples either at the same time in two distinct domains or at two
different times for the same domain. This differs from what
we assumed for estimating one proportion where only one
random sample was considered and a deviation from a hypo-
thetical parameter, i.e. 0, was the focus. Now the variability
of both samples must be considered.

The difference of proportions δA = pA2 − pA1 may
be estimated by the difference of estimates of proportions
δ̂A = p̂A2 − p̂A1. Since the two samples are assumed inde-
pendent the variance of δ̂A is the sum of the variances of the
estimates of proportion, i.e. σ2(δ̂A) = σ2( p̂A2) +σ2( p̂A1). An
approximate tolerance interval based on the assumption of
normal distribution of the two estimates of proportion is

[δA ± z σ(δ̂A)]. (14)

For a (1 − α)% tolerance z = Φ−1(1 − α/2), for example
z = 1.96 for α = 0.05.

Here we assume that pA1 < pA2, i.e. δA is assumed posi-
tive. In analogy to equation (3) for the resolution when esti-
mating a single proportion we require that

δA − zσ(δ̂A) > 0. (15)

This equation assumes an alternative hypothesis of δA =
0 but in contrast to requirement (3) the distribution at the al-
ternative is not degenerate. In other words, we cannot expect
an infinite power at δA = 0. In fact, the power at the alterna-
tive is approximately 0.5 since for δA = 0 and approximately

symmetric distributions we can expect that about half of the
estimates result in δ̂A < 0. Nevertheless the simple require-
ment in (15) contains a specification of a relevant difference,
a level and a power of a test.

3.1 Difference resolution
We would like to obtain a simple expression for δA from

inequality (15). A convenient parameterization is to use
pA1 = p − δA/2 and pA2 = p + δA/2. In other words we
express the requirement with the help of the mean of the in-
volved proportions p = (pA1 + pA2)/2.

In the following we drop the subscript D to simplify the
notation. For example ND1 will be written N1 only.

Setting

a′i = z2 1 − fi
fiNi

Ni

Ni − 1
, i = 1, 2

and after some algebra, the following quadratic inequality is
obtained:

δ2
A > p(1− p)(a′1 +a′2)+2δA(1−2p)(a′2−a′1)/4−δ2

A(a′1 +a′2)/4.

The positive solution of this quadratic equation is

δA >
(
p(1 − p)b′ + (1 − 2p)2c′2

)1/2
+ (1 − 2p)c′ =

r′d(p,N1,N2, f1, f2),
(16)

where

b′ =
a′1 + a′2

1 + (a′1 + a′2)/4
and c′ =

(a′2 − a′1)/4
1 + (a′1 + a′2)/4

.

The solution r′d depends on 5 parameters:
p,N1,N2, f1, f2. The last two parameters are the sampling
fractions in D1 and D2, which might be different. The sample
sizes n1 = f1N1 and n2 = f2N2 depend on these parameters.
Note that the term under the square root is always positive.
Obviously we must let depend the bound on the involved
probabilities through p = (pA1 + pA2)/2.

As a function of p, r′d has a positive value or is 0 at
p = 0, increases until a maximum around 0.5 and then de-
creases again to reach 0 or a positive value at p = 1. Thus,
as expected, the most difficult differences are the ones with
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proportions around 0.5. As a function of N1 or N2, r′d is de-
creasing as expected. Figure 1 shows r′d for different config-
urations of domain sizes and sampling fractions. Note that
for p close to 0 or 1 the value for r′d may be impossible to
reach because p − δA/2 < 0 or p + δA/2 > 1. Increasing
the domain sizes yields a lower curve. Different sampling
fractions or different domain sizes make the curve asymmet-
ric. The difference in r′d when assuming equal domain size
and equal sampling fraction to the true r′d depends on the
particular configuration but may be considerable.

The expression for r′d is too complex for a simple com-
munication with users in the planning stage of a survey. To
simplify the expression we assume N1 = N2 = ND and
f1 = f2 = fD. This is at least approximately the situation
when we consider the same domain under the same sample
design at two near time-points where the change in domain
size is negligible. In that case a′1 = a′2 and therefore c′ = 0
and as a consequence the terms involving the factor c′ in r′d
drop.

Assuming ND > 100 the factor ND/(ND − 1) in b′i and a′i
is of minor importance and dropping it leads to b1 = b2 = b
and a1 = a2 = a and therefore the function r′d becomes

rd(p,ND, fD) =
√

b p(1 − p) = 2
√

a
2 + a

p(1 − p)

= 2
√

p(1 − p)

√
z2(1 − fD)

2 fDND + z2(1 − fD)
,

(17)

where a = z2(1 − fD)/( fDND). This expression still depends
on p. As for the well-known majorization for sample size
calculation we may use the maximum of p(1 − p) at p = 0.5
to obtain a conservative bound. Setting p = 0.5 we obtain
the expression

rd(0.5,ND, fD) =

√
z2(1 − fD)

2 fDND + z2(1 − fD)
. (18)

Of course the value rd(p,ND, fD) for a particular p may be
much lower than rd(0.5,ND, fD). But we are interested in a
simple general bound which covers all possible situations. In
Section 2 we aimed at small proportions because the small
groups are difficult to estimate reliably. For the difference
resolution we have to take into account a small difference
between any two probabilities between 0 and 1. Therefore,
taking the worst case, p = 0.5 seems reasonable here.

Note that for equal domain sizes ∆A = NA2−NA1 = NDδA
holds. Using ∆A = NDδA we can also establish a bound for
the absolute size ∆A of a difference in group sizes in two do-
mains of the same size ND, which will always be estimated
reliably by a simple random sample.

Definition: The 100 · (1 − α)% difference resolution
Rd(1−α,ND, fD) of two independent simple random samples
with equal sampling rate fD in two domains of equal size ND

is

Rd(1 − α,ND, fD) = ND rd(0.5,ND, fD) =

ND

√
z2(1 − fD)

2 fDND + z2(1 − fD)

(19)

where z = Φ−1(1 − α/2) is a standard normal quantile.
Note the subscript d in Rd to distinguish the difference

resolution from the size resolution Rs. The similarity of the
size resolution Rs and the difference resolution Rd is obvi-
ous. Rd uses twice the sample size in the denominator and
the square root. Again the difference resolution does not de-
pend on the involved proportions, though the price in terms
of quality of approximation now is higher than for the reso-
lution Rs. In addition the dependence on the domain size ND
is marked for the difference resolution and will remain in the
approximate difference resolution we derive next.

Given a desired difference resolution Rd the sampling
fraction to achieve it is

fD =
z2(1 − r2

d)

2r2
dND + z2(1 − r2

d)
, (20)

where rd = Rd/ND is the relative difference of the size of a
group A in two equal domains. The necessary sample size to
reach Rd is

nD = fDND =
z2(1 − r2

d)

2r2
d + z2(1 − r2

d)/ND
(21)

It is obvious that the direct dependence on the domain saize
ND is weak, i.e. the main driver for the necessary sample size
is the proportion rd = Rd/ND. For the communication with
users it is therefore advisable to discuss the difference of the
proportions. Then the sample size is readily derived when
assuming that the domains are of equal size and the actual
proportions are symmetric around p = 0.5. If this assump-
tion is not useful then one way to determine sample size is to
find a root of rd(p, f1, f2,N1,N2) numerically.

Alternatively, if the domain sizes, where we plan to es-
timate a small difference of proportions, are in fact different
and also the sampling fractions may differ then a suitable def-
inition of the difference resolution for different domain sizes
and sampling rates is:

Rd(1 − α,N1,N2, f1, f2) =

max(N1,N2)

√
z2(1 −min( f1, f2))

2 min( f1N1, f2N2) + z2(1 −min( f1, f2))
(22)

This may be a conservative bound, of course. But the bound
may remain useful for planning purposes.

Further simplifications of the difference resolution are
possible. If 2 fDND = 2nD is much larger than z2(1 − fD) we
may neglect the second summand z2(1− fD) in the denomina-
tor of the difference resolution. If in addition we neglect the
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Figure 1. Function r′d with argument p = (pA1 + pA2)/2 at f1 = f2 = 0.01 and N1 = N2 = 1 000 (solid line), N1 = 1 000,N2 = 10 000
(dashed line), N1 = N2 = 10 000 (dash-dotted line) and f1 = 0.01, f2 = 0.02,N1 = N2 = 1 000 (dotted line).

finite sample correction 1 − fD we arrive at the approximate
difference resolution

R̃d = ND

√
z2

2 fDND
= ND

√
z2

2nD
. (23)

To reach a desired approximate difference resolution R̃d
the sample size must be

nD >
N2

D z2

2R̃2
d

=
z2

2r̃2
d

, (24)

where r̃d = R̃d/ND is the resolution expressed as a propor-
tion. This possible approximation could also have been di-
rectly derived from (21).

Setting in addition z2 = 4 we obtain the following ap-
proximate 95% difference resolution

R̃d = ND

√
2/nD. (25)

This expression is a useful shortcut for quick calculations.
Obsiously it leads to a sample size which is needed to achieve
a specific approximate difference resolution R̃d:

nD = 2N2
D

/
R̃2

d =
2
r̃2

d

. (26)

Thus the simplest way of using the difference resolution
is to decide the difference r̃d of proportions to be estimated
and to determine 2/r̃2

d as the sample size. For example, if a
difference of proportions of 0.1 should be estimated, a sam-
ple size of 2/0.12 = 200 is needed in both domains and we
arrive at a total sample of size 400 again.

In the case of different domain sizes and sampling frac-
tions the approximate 95%-difference resolution is

R̃d(0.95,N1,N2, f1, f2) = max(N1,N2)

√
z2

2 min( f1N1, f2N2)
(27)

Tabel 4 shows the difference resolution for the same do-
main sizes and sampling fractions as Table 3. The depen-
dence on ND is marked. Obviously in all cases Rd > Rs,
which is clear from the formulae, too.

The difference resolution has a close relation to a Z-test
for a particular difference of two means with known variance
in independent samples. This is obvious from the form of the
condition for deriving the difference resolution (15). In fact,
a Z-test for the null-hypothesis δA = pA2 − pA1 = rd(p) has
a power of approximately 50% at the alternative hypothesis
δA = 0. Thus the difference resolution may be interpreted as
the smallest difference at which the Z-test reaches approx-
imately 50% power for the alternative hypothesis δA = 0
given (pA1 + pA2)/2 = 0.5. If the involved proportion is
different from 0.5 or if the domain sizes and sample sizes
are not equal then the power would be larger. Note that con-
trary to this test, the test that will be applied when analysing
the survey has a null hypothesis δA = 0 and the power at
δA = rd(p) will be different.

4 Application of the precision
resolutions

4.1 Swiss Population Survey

The approximate 95% size resolution for the Swiss Pop-
ulation Survey with f = 0.0274 is R̃s = 141. This means
that we can estimate such a group with a sample size of
nD = f · ND for any(!) municipality or domain. Table 5
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Table 4: 95% difference resolution Rd and approximate 95% difference resolution R̃d.

Rd for ND = R̃d for ND =

fD 500 1000 3000 10000 15000 100000 10000

0.0003 482 930 2476 6248 8204 24527 8002
0.0010 446 811 1874 4013 5052 13722 4383
0.0100 263 400 733 1367 1679 4357 1386
0.0274 174 253 448 823 1009 2611 838
0.0500 131 188 329 604 739 1910 620
0.1000 92 131 228 416 509 1315 439
0.5000 31 44 76 139 170 439 196

shows the size of the language groups of the municipality
Veyrier in 1990 and in 2000. All language groups except
Spanish are above R̃s. In fact the proportion of the Spanish
language group in Veyrier in 2000 was pA = 0.0148 and the
standard error of the sample proportion with sampling rate
f = 0.0274 would be σ(p̂A) = 0.0076. Thus a rough 95%
tolerance interval would reach down to 0.

To better judge the change of the size of language groups
the sizes of 1990 have been updated proportionally to the in-
crease of the size of the municipality (column 1990 update
in Table 5). The change ∆′A of the size of this update of
1990 compared with 2000 is relatively small. For example
the german language decreased by 120. The difference res-
olution would be Rd = 776, which is larger than any of the
updated changes ∆′A of language group sizes of Veyrier. Thus
from the difference resolution we must say that these differ-
ences are not estimable. Similarly a χ2-test for the equality of
proportions yields a p-value of 0.27 for the French language
and even larger p-values for the rest of the languages. Thus
there is no significantly different language group proportion
as predicted by the difference resolution.

Assuming, that the same language distribution holds in a
city five times as large as Veyrier, the χ2-test for the change
of proportions becomes significant for French but for none of
the other languages. In this situation the difference resolution
is Rd = 1740 and thus the difference resolution would sug-
gest that the change in the size ∆′A = 5 ∗ 395 = 1975 of the
French language group would be estimable while the other
changes not, completely analogue to the test result. This is
similar to the situation where we can pool together five inde-
pendent yearly samples to form an estimate of the change of
the language group sizes for Veyrier over five years.

4.2 European Social Survey

The Swiss Sample of the European Social Survey of
2008 (round 4 of the ESS) consists of n = 1819 interviews.
The sample is designed as a stratified random sample of
households with stratification according to regions (NUTS2)
and proportional allocation. Within a household a member
above age 15 is selected randomly for the interview. The
design effect due to the clustering and unequal probability
sampling can be expected to be larger than 1 if households
are more homogenous than the general population (cf. Gan-
ninger 2006). Note however, that the design effect due to

Table 5: Language groups of municipality Veyrier in 1990 and
2000 (Source SFSO Census 2000).

Language 1990 2000 1990 update ∆′A

French 5443 7271 6876 395
German 504 517 637 -120
English 386 404 488 -84
Italian 172 158 217 -59
Portuguese 150 143 189 -46
Spanish 119 132 150 -18
Other 265 267 335 -68

Total 7039 8892 8892

clustering (deffc, cf. Ganninger 2010) may vary from item
to item and sufficient margins must be allowed for when de-
termining sample size. The population size is N = 6 416 728
and thus the overall sampling rate is f ≈ 0.000283.

The approximate 95% precision resolutions for a sim-
ple random sample with the sampling rate of the ESS are
R̃s = 13 552 and R̃d =

√
ND 83. The design effect due to

unequal probability sampling (deffp) for ESS4 of 2008 is
estimated as 1.24 (European Social Survey 2010:259). In
the formulae for the size resolution and the difference res-
olution the sample size nD = fDND must be adjusted to
the effective sample size (Lynn et al. 2007). For the ap-
proximate precision resolutions this adaptation amounts to
a multiplication by the design effect or its square root re-
spectively. The size resolution becomes R̃′s = deffR̃s and the
difference resolution becomes R̃′d =

√
deffR̃d. The design

effect due to clustering deffc of the ESS is not reported for
2008 since it depends on the variable considered. We use the
rough approximation deff = deffp here to show the adjust-
ments to the precision resolutions. Using as the design effect
deffp = 1.24 we would have R̃′s = 1.24 · 13 552 = 16 804 and
R̃′d =

√
1.24
√

ND · 83 =
√

ND 93.
Thus the ESS4 survey should be able to estimate any

group of size 16 804 or larger on any level of disaggrega-
tion. As an example we may look at the group of persons
in Switzerland which have not completed primary education
and are of age 65 or more (European Social Survey 2010,
Appendix 1). According to the Swiss Census in 2000 there
were 12 820 men and 29 884 women of age 65 or more which
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have not completed primary education. According to the
approximate size resolution R̃′s = 16 804 only the group of
women would be estimated reliably from the ESS survey if
these sizes were the same in 2008. Actually ESS4 contains
no male person but 4 female persons of age 65 or more with
incomplete primary school. For the male persons we thus
have an unobserved group. Under the hypergeometric distri-
bution, and assuming the numbers of 2000 hold, the proba-
bility of this event is 0.67 and therefore is no surprise. Of
course, such distortions arise in practice much more due to
particular non-response problems than because of sampling
variation. The actual estimate of the number of women over
65 with incomplete primary school from ESS4 is 9 141 with
a standard deviation of 4 687. The usual rough 95% con-
fidence interval would include 0 and therefore the estimate
may be classified as too variable in the light of the survey
results. The count for 2000 of 29 884 would not be included
in the confidence interval either and thus we would conclude
that the number of women with incomplete primary school
had dropped in the mean time.

The difference resolution is studied when estimating the
gender difference in education. Data from the 2000 Census
shows that there were 459 761 university academics living in
Switzerland in 2000 (first column of Table 6). The difference
between men and women was ∆A = 128 857.

Would we be able to estimate the difference of 128 857
between the number of men and women university aca-
demics with the ESS? Assuming equal size of the domains
of men and women of ND = 6 416 728/2 we obtain a differ-
ence resolution of R̃′d = 164 083. Therefore we would not
expect to estimate the difference of male and female univer-
sity academics with the sample size of the ESS in any case.
Refining the difference resolution by taking into account the
proportion of university academics of p = 0.076, i.e. using
(17), we arrive at a difference resolution of R′d = 86 963,
which now is lower than 128 857 and thus indicating that it
should be possible to estimate the difference reliably. A χ2-
test for the equality of proportions with the data of ESS4,
taking into account the design, reveals a p-value of 0.0014
and thus a highly significant difference. Obviously the reso-
lution at p = 0.5 is too conservative in that case because the
involved probability is much lower.

In the Census 2000 among the persons aged 35 to 44
there were 281 271 men and 335 358 women with highest ed-
ucational level Secondary II (fourth column in Table 6). Thus
in 2000 the difference between men and women with highest
educational level Secondary II is ∆A = 54 087. Would we be
able to estimate the difference of 54 087 between the number
of men and women with Secondary II education and of age
35 to 44 based on the ESS? Assuming equal size of the do-
mains of men and women, i.e. setting ND = 1 256 584/2 we
obtain a difference resolution (corrected for a design effect of
1.24) of R̃′d = 83 548, indicating that we cannot estimate the
above difference. Note that in this case the proportions are
close to 50% and therefore the difference resolution should
not be too conservative. The actual estimate from the ESS
is ∆̂A = 99 690, which is larger than the difference reso-
lution and thus should be estimable. Nevertheless, the χ2-

test for the equality of proportions gives a p-value of 0.31
and thus does not indicate a significant difference. This may
happen because even if the true difference is above the dif-
ference resolution the power of a test corresponding to the
difference resolution is not particularly high and the fact that
in the test corresponding to the resolution the usual roles of
null and alternative hypothesis are exchanged also has an ef-
fect. To avoid such a situation it may be necessary to in-
crease the level of the tolerance interval. For example for
1 − α = 0.999 we obtain an approximate difference Resolu-
tion of R̃′d = 122 082.

5 Conclusion

The precision resolutions help in the discussion of the
precision of a survey at the planning stage when many small
groups and small differences in proportions should be esti-
mated. The precision resolutions set a lower limit to a group
size or a difference of proportions and restrict the variability
of the involved estimators. They describe whether a group
size or a difference of proportions may be estimated by the
planned survey.

Given a desired (approximate) size resolution R̃s we can
easily calculate the size of a sample that is necessary to
achieve this size resolution. In other words we may choose
a limit above which a group is considered to have a relevant
size and the size should be estimable. Setting the size reso-
lution to this relevant size leads to the necessary sample size.

The difference resolution Rd is more complex since it
depends on the domain size and the proportions involved.
The approximation error when neglecting the proportions in-
volved, i.e. replacing the true mean proportion by 0.5, may
be large. Thus the difference resolution may be conservative.
Often this is what is needed to prevent too high expectations.

When discussing the precision of a planned sample the
precision resolutions help to clarify the understanding of the
implications of sample size. A user may well be able to state
an approximate size of a group that is interesting to him or
her. The size resolution is able to lead to the sample size
needed. Often the user is not interested in the size of a group
alone but in a change of the size or in a comparison with
another domain. He or she may still give a rough measure
of size of the groups that are involved or of the difference in
proportion he or she would like to be able to estimate. Spec-
ifying the difference resolution seems possible and captures
the main ingredients of a hypothesis test.

The sample size corresponding to a desired difference
resolution does not guarantee that a test will be significant
once the data is available and the difference is actually of the
size assumed. This is due to the relatively low power of 0.5
of the test corresponding to the difference resolution. Setting
the z-quantile in the difference resolution to a higher value,
for example z = 2.58, would increase the power.

The precision resolutions are not intended for quantita-
tive variables and in surveys where quantitative variables are
the key characteristics to estimate they may just help to sim-
plify the discussion on the precision of estimators of pro-
portions without determining the sample size. In addition,
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Table 6: Persons with highest education level tertiary in Switzerland.a

University Tertiary Secondary II, age 35-44

Census 2000 ESS 2008 SE Census 2000 ESS 2008 SE p̂Ai

Men 294 309 351 648 39 253 281 271 286 987 35 214 0.504
Women 165 452 237 876 30 967 335 358 386 677 40 047 0.562
∆A 128 857 113 772 54 087 99 690

Total-CH 6 043 350 6 416 728 1 195 364 1 256 584 66 618
aSFSO, Census 2000 according to documentation for ESS-CH.

the requirements of different users still may diverge and the
precision resolutions cannot solve the problem of the multi-
dimensionality of a survey. They merely intend to help lay
persons to participate in this discussion.

Some of the results on resolutions can be extended to
other sampling designs with the help of the design effect
(Kish 1965). Thus the sample size in the formulae for the
resolution is to be understood as effective sample size. How-
ever, since design effects may vary a lot for different groups
and domains even for the same design more caution is needed
as soon as complex sample designs are involved.

For a sub-population or domain which is not a stratum
with a fixed sample size, additional variability is induced by
the hypergeometric distribution of the size of the part of the
sample falling into the sub-population. The results on the res-
olution may be impaired if the variability of nD is too large.
The issue is even more complex for non-proportional sam-
pling when a domain cuts across strata. Then the question on
the precision is mixed with the question of the allocation of
the sample and the precision resolutions may not be able to
capture the situation. However, the example of the European
Social Survey shows, that for mild deviations from stratified
simple random sampling the precision resolutions may still
be useful.
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