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Variance estimation for complex indicators of poverty and inequality
using linearization techniques

Guillaume Osier
Statistical Office of the European Communities (EUROSTAT), Luxembourg

The paper presents the Eurostat experience in calculating measures of precision, including
standard errors, confidence intervals and design effect coefficients – the ratio of the variance
of a statistic with the actual sample design to the variance of that statistic with a simple ran-
dom sample of same size – for the “Laeken” indicators, that is, a set of complex indicators
of poverty and inequality which had been set out in the framework of the EU-SILC project
(European Statistics on Income and Living Conditions).
The Taylor linearization method (Tepping, 1968; Woodruff, 1971; Wolter, 1985; Tillé, 2000) is
actually a well-established method to obtain variance estimators for nonlinear statistics such as
ratios, correlation or regression coefficients. It consists of approximating a nonlinear statistic
with a linear function of the observations by using first-order Taylor Series expansions. Then,
an easily found variance estimator of the linear approximation is used as an estimator of the
variance of the nonlinear statistic.
Although the Taylor linearization method handles all the nonlinear statistics which can be ex-
pressed as a smooth function of estimated totals, the approach fails to encompass the “Laeken”
indicators since the latter are having more complex mathematical expressions. Consequently,
a generalized linearization method (Deville, 1999), which relies on the concept of influence
function (Hampel, Ronchetti, Rousseeuw and Stahel, 1986), has been implemented.
After presenting the EU-SILC instrument and the main target indicators for which variance
estimates are needed, the paper elaborates on the main features of the linearization approach
based on influence functions. Ultimately, estimated standard errors, confidence intervals and
design effect coefficients obtained from this approach are presented and discussed.
Keywords: EU-SILC survey, non-linear statistics, influence function, standard error, confi-
dence interval, design effect coefficient

1 The EU-SILC instrument

1.1 Introduction
European Statistics on Income and Living Conditions

(EU-SILC) is actually the main instrument for the compi-
lation of comparable indicators on social cohesion in the Eu-
ropean Union (EU).1 It consists of a series of national sam-
ple surveys that collect on an annual basis comparable mul-
tidimensional micro-data on income, poverty, social exclu-
sion and living conditions. Every year, both cross-sectional
data (pertaining to a given time or a certain time period) and
longitudinal data (pertaining to individual-level changes over
time) are collected over representative samples of households
and individuals aged 16 or more.

The EU-SILC was launched under a gentleman’s agree-
ment with six EU-15 countries plus Norway in 2003 and re-
launched in 2004 under a European Regulation with twelve
EU-15 countries (Belgium, Denmark, Greece, Spain, France,
Ireland, Italy, Luxembourg, Austria, Portugal, Finland and

Contact information: Guillaume Osier, Statistical Office of the
European Communities (EUROSTAT), 5 Rue Alphonse Weicker,
L-2721 Luxembourg, Grand-Duchy of Luxembourg, e-mail: Guil-
laume.Osier@statec.etat.lu

Sweden) plus Estonia, Norway and Iceland. In 2005, the rest
of the EU-25 countries joined the project, whereas Bulgaria,
Romania, Turkey and Switzerland commenced EU-SILC in
2006.

1.2 Policy context

EU-SILC is actually a key monitoring tool at EU level
for the so-called “Lisbon Strategy”, a pillar of which is to
build a more inclusive European Union by making a no-
table impact on eradicating poverty by 2010. In particular,
the Laeken European Summit in December 2001 formally
adopted a list of outcome indicators of poverty and social
exclusion. Those “Laeken” indicators allow monitoring in a
comparable way of Member States’ progress towards agreed
EU objectives regarding fight against poverty and social ex-
clusion.2

The above indicators are extracted from different EU
data sources:

1 See also Clemenceau and Museux (2006) for a presentation of
the instrument

2 Further information regarding the “Laeken” indicators as well
as the EU Social Inclusion Process is available on European Com-
mission, Directorate General Employment, Social Affairs and Equal
Opportunities: http://ec.europa.eu/social
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Table 1: The “Laeken” indicators

(L1) At-risk-of-poverty rate by various classifications
(L2) Inequality of income distribution: S80/S20 quintile share ratio
(L3) At-persistent-risk-of-poverty rate by gender (60% median)
(L4) Relative median at-risk-of-poverty gap
(L5) Regional cohesion (dispersion of regional employment rates)
(L6) Long term unemployment rate
(L7) Persons living in jobless households
(L8) Early school leavers not in education or training
(L9) Life expectancy at birth
(L10) Self-defined health status by income level
(L11) Dispersion around the at-risk-of-poverty threshold
(L12) At-risk-of-poverty rate anchored at a moment in time
(L13) At-risk-of-poverty rate before social transfers by gender
(L14) Inequality of income distribution: Gini coefficient
(L15) At-persistent-risk-of-poverty rate by gender (50% median)
(L16) Long term unemployment share
(L17) Very long term unemployment rate
(L18) Persons with low educational attainment

• EU Labour Force Survey (EU-LFS) for (L5), (L6),
(L7), (L8), (L16), (L17) and (L18)

• Demographic sources for the indicator (L9)
With regard to the other indicators – (L1), (L2), (L3),

(L4), (L10), (L11), (L12), (L13), (L14) and (L15) – they are
derived from EU Statistics on Income and Living Conditions
(EU-SILC).

The EU-SILC “Laeken” indicators, henceforth referred
to as “the EU-SILC indicators”, comprise both income-
poverty and income-inequality measures. Together with the
other indicators, they cover four important dimensions of
social inclusion (financial poverty, employment, health and
education), thus highlighting the “multidimensionality” of
the phenomenon of social exclusion.

1.3 The EU-SILC indicators

In this section precise definitions of the EU-SILC
“Laeken” indicators are given. After we remove the indicator
“Self-defined health status by income level” (L10) which, in
the absence of agreed methodology, is not being produced,
there are nine of them. Those can be divided into so-called
“Poverty” and “Inequality” measures:
(1) “Poverty” measures

(1) The at-risk-of-poverty rate: (L1), (L11), (L12) and
(L13)

(2) The at-persistent-risk-of-poverty rate: (L3) and
(L15)

(3) The relative median at-risk-of-poverty gap: (L4)
(2) “Inequality” measures

(1) The S80/S20 quintile share ratio: (L2)
(2) The Gini coefficient: (L14)

1.3.1 The at-risk-of-poverty rate. This is the share of
persons with an income below the so-called “at-risk-of
poverty threshold”. The latter is defined as a given percent-
age of the median income:

• For (L1), (L12) and (L13): 60% of the median income
• For (L11): 40%, 50% and 70% of the median income
Either the income after social transfers (Indicators L1,

L11 and L12) or the income before social transfers (Indica-
tor L13 – at-risk-of-poverty rate before social transfers) is
used in calculations. Besides, the at-risk-of-poverty thres-
hold can be anchored at a given moment in time and then
the poverty rate is calculated for any subsequent time us-
ing a fixed threshold (Indicator L12 – at-risk-of-poverty rate
anchored at a moment in time). Another approach (Indica-
tors L1, L11 and L13) consists of re-calculating the at-risk-
of-poverty threshold for each year rather than using a fixed
value.

The at-risk-of-poverty rate can also be broken down ac-
cording to household or personal characteristics (e.g., age
group, gender, NUTS23 geographical region or most fre-
quent activity status). However, it must be kept in mind that
the at-risk-of-poverty threshold which is used in breakdowns
keeps being calculated over the total population, and not over
the sub-population which is considered.

1.3.2 The at-persistent-risk-of-poverty rate. The at-
persistent-risk-of-poverty rate is actually the core EU-SILC
longitudinal indicator.4 For a four-year panel, it is defined as
the share of persons who are at-risk-of-poverty at the fourth
wave of the panel and at two of the three preceding waves.
The at-risk-of-poverty threshold is set at 60% of the median
income.

1.3.3 The relative median at-risk-of-poverty gap. The
relative median at-risk-of-poverty gap is the difference be-
tween the median income of persons below the at-risk-of-

3 Nomenclature of Territorial Units for Statistics
4 As a longitudinal indicator, the at-persistent-risk-of-poverty

rate is not included in the present study, the paper rather focusing
on cross-sectional variance calculation
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Figure 1. The Lorenz curve

poverty threshold and the at-risk-of-poverty threshold, ex-
pressed as a percentage of the latter. The at-risk-of-poverty
threshold is set at 60% of the median income.

As in the at-risk-of-poverty rate, the median income of
persons below the at-risk-of-poverty threshold can be bro-
ken down according to household or personal characteris-
tics. However, the at-risk-of-poverty threshold keeps being
calculated over the total population, and not over the sub-
population which is considered.

1.3.4 The S80/S20 income quintile share ratio. The in-
come quintile share ratio (S80/S20) measures the degree of
income inequality in a population. It is defined as the ratio of
the total income of the persons in the top income quintile (i.e.
20% of the population with the highest income) over that of
the persons in the bottom income quintile (i.e. 20% of the
population with the lowest income).

1.3.5 The Gini coefficient. The Gini coefficient is an-
other popular measure of income inequality. It ranges from 0,
which reflects complete equality (i.e. all the persons receive
the same income), and 1, which indicates complete inequal-
ity (i.e. one person has all the income, all others have none).

Let U be a population of size N and let y = {yi, i ∈ U}
be an income distribution over the population U. Let ri be
the rank of i in the distribution y after we sort it in ascending
income. The Gini coefficient G can be written as:

1 + G =

2 ·
∑
i∈U

(ri − 1) · yi(∑
i∈U

1
)
·

(∑
i∈U

yi

) (1)

The coefficient can also be easily represented by the area
between the Lorenz curve and the line of complete equality.

The Lorenz curve maps the cumulative income share
against the distribution of the population (see Figure 1).

The Gini coefficient is calculated as the area A between
the Lorenz curve and the line of complete equality divided by
the sum of areas A and B. If each individual had the same in-
come (i.e. complete equality), the Lorenz curve and the line

of total equality would be merged and the Gini coefficient is
zero. On the other hand, if one individual received all the
income (i.e. complete inequality), the Lorenz curve would
pass through the points (0, 0); (100, 0) and (100, 100), and
the surfaces A and B would be similar, leading to a value of
one for the Gini coefficient.

1.4 Variance estimation for the EU-SILC indica-
tors

Actually, all the EU-SILC indicators experience sam-
pling errors in that they are derived from sample surveys
rather than censuses. Thus, the results obtained for any single
sample would be likely to vary slightly from the true values
for the population. With the intent to describe the sample-to-
sample variation of the main EU-SILC target indicators, Eu-
rostat has developed a streamlined approach to assess their
level of precision. It consists of systematically estimating
their standard errors as well as confidence intervals for all
the participating countries.

An important feature of the EU-SILC samples is that
they are not actually selected with equal probability, which
affects their precision and has to be taken into account in cal-
culations. Actually, most of the EU-SILC samples have been
stratified by geographical region (Nomenclature NUTS25),
which generally makes the accuracy better. Besides, many of
them have been clustered by, for instance, so-called “Census
Areas”. Although clustering reduces data-collection costs, it
also tends to decrease the precision of estimates because the
population elements in a cluster are likely to be more similar
(more homogeneous) to each other than elements of a sim-
ple random sample. Finally, the effects of variable sample
weights on accuracy need also to be assessed. The Design
Effect (Deff ), that is, the ratio of the variance of a statistic
with a complex sample design to the variance that would
be obtained with a simple random sample of same size, is
a valuable tool for measuring the combined effect of design
components like stratification, clustering or unequal weights.
Deff values for the EU-SILC indicators have been estimated
in addition to standard errors and confidence intervals.

Re-sampling methods like Bootstrap or Jackknife were
deliberately ruled out as their implementation happens to
be time-consuming, especially with EU-SILC-like sampling
designs involving several selection stages with unequal se-
lection probabilities at each stage as well as weight adjust-
ments (non-response correction, calibration to external data
sources. . . ). Besides, re-sampling methods are not easily re-
producible at Eurostat level where nearly thirty countries are
being dealt with.

Consequently, Eurostat opted for an “analytic” approach
to variance estimation. The idea was to apply ad-hoc vari-
ance estimation formulae intended to reflect the main fea-
tures of the sample design, including weight adjustments for
non-response and calibration to external data sources. How-
ever, since the EU-SILC indicators are nonlinear statistics,
they had to be “linearized” so to make variance calculations

5 See footnote 4
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tractable. The linearization technique for variance estimation
consists of approximating a nonlinear statistic with a linear
function of the observations. Then, an easily found variance
estimator of the linear approximation is used as an estimator
of the variance of the nonlinear statistic.

Finally, the SAS software Poulpe, developed by the
French National Statistics Office (INSEE), was used to work
out variance estimates for the “linearized” EU-SILC indi-
cators. The present paper does not intend to describe the
software and its statistical capabilities. For information, the
reader can refer to Ardilly and Osier (2007).

2 The Taylor linearization
method for variance estimation

2.1 Introduction

The Taylor linearization method (Tepping, 1968;
Woodruff, 1971; Wolter, 1985; Tillé, 2000) yields an ap-
proximate estimator of the variance of a nonlinear statistic
by using first-order Taylor Series expansions. The idea is to
approximate a non-linear statistic with a linear function of
estimated totals. Then, a variance estimator of the nonlinear
statistic is given by a variance estimator of its linear approx-
imation, which can be easily worked out.

Intuitively, the linearization approach rests on the as-
sumption that the sample-to-sample variation of a non-linear
statistic around its expected value is small enough to be con-
sidered linear. The latter assumption is particularly correct
with large samples; although there is no definite evidence
how large a sample should be for the linear approximation to
be valid. Since most of the EU-SILC samples comprise thou-
sands of individuals, there should be no problem in applying
the linearization method to the EU-SILC data. On the other
hand, one should be more careful when applying the method
to smaller samples (e.g., for small domain estimation).

2.2. Linearization of a smooth function of popula-
tion totals

Let θ denote a population parameter which can be ex-
pressed as a nonlinear function f of p population totals
Y1,Y2 . . . Yp:

θ = f
(
Y1,Y2 . . . Yp

)
(2)

The function f is supposed to possess continuous deriva-
tives up to order two. A natural way to estimate θ from a
sample s of the population consists of plugging estimators Ŷi
of the totals Yi into the expression (2):

θ̂ = f
(
Ŷ1, Ŷ2 . . . Ŷp

)
(3)

In most cases, the estimators Ŷi are either “Π-expanded”
Horvitz-Thompson estimators or generalized regression
(GREG) estimators:

Ŷi =
∑
k∈s

wk (s) · yik (4)

where the sample weight wk (s) is either the design weight
of k, that is, the reciprocal of the inclusion probability or the
so-called g-weight (Särndal, Swensson and Wretman, 1992).

Let N be the size of the target population, and let us assume
that N−α f (.) tends to a limit for some α ≥ 0 (α is generally
referred to as the “degree” of a statistic). For example, α = 1
for a population total and α = 0 for a ratio of totals.

The first step of the Taylor linearization method is to ap-
proximate the statistic θ̂ by a linear function of the totals
Ŷi by using a first-order Taylor series approximation of the
function f around the point (Y1,Y2 . . . Yp):

N−αθ̂
= N−α f (Ŷ1, Ŷ2 . . . Yp)
= N−α f (Y1,Y2, . . .Yp)
+N−α

∑p
i=1 [ ∂ f

∂yi
(Y1,Y2, . . .Yp)](Ŷi − Yi) + Rn

= N−αθ + N−α
∑p

i=1 ci(Ŷi − Yi) + Rn

(5)

where for all i from 1 to p:
• ci =

∂ f
∂yi

(Y1,Y2, . . .Yp) (6)
• The term Rn is a remainder term.

Under mild asymptotic assumptions (Tillé, 2000), the re-
mainder term Rn is of order 1/n in probability, where n is the
sample size, so Rn can be neglected as n grows.

Hence, the statistic N−αθ̂ can be written as follows:

N−αθ̂ = N−α
θ − p∑

i=1

ciYi

 +N−α
p∑

i=1

ciŶi + Op

(
1
n

)
(7)

Using the previous notations, we have:

∑p
i=1 ciŶi =

∑p
i=1 ci

[∑
k∈s wk (s) yik

]
=

∑
k∈s wk (s)

[∑p
i=1 ciyik

]
=∑

k∈s wk (s) zk = Ẑ
(8)

As a result, the statistic N−αθ̂ can be written as the sum of
a constant term C, a linear function of the estimated totals Ŷi
and a remainder of order 1/n in probability:

N−αθ̂ = C + N−αẐ + OP

(
1
n

)
(9)

The main result of the Taylor linearization method states
that the variance of the non-linear statistic θ̂ can be approx-
imated by the variance of the linear statistic Ẑ, in the sense
that:

Var
(
N−αθ̂

)
= Var

(
N−αẐ

)
+ O

(
1

n3/2

)
(10)

Following (8), we define the “linearized” variable of θ̂ at k
as:

zk =

p∑
i=1

ciyik =

p∑
i=1

[
∂ f
∂yi

(
Y1,Y2 . . . Yp

)]
yik (11)
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Notwithstanding all this, one final hurdle remains in that the
expression (11) of the “linearized” variable cannot always
be implemented for it contains population quantities, namely
the p totals Y1,Y2 . . . Yp, the values of which are unknown
when we observe only a sample of the population. In prac-
tice, estimators Ŷi of the totals Yi are just plugged into (11).
Thus, the estimated “linearized” variable of θ̂ at k is given
by:

ẑk =

p∑
i=1

ĉiyik =

p∑
i=1

[
∂ f
∂yi

(
Ŷ1, Ŷ2 . . . Ŷp

)]
yik (12)

Although the above expression contains estimated quanti-
ties, those are treated as if they were exact, that is, their ran-
domness is not taken into account in variance calculations.
Actually, the error introduced can be considered negligible
as long as the sample size is large enough (Deville, 1999).

2.3 Limitations of the Taylor linearization method

The Taylor linearization (TLM) method for variance esti-
mation handles all the nonlinear statistics which can be ex-
pressed as a regular function (i.e., continuously differentiable
up to order two) of estimated totals, for instance, ratios, cor-
relation or regression coefficients. However, the TLM can-
not deal with all nonlinear statistics and one has to accept
that there are statistics for which the method cannot be used.
Thus, in EU-SILC, we come across indicators which due to
their complexity cannot be handled through the TLM. For
instance, the Gini coefficient is based on rank statistics and
the at-risk-of-poverty threshold is based on income quantiles
(median). Regarding the at-risk-of-poverty rate, it is calcu-
lated on the basis of a poverty line which is estimated itself
from sample observations, thus making the indicator more
complex than a mere proportion. Therefore, variance es-
timation for the at-risk-of-poverty rate should take into ac-
count both the randomness which is brought by the at-risk-
of-poverty threshold and that of the estimated proportion of
“poor” persons given the poverty threshold. Besides, there
is some degree of covariance between the at-risk-of-poverty
threshold and the at-risk-of-poverty rate which should be ac-
counted for.

3 The generalized linearization
method for variance estimation

In order to deal with nonlinear statistics for which the Tay-
lor method cannot be used, Deville (1999) presented a gener-
alized linearization method based on the concept of influence
function. The concept of influence function was first intro-
duced in Robust Statistics (Hampel, Ronchetti, Rousseeuw
and Stahel, 1986). In addition to encompassing more non-
linear statistics than the Taylor method, the linearization
based on influence functions does not involve more calcula-
tions. In fact, as we’ll see in this section, the derivation rules
for influence functions are similar to the rules for computing
the derivative of a function in standard differential calculus.

3.1 Definitions and notations

Let U denote a population of size N and let M be the mea-
sure which allocates a unit mass to each of the units i in U:

M (i) = Mi = 1 (13)

We seek to estimate a population parameter θ which can be
expressed as a functional T of the measure M:

θ = T (M) (14)

As a matter of fact, many parameters can be expressed in
the form of (14), for instance:
• The population total Y of a variable y:

Y =
∑

i∈U yi =
∑

i∈U yi×M (i) =
∫

ydM = T (M) (15)
• The ratio R of two population totals X and Y:

R = Y
X =

∫
ydM∫
xdM

= T (M) (16)

• The cumulative distribution function: let {inci}i be
an income distribution over the population U. The
cumulative distribution function F at x is the share of
population elements whose income is lower than x:

F (x) =
∑

i∈U 1(inci≤x)
N =

∫
1(inc≤x)dM∫

dM
= T (M) (17)

where the function 1 (inc• ≤ x) is equal to 1 for all i
whose inci is lower than x, and 0 otherwise.

• The at-risk-of-poverty threshold, that is, 60% of the
median income:
ARPT = 0.6×MED (M) = T (M) (18)
where the median income MED(M) splits the in-
come distribution into halves: F [M,MED (M)] = 0.5,
where F(M, .) designates the cumulative income distri-
bution function (17).

A natural way to estimate (14) from a sample s of the popu-
lation consists of plugging an estimated measure M̂ of M into
(14):

θ̂ = T
(
M̂

)
(19)

The estimated measure M̂ allocates the sample weight
wi (s) for all units i in s, and 0 otherwise:

M̂ (i) = M̂i =

{
wi (s) f or i ∈ s
0 f or i < s (20)

For instance, if we consider the population total (15) of a
variable y, the so-called “plug-in” estimator (19) can be writ-
ten as:

Ŷ = T
(
M̂

)
=

∫
ydM̂ =

∑
i∈s

wi (s) yi (21)

Likewise, if we consider the ratio (16) of two population
totals X and Y , we got:

R̂ = T
(
M̂

)
=

∫
ydM̂∫
xdM̂

=

∑
i∈s

wi (s) yi∑
i∈s

wi (s) xi
(22)
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When it comes to the cumulative income distribution func-
tion (17), we obtain:

F̂ (x) = T
(
M̂

)
=

∫
1 (inc ≤ x) dM̂∫

dM̂
=

∑
i∈s

wi (s) 1 (inci ≤ x)∑
i∈s

wi (s)

(23)
Finally, regarding the at-risk-of-poverty threshold (18), we

got the following estimator:

AR̂PT = T
(
M̂

)
= 0.6 × MED

(
M̂

)
(24)

where the estimated median income MED
(
M̂

)
satisfies

F
[
M̂,MED

(
M̂

)]
= 0.5 , where:

F
(
M̂, x

)
=

∑
i∈s

wi (s) × 1 (inci ≤ x)∑
i∈s

wi (s)

3.2 Main results
The linearization technique relies on asymptotic assump-

tions which hold provided the sample size is large enough.
Deville (1999) described the asymptotic framework within
which the linearization method works. As in Isaki and Fuller
(1982), a sequence of populations (Uσ) of increasing size
(Nσ) is considered. Let (sσ) be a sequence of samples of
increasing size (nσ) which are selected from the populations
(Uσ) with a probability sampling design pσ (.) Let X be a
vector of population totals estimated by X̂. To simplify the
notations, the subscript σ is dropped. Then, the three fol-
lowing assumptions are postulated:

(i) N−1X has a limit as σ tends to infinity
(ii) The sequence N−1

(
X̂ − X

)
converges in probability to

0
(iii) The sequence n1/2N−1

(
X̂ − X

)
converges to a multidi-

mensional normal distribution
Within this framework, the main result of this generalized

linearization theory can be stated as follows: under the same
definitions and notations as in the previous section, the vari-
ance of the so-called “plug-in” estimator (19) can be approx-
imated with that of a linear statistic:

Var
[
T

(
M̂

)]
� Var

∑
i∈s

wi (s) zi

 (25)

where the “linearized” variable z at k is given by the follow-
ing functional derivative:

zk = Limt→0
T (M + tδk) − T (M)

t
= ITk (M) (26)

δk is the Dirac measure at k : δk (i) = 1 if and only if i = k.
The functional derivative (26) is called the influence func-

tion. The concept of influence function, which was first in-
troduced in the field of Robust Statistics (Hampel, Ronchetti,

Rousseeuw and Stahel, 1986), aims to grasp the effect of an
infinitesimal contamination in the observations.

The expression (26) cannot be calculated when we observe
only a sample of the population because it involves unknown
population quantities. In practice, the sample measure M̂
as defined in (20) is plugged into (26). Thus, the estimated
“linearized” variable at k is given by:

ẑk = ITk

(
M̂

)
= Limt→0

T
(
M̂ + tδk

)
− T

(
M̂

)
t

(27)

Despite the expression of the “linearized” variable contains
estimated quantities, those are treated as if they were exact,
that is, their randomness is not taken into account in variance
calculations. The error introduced by this approximation can
be considered negligible as long as the sample size is large
enough (Deville, 1999).

3.3 Derivation rules for influence functions
In many cases, complicated limit calculations by direct ap-

plication of (26) can be avoided using derivation rules for
influence functions. Some of the most basic rules are given
next. See Deville (1999) for more details. Actually, the
derivation rules for influence functions are similar to the rules
for computing the derivative of a function, which makes it
easy to handle.
• Constant:

Let T be a constant functional of the measure M, that
is T (M) = c. The influence function of T at k is equal
to 0:

I (c)k (M) = 0 (28)

• Linear combination of two functionals:
Let T and S be two functionals of M and let a and b
be two constants. The influence function of the linear
combination a · T + b · S is given by:

I (a · T + b · S )k (M) = a · ITk (M) + b · IS k (M)
(29)

• Product of two functionals:
Let T and S be two functionals of M. The influence
function of the product of T and S is given by:

I (T × S )k (M) = T (M) × IS k (M) + S (M) × ITk (M)
(30)

• Ratio of two functionals:
Let T and S be two functionals of M. The influence
function of the ratio T/S is given by:

I
(T
S

)
k

(M) =
S (M) × ITk (M) − T (M) × IS k (M)

S (M)2

(31)
• Composition of two functionals:

Let T and S be two functionals of M. The influence
function of the composition of T and S , that is, the
functional M → T [S (M)] is given by:

I [T (S )]k (M) = ITk [S (M)] × IS k (M) (32)
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• Functional with a parameter:
Consider the functional M → T [M, S (M)], where
S (M) represents a scalar parameter of T that is cal-
culated from the observations. For instance, the at-
risk-of-poverty rate ARPR can be written in this way,
for we have: ARPR (M) = F [M, ARPT (M)], where
ARPT (M) is the at-risk-of-poverty threshold (60% of
the median income) and F(M, .) designates the cumu-
lative income distribution function (17). The influence
function can be expressed as a sum of two terms: the
first one is the influence function of T with respect
to M holding the parameter S (M) constant, while the
other one accounts for the influence function of S (M):

I [T (M, S (M))]k

= I
[
T (M, S (M)| S (M) f ixed

]
k +

dT (M, x)
dx

|x=S (M) × IS k (M)

(33)

3.4 Examples
3.4.1 Example. Influence function of a population total

Consider the population total Y as defined in (15):

Y =
∑
i∈U

yi =

∫
y · dM = T (M)

The influence function of T at k is given by:

ITk (M)

= Limt→O
T (M + tδk) − T (M)

t

= Limt→O

∫
y · d (M + tδk) −

∫
y · dM

t

= Limt→O

∫
y · d (tδk)

t
= yk

(34)

3.4.2 Example. Influence function of a ratio of two
population totals

Now, let R be the ratio of two population totals X and Y:

R =
Y
X

=

∫
y · dM∫
x · dM

=
U (M)
V (M)

= T (M)

By using the derivation rule (31) for a ratio of two function-
als, we obtain:

IRk (M) = I
(U

V

)
k

(M) =
V (M) × IUk (M) − U (M) × IVk (M)

V (M)2

According to (34), the influence functions of U and V are
given by: {

IUk (M) = yk
IVk (M) = xk

Consequently, the influence function of the ratio R is:

IRk (M) =
X × yk − Y × xk

X2 =
1
X

(yk − R · xk) (35)

The values of the total X and the ratio R are unknown when
a sample of the population is observed, so they are replaced
by estimated values X̂ and R̂. Finally, the estimated influence
function is:

IR̂k (M) =
1
X̂

(
yk − R̂xk

)
(36)

The cumulative distribution function at x as defined in (17)
is a particular case of ratio, therefore, its influence function
is:

IF (x)k (M) =
1
N

[1 (inck ≤ x) − F (x)] (37)

4 Application of the generalized
linearization method to the

EU-SILC indicators

In addition to being easy to implement, another major ad-
vantage of the linearization based on influence functions is
that it can deal with statistics for which the Taylor lineariza-
tion cannot be used. In particular, the EU-SILC indica-
tors fall into this category (see section 2.3). Actually, the
minimum requirement for a statistical functional is to be
Hadamard differentiable (Van der Vaart, 1998). The con-
cept of Hadamard differentiability is in fact less stringent
than the more restrictive Fréchet derivatives, as used in the
Taylor linearization method: though they are not Fréchet
differentiable, many well-known statistical functionals (e.g.,
quantiles) are Hadamard differentiable (Reeds, 1976; Van der
Vaart, 1998).

4.1 Linearization of the at-risk-of-poverty rate

This section presents the expression of the influence func-
tion of the at-risk-of-poverty rate, which is actually the core
EU-SILC indicator. The step-by-step calculations are pre-
sented in Appendix 1, as well as the influence functions of
the other EU-SILC indicators6.

With the same notations as in the section 3.1, the influence
function at k of the at-risk-of-poverty rate (ARPR) is given
by:

IARPRk (M) =
1
N

[1 (inck ≤ ARPT (M)) − ARPR (M)]−

0.6
N
×

F̃′ [ARPT (M)]
F̃′ [MED (M)]

× [1 (inck ≤ MED (M)) − 0.5]

(38)

6 With the exception of the influence function of the at-
persistent-risk-of-poverty rate (see footnote 4)
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where F̃′ [ARPT (M)] and F̃′ [MED (M)] are the values of
the derivative of the cumulative income distribution func-
tion F̃ at the points ARPT (M) (at-risk-of-poverty thresh-
old) and MED (M) (median income), respectively. These
two quantities can be interpreted as the “income densities”
at ARPT (M) and MED (M).

The influence function (38) can be regarded as a sum
of two terms: the first term is the influence function that
would be obtained assuming the at-risk-of-poverty threshold
ARPT (M) is constant, while the second term is a “correc-
tion” which takes into account the fact that the at-risk-of-
poverty threshold is estimated from sample observations.

An important issue is that the derivative of an empirical cu-
mulative distribution function is always 0 or not defined. Let
approximate F̃ by the following convolution product:

F̃K (x) =

∫
F̃ (t) · K (x, t) · dt (39)

where the two variable function K (., .) is a Gaussian kernel:

K (x, t) =
1

h
√

2π
exp

[
−

(x − t)2

2h2

]
(40)

It can be easily seen that the function F̃K is differentiable,
and we have for all x:

F̃′K (x) =
1

h
√

2π
·

1
N
·
∑
k∈U

exp
[
−

(x − xk)2

2h2

]
(41)

The derivative F̃′K exists and is strictly non-negative. The
smoothing parameter h can be estimated using the “plug-in”
estimator (Silverman, 1986):

ĥ =
σ̂

N−1/5 (42)

where σ̂ is the estimated standard deviation of the income
distribution.

It is worth mentioning however that the estimated income
density function happens to be quite sensitive to the choice
of the bandwith parameter h (Verma and Betti, 2005).

Finally, the influence function of the at-risk-of-poverty rate
at k is:

IARPRk (M) =
1
N

[1 (inck ≤ ARPT (M)) − ARPR (M)]

−
0.6
N
×

F̃′K [ARPT (M)]

F̃′K [MED (M)]
× [1 (inck ≤ MED (M)) − 0.5]

(43)

4.2 Estimation over subpopulations
The EU-SILC indicators happen to be broken down by

household or individual characteristics. For instance, one
may want to know the at-risk-of-poverty rate not only for
the total population, but also for the following age groups:
15-24, 25-34, 35-44, 45-54, 55-64 and 65+ year-olds. Other

domains of study are also considered, for example, the sub-
populations defined by NUTS2 region, household tenure sta-
tus (owner/tenant) or dwelling type (house/apartment).

Domain estimation is actually a long-established theory
(Särndal, Swensson and Wretman, 1992). By introducing
the domain membership indicator variable, which is equal
to 1 for all the units in the domain and 0 otherwise, no extra
difficulty should be expected with calculations. For example,
let consider the at-risk-of-poverty rate ARPRC for a given
subpopulation C of size NC . Let 1C be the variable which is
equal to 1 for all the units in C and 0 otherwise:

ARPRC = G [M, ARPT (M)] = T (M) (44)

where:
• The at-risk-of-poverty threshold ARPT (M) is defined

as 60% of the median income MED(M) of the total
population

• G is the cumulative income distribution function over
the subpopulation C:

G (M, x) =
1

NC

∑
i∈C

1 (inci ≤ x) =

∫
1C · 1 (inc ≤ x) dM∫

1C · dM
(45)

The influence function of (44) can be written as:

IARPRC,k (M)
=

1C (k)
NC
× [1 (inck ≤ ARPT (M)) − ARPRC (M)]

− 0.6
N ×

G̃′K [ARPT (M)]
G̃′K [MED(M)] × [1 (inck ≤ MED (M)) − 0.5]

(46)

The proof of (46) is actually the same as that of the at-risk-
of-poverty rate for the total population (see Appendix 1, sec-
tion 2.2).

Another key indicator is the relative median at-risk-of-
poverty gap, for which breakdowns by age group and gen-
der are generally wanted. Let consider the relative median
poverty gap RMPGC for a subpopulation C, that is, the
relative difference between the at-risk-of-poverty threshold
ARPT , that is, 60% of the median income of the total popu-
lation, and the median income MEDp

C over the persons in C
whose income is lower than ARPT :

RMPGC =
ARPT − MEDp

C

ARPT
= 1 −

MEDp
C

ARPT
(47)

The median income MEDp
C satisfies the following identity:

G
(
M,MEDp

C (M)
)

=
1
2

G [M, ARPT (M)] (48)

where G is the cumulative income distribution function (45)
over the subpopulation C. For the derivation of the influence
function of (47), see Appendix 1.

4.3 Numerical results (EU-SILC 2004)
The next Tables contain estimated standard errors of the

main EU-SILC indicators for five countries: Austria (AT),
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Denmark (DK), Estonia (EE), Finland (FI) and Italy (IT).
In addition, the following information is provided for each
indicator:
• The estimated population value
• The achieved sample size
• The estimated lower and upper bounds of a 95%

confidence interval: the linearized estimator θ̂ of θ
is assumed to follow a normal distribution, thereby
an estimated 95% confidence interval for θ is given by:

CÎ (θ) =

[
θ̂ − 1.96 ×

√
Vâr

(
θ̂
)
, θ̂ + 1.96 ×

√
Vâr

(
θ̂
)]

(49)
• The estimated design effect (De f f ): this is the ratio

of the variance of the statistic with the actual sample
design to the variance of that statistic with a simple
random sample (SRS) of same size:

Dê f f =
Vâr

(
θ̂
)

VârS RS

(
θ̂S RS

) (50)

The design effect measures the impact of design on
sampling variability: it indicates how much precision
have been lost by using a complex survey rather than a
simple random sample.

The five countries which have been chosen (Austria, Den-
mark, Estonia, Finland and Italy) provide a “representative”
sample of all the sampling designs implemented in the EU-
SILC countries:
• Denmark and Finland collect income information from

registers while Austria, Estonia and Italy collect this
information using face-to-face interview.

• There are also differences between the three latter
countries regarding the way they selected their sam-
ples: Austria performed a direct-element selection
of addresses, whereas Italy selected a sample of ad-
dresses with a multistage sampling scheme. As to Es-
tonia, a sample of households was selected using an
“indirect” approach: they began by selecting a sample
of persons aged 14 and over. Then, all the households
the sampled persons belong to were eligible for inclu-
sion in the sample.

• The sample sizes vary greatly from one country to an-
other: Austria, Denmark and Estonia achieved sample
sizes of 11550, 17290 and 11558 individuals, respec-
tively, whereas Finland and Italy attained relatively
larger samples (29070 and 61429 individuals, respec-
tively).

• There are also important differences between the coun-
tries as regards the nature of the auxiliary informa-
tion that was used to adjust the sample weights: Aus-
tria, Estonia and Italy adjusted their weights to demo-
graphic counts from census data (e.g., population to-
tals broken down by age group and gender), whereas
Denmark and Finland used updated register informa-
tion. That way, the gain in accuracy should be impor-
tant (see section 5.2)

The Tables 2 to 6 contain for these five sample countries
the estimated variance figures which were obtained from the
generalized linearization approach. For more numerical re-
sults relating to the EU-SILC 2004 operation, see Osier and
Museux (2006).

5 Discussion

An interesting approach to validate the variance figures as
presented in the Tables 2 to 6 is to examine the effect of de-
sign components which are known to play a key role in ex-
plaining the precision in estimates. This section will focus
on the two following factors:
• The achieved sample size
• The weight adjustments to external data sources

5.1 Effect of the achieved sample size

Obviously, the level of sampling error depends on the
achieved sample size: the higher the achieved sample size,
the lower the level of sampling error. The Figure 2 presents
for each of the five EU-SILC sample countries (Austria, Es-
tonia, Denmark, Finland and Italy) the coefficients of varia-
tion (CV) of the following indicators:
• The at-risk-of-poverty rate (ARPR)
• The income quintile share ratio (S80/S20)
• The relative median poverty gap (RMPG)
• The Gini coefficient (Gini)

With the intent to show correlation between the coefficient
of variation and the achieved sample size, the countries have
been sorted in ascending sample size.

Looking at the Figure 2, the relative precision of estimates
tends to be correlated with the sample size. If we consider
the at-risk-of-poverty rate, the relative precision ranges from
4.6% in Austria and 3.2% in Estonia, which used samples
of 11550 and 11558 individuals, respectively, to 1.6% in
Italy, which used up to 6 times more individuals (61429).
The values we obtained for Denmark (CV=0.5%) and Fin-
land (CV=3.4%), although they both break the decreasing
trend between the countries, can be explained by other fac-
tors than the sample size. The result for Denmark (0.5%)
is caused by using auxiliary data on poverty to adjust the
sample weights. When sample weights are adjusted to aux-
iliary variables which are correlated with the survey target
variables, one can expect the accuracy to be better (Deville
and Särndal, 1992). The Finnish case stems from the sam-
ple design itself in that it leads to over-representing upper
income classes in the EU-SILC sample. This deteriorates the
accuracy of the at-risk-of-poverty rate because upper income
classes carry relatively less “information” about poverty than
lower income classes. On the other hand, this feature of the
Finnish EU-SILC design should improve the relative pre-
cision of the S80/S20 and Gini indicators (1.0% and 0.8%,
respectively); which both measure income inequality rather
than income poverty.

If we consider now the three other indicators, we can draw
similar conclusions as in the previous case. As regards the
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Table 2: Estimated standard errors SILC 2004 – Austria

Confidence interval 95%

Achieved Standard Standard
Indicator Value sample size error Lower Upper error (%) Deff

At-risk-of-poverty rate – total 12.8 11550 0.59 11.6 14.0 4.6 1.0
At-risk-of-poverty rate – male 11.3 5575 0.63 10.1 12.5 5.6 1.0
At-risk-of-poverty rate – female 14.2 5975 0.66 12.9 15.5 4.6 1.0
At-risk-of-poverty rate - 16-24 years 12.8 1279 1.24 10.4 15.2 9.7 1.0
At-risk-of-poverty rate - 25-49 years 11.2 4185 0.66 9.9 12.5 5.9 1.0
At-risk-of-poverty rate - 50-64 years 10.3 2188 0.88 8.6 12.0 8.5 1.0
At-risk-of-poverty rate - 65+ years 17.1 1611 1.16 14.8 19.4 6.8 1.0
At-risk-of-poverty rate - 16+ years 12.3 9263 0.52 11.3 13.3 4.2 1.0
At-risk-of-poverty rate - 16-64 years 11.2 7652 0.55 10.1 12.3 5.0 1.0
At-risk-of-poverty rate - 0-64 years 12.0 9913 0.64 10.7 13.3 5.3 1.0

At-risk-of-poverty threshold 10181.7 11550 86.39 10012.4 10351.0 0.8 1.0

S80/S20 income quintile share ratio 3.8 11550 0.08 3.6 3.9 2.2 1.0

Relative median poverty gap – total 20.0 1438 1.37 17.3 22.7 6.9 1.0
Relative median poverty gap – male 18.6 622 1.61 15.4 21.8 8.7 1.0
Relative median poverty gap – female 20.4 816 1.38 17.7 23.1 6.8 1.0
Relative median poverty gap - 16-64 years 20.4 832 1.62 17.2 23.6 7.9 1.0
Relative median poverty gap - 65+ years 20.6 268 1.79 17.1 24.1 8.7 1.0
Relative median poverty gap - 16+ years 20.6 1100 1.32 18.0 23.2 6.4 1.0

Gini coefficient 25.8 11550 0.44 24.9 26.6 1.7 1.0

Table 3: Estimated standard errors SILC 2004 – Denmark

Confidence interval 95%

Achieved Standard Standard
Indicator Value sample size error Lower Upper error (%) Deff

At-risk-of-poverty rate – total 11.0 17290 0.05 10.9 11.1 0.5 0.84
At-risk-of-poverty rate – male 10.7 8684 0.04 10.6 10.8 0.4 0.85
At-risk-of-poverty rate – female 11.2 8606 0.06 11.1 11.3 0.6 0.83
At-risk-of-poverty rate - 16-24 years 27.0 1872 0.07 26.9 27.1 0.3 0.84
At-risk-of-poverty rate - 25-49 years 8.8 6252 0.03 8.8 8.8 0.3 0.83
At-risk-of-poverty rate - 50-64 years 4.2 3612 0.09 4.0 4.4 2.1 0.84
At-risk-of-poverty rate - 65+ years 17.0 1848 0.19 16.6 17.4 1.1 0.81
At-risk-of-poverty rate - 16+ years 11.4 13584 0.06 11.3 11.5 0.5 0.83
At-risk-of-poverty rate - 16-64 years 10.2 11736 0.04 10.1 10.3 0.4 0.83
At-risk-of-poverty rate - 0-64 years 9.9 15442 0.04 9.8 10.0 0.4 0.85

At-risk-of-poverty threshold 12736.0 17290 13.07 12710.4 12761.6 0.1 0.85

S80/S20 income quintile share ratio 3.4 17290 0.06 3.3 3.5 1.8 0.94

Relative median poverty gap – total 19.0 982 0.77 17.5 20.5 4.1 0.84

Relative median poverty gap – male 21.8 461 0.99 19.9 23.7 4.5 0.85
Relative median poverty gap – female 18.1 521 0.84 16.4 19.8 4.7 0.83
Relative median poverty gap - 16-64 years 24.4 557 0.86 22.7 26.1 3.5 0.83
Relative median poverty gap - 65+ years 7.8 236 0.57 6.7 8.9 7.3 0.79
Relative median poverty gap - 16+ years 19.0 793 0.73 17.6 20.4 3.8 0.81

Gini coefficient 23.9 17290 0.41 23.1 24.7 1.7 0.96
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Table 4: Estimated standard errors SILC 2004 – Estonia

Confidence interval 95%

Achieved Standard Standard
Indicator Value sample size error Lower Upper error (%) Deff

At-risk-of-poverty rate – total 20.2 11558 0.64 18.9 21.5 3.2 1.10
At-risk-of-poverty rate – male 19.5 5446 0.70 18.1 20.9 3.6 1.06
At-risk-of-poverty rate – female 20.8 6112 0.81 19.2 22.4 3.9 1.12
At-risk-of-poverty rate - 16-24 years 21.1 1949 1.19 18.8 23.4 5.6 1.10
At-risk-of-poverty rate - 25-49 years 18.8 3772 0.72 17.4 20.2 3.9 1.10
At-risk-of-poverty rate - 50-64 years 19.0 2054 1.29 16.5 21.5 6.8 1.08
At-risk-of-poverty rate - 65+ years 20.5 1565 1.84 16.9 24.1 9.0 1.13
At-risk-of-poverty rate - 16+ years 19.6 9340 0.65 18.3 20.9 3.3 1.12
At-risk-of-poverty rate - 16-64 years 19.3 7775 0.62 18.1 20.5 3.2 1.10
At-risk-of-poverty rate - 0-64 years 20.1 9951 0.65 18.8 21.4 3.2 1.06

At-risk-of-poverty threshold 1539.0 11558 18.96 1501.8 1576.2 1.2 1.08

S80/S20 income quintile share ratio 7.1 11558 0.23 6.6 7.6 3.3 1.15

Relative median poverty gap – total 26.3 2373 1.42 23.5 29.1 5.4 1.07
Relative median poverty gap – male 29.0 1096 1.79 25.5 32.5 6.2 1.06
Relative median poverty gap – female 22.5 1277 1.40 19.7 25.3 6.2 1.09
Relative median poverty gap - 16-64 years 30.2 1591 1.65 27.0 33.4 5.5 1.12
Relative median poverty gap - 65+ years 9.3 244 1.14 7.1 11.5 12.3 1.09
Relative median poverty gap - 16+ years 24.6 1835 1.30 22.1 27.1 5.3 1.10

Gini coefficient 37.4 11558 0.58 36.3 38.5 1.5 1.26

Table 5: Estimated standard errors SILC 2004 – Finland

Confidence interval 95%

Achieved Standard Standard
Indicator Value sample size error Lower Upper error (%) Deff

At-risk-of-poverty rate – total 11.0 29070 0.38 10.3 11.7 3.4 1.40
At-risk-of-poverty rate – male 10.5 14736 0.41 9.7 11.3 3.9 1.41
At-risk-of-poverty rate – female 11.4 14334 0.46 10.5 12.3 4.0 1.42
At-risk-of-poverty rate - 16-24 years 19.5 3524 1.08 17.4 21.6 5.5 1.49
At-risk-of-poverty rate - 25-49 years 8.3 9489 0.41 7.5 9.1 4.9 1.37
At-risk-of-poverty rate - 50-64 years 7.8 6769 0.48 6.9 8.7 6.2 1.23
At-risk-of-poverty rate - 65+ years 16.6 2972 1.02 14.6 18.6 6.2 1.57
At-risk-of-poverty rate - 16+ years 11.3 22754 0.36 10.6 12.0 3.2 1.44
At-risk-of-poverty rate - 16-64 years 10.1 19782 0.34 9.4 10.8 3.4 1.37
At-risk-of-poverty rate - 0-64 years 9.9 26098 0.38 9.2 10.6 3.8 1.36

At-risk-of-poverty threshold 9984.0 29070 43.00 9899.7 10068.3 0.4 1.14

S80/S20 income quintile share ratio 3.5 29070 0.03 3.4 3.6 1.0 0.82

Relative median poverty gap – total 14.1 2746 0.68 12.8 15.4 4.8 1.42
Relative median poverty gap – male 14.9 1352 0.88 13.2 16.6 5.9 1.42
Relative median poverty gap - female 13.7 1394 0.76 12.2 15.2 5.6 1.44
Relative median poverty gap - 16-64 years 16.3 1793 0.84 14.7 17.9 5.2 1.38
Relative median poverty gap - 65+ years 9.4 323 0.91 7.6 11.2 9.7 1.77
Relative median poverty gap - 16+ years 14.1 2116 0.65 12.8 15.4 4.6 1.49

Gini coefficient 25.4 29070 0.20 25.0 25.8 0.8 0.78
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Table 6: Estimated standard errors SILC 2004 – Italy

Confidence interval 95%

Achieved Standard Standard
Indicator Value sample size error Lower Upper error (%) Deff

At-risk-of-poverty rate – total 19.0 61429 0.30 18.4 19.6 1.6 1.50
At-risk-of-poverty rate – male 17.7 29757 0.34 17.0 18.4 1.9 1.67
At-risk-of-poverty rate – female 20.3 31672 0.32 19.7 20.9 1.6 1.31
At-risk-of-poverty rate - 16-24 years 22.9 5886 0.75 21.4 24.4 3.3 1.42
At-risk-of-poverty rate - 25-49 years 16.8 22679 0.35 16.1 17.5 2.1 1.62
At-risk-of-poverty rate - 50-64 years 14.7 11926 0.42 13.9 15.5 2.9 1.17
At-risk-of-poverty rate - 65+ years 21.1 11420 0.59 19.9 22.3 2.8 1.56
At-risk-of-poverty rate - 16+ years 18.0 51911 0.29 17.4 18.6 1.6 1.47
At-risk-of-poverty rate - 16-64 years 17.1 40491 0.32 16.5 17.7 1.9 1.53
At-risk-of-poverty rate - 0-64 years 18.5 49602 0.34 17.8 19.2 1.8 1.59

At-risk-of-poverty threshold 8129.0 61429 43.67 8043.4 8214.6 0.5 1.52

S80/S20 income quintile share ratio 5.7 61429 0.09 5.5 5.9 1.6 1.51

Relative median poverty gap – total 24.6 10125 0.68 23.3 25.9 2.8 1.42
Relative median poverty gap – male 24.9 4509 0.78 23.4 26.4 3.1 1.33
Relative median poverty gap – female 24.3 5616 0.71 22.9 25.7 2.9 1.51
Relative median poverty gap - 16-64 years 28.5 5910 0.81 26.9 30.1 2.8 1.42
Relative median poverty gap - 65+ years 15.7 2276 0.52 14.7 16.7 3.3 1.49
Relative median poverty gap - 16+ years 23.7 8186 0.63 22.5 24.9 2.7 1.38

Gini coefficient 33.1 61429 0.31 32.5 33.7 0.9 1.43

Figure 2. Estimated CVs and achieved sample sizes – EU-SILC 2004

relative median poverty gap (RMPG), the line is nearly paral-
lel to the one we got for the at-risk-of-poverty rate. The
breaks we observed for Denmark and Finland can be ex-
plained by the same reasons as previously. Concerning the
S80/S20 and Gini indicators, we got nearly a decreasing
trend among the countries, with only a break for the Gini
coefficient in Estonia.

Finally, it should be noted that the achieved sample size is
likely to explain most of the loss of efficiency for estimates
over subpopulations, for instance, the at-risk-of-poverty rate
broken down by age group and/or gender (see Tables 2 to 6).

5.2 Effect of weight adjustments to external data
sources

Actually, most of the EU-SILC countries calibrated their
sample weights to external data sources, thereby hoping to
make their data more accurate. The so-called calibration
technique (Deville and Särndal, 1992; Deville, Särndal and
Sautory, 1993) consists of adjusting the sample weights in
order to match population totals coming from external data
sources. Thus, one can expect better accuracy in estimates,
insofar as the survey target variables are correlated with the
auxiliary variables the weights are calibrated to (Deville and
Särndal, 1992). Actually, an interesting ability of the vari-
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ance estimation software Poulpe is that it can estimate for
a given statistic the standard error that would be achieved
assuming the weights were not calibrated (Osier, 2003). In
particular, this makes possible measuring the effect of cali-
bration on the accuracy by computing standard errors before
and after adjusting the weights. The Figure 3 presents the co-
efficients of variation (CV) of the following indicators before
and after weight calibration:
• The at-risk-of-poverty threshold
• The at-risk-of-poverty rate
• The relative median poverty gap
• The income quintile share ratio
• The Gini coefficient

The impact of calibration in Austria, Estonia and Italy ap-
pears to be rather limited in that the coefficients of variation
drop by around 0.1 percentage points. In fact, these countries
calibrated their samples to demographic counts (e.g., popu-
lation totals by age group and gender) coming from the last
census data available or from another existing survey. Be-
cause demographic variables are not generally strongly cor-
related with the EU-SILC variables on income and poverty,
one cannot expect the accuracy to be significantly better by
using those data as calibration information.

On the other hand, Finland calibrated their sample to pop-
ulation totals for certain income components, for example,
work or pension income. This information is taken out from
registers and, consequently, should be updated. As the Fig-
ure 3 shows, while calibration nearly halved the relative
precision of the so-called “inequality” measures (S80/S20
and Gini – see §1.3), it had a rather limited impact on the
“poverty” measures (at-risk-of-poverty threshold, at-risk-of-
poverty rate and relative median poverty gap).

Finally, the situation in Denmark is somewhat at the op-
posite of the Finnish situation in that updated register in-
formation about poverty was used as calibration information
(see section 5.1) As expected, whereas calibration made the
poverty measures almost error-free, it had a relatively smaller
impact on the accuracy of the inequality measures (S80/S20
and Gini).

6 Conclusion

The linearization method based on influence functions cou-
pled with an efficient software package for variance estima-
tion, like Poulpe, has proved to be an easy and powerful solu-
tion to estimate the precision of complex non-linear statistics
like the “Laeken” indicators:
• EASY in the sense that the derivation rules for influ-

ence functions are similar to the rules for computing
the derivative of a function in standard differential cal-
culus. SAS macros to calculate influence functions can
be easily written (see Appendix 2) and used as “black-
box” programs by anyone who does not want to see
their inner settings.

• POWERFUL in the sense that the approach encom-
passes more non-linear statistics than the linearization
based on Taylor series.

(a) CV (%) of the at-risk-of-poverty threshold before and after cal-
ibration, EU-SILC 2004

(b) CV (%) of the at-risk-of-poverty rate before and after calibra-
tion, EU-SILC 2004

(c) CV (%) of the relative median poverty gap before and after cal-
ibration, EU-SILC 2004

(d) CV (%) of the income quintile share ratio before and after cali-
bration, EU-SILC 2004

(e) CV (%) of the Gini coefficient before and after calibration, EU-
SILC 2004

Figure 3. CV before and after calibration
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However, as indicated earlier, all linearization approaches
rest on the asymptotic assumption that the sample size is
large enough for the linear approximation to be valid. Al-
though the assumption is likely to be correct when dealing
with samples of thousands of units like, for instance, the sam-
ples which were selected for EU-SILC, one should be more
careful when applying the method to smaller samples.
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Tillé, Y. (2000). Echantillonnage et estimation en populations
finies. Paris: Dunod.

Van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge
Series in Statistical and Probabilistic Mathematics.

Verma, V., & Betti, G. (2005). Sampling errors and design effects
for poverty measures and other complex statistics. Working Pa-
per, 53. Siena: Dipartimento di Metodi Quantitativi, Università
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Appendix 1: Linearization formulae

This Appendix contains the expressions of the influence functions of the main EU-SILC indicators:
• The at-risk-of-poverty threshold
• The at-risk-of-poverty rate
• The relative median poverty gap
• The income quintile share ratio (S80/S20)
• The Gini coefficient

The notations which are used here are similar to those introduced in the section 3.1 of the main document.

1. Linearization of the at-risk-of-poverty threshold (ARPT)

1.1 Expression of the indicator as a functional of M

The at-risk-of-poverty threshold is defined as 60% of the median income:

ARPT = 0.6 × MED (M) = T (M)

where:

• MED (M) is the median income, that is, the value which splits the income distribution in halves: F [M,MED (M)] = 0.5

• F designates the cumulative income distribution function: F (M, x) = 1
N

∑
i∈U

1 (inci ≤ x)

1.2 Derivation of the influence function

Since, by definition, the median income satisfies the following identity: F [M,MED (M)] = 0.5, the corresponding influence
function is equal to 0 for all k:

IFk [M,MED (M)] = 0

On the other hand, the above influence function can be expanded using the derivation rule (33)

IFk
[
M,MED (M) |MED (M) f ixed

]
+

[
dF (M, x)

dx
|x=MED(M)

]
× IMEDk (M) = 0

The influence function of F with respect to M holding MED(M) constant is given in (37):

IFk
[
M,MED (M) |MED (M) f ixed

]
=

1
N

[1 (inck ≤ MED (M)) − 0.5]

Besides, let F̃ denote the function x 7→ F (M, x). Assuming the derivative F̃′ of F̃ exists and is strictly non-negative for all x,
we have:

1
N

[1 (inck ≤ MED (M)) − 0.5] + F̃′ [MED (M)] × IMEDk (M) = 0

Hence, the influence function of the median income is given by:

IMEDk (M) = −
1

N · F̃′ [MED (M)]
· [1 (inck ≤ MED (M)) − 0.5]

and the influence function of the at-risk-of-poverty threshold at k is:

IARPTk (M) = 0.6 × IMEDk (M) = −
0.6

F̃′ [MED (M)]
×

1
N
× [1 (inck ≤ MED (M)) − 0.5]

Unfortunately, the derivative of a cumulative distribution function is always 0 or not defined. In order to circumvent this
problem, let approximate F̃ by the following convolution product:

F̃K (x) =

∫
F̃ (t) · K (x, t) · dt
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where the two variable function K(.,.) is a Gaussian kernel: K (x, t) = 1
h
√

2π
exp

[
−

(x−t)2

2h2

]
It can be easily seen that the function F̃K is differentiable, and we have for all x:

F̃′K (x) =
1

h
√

2π
·

1
N
·
∑
k∈U

exp
[
−

(x − xk)2

2h2

]
The derivative F̃′K exists and is strictly non-negative. The smoothing parameter h can be estimated by: ĥ = σ̂

N−1/5 , where σ̂ is
the estimated standard deviation of the income distribution.
Finally, the influence function of the at-risk-of-poverty threshold at k is given by:

IARPTk (M) = −
0.6

F̃′K [MED (M)]
×

1
N
× [1 (inck ≤ MED (M)) − 0.5]

2. Linearization of the at-risk-of-poverty rate (ARPR)

2.1 Expression of the indicator as a functional of M

The at-risk-of-poverty rate is the share of persons with an income below the at-risk-of-poverty threshold ARPT (M):

ARPR = F [M, ARPT (M)] = T (M)

where:

• The at-risk-of-poverty threshold ARPT (M) is defined as 60% of the median income MED(M)

• F is the cumulative income distribution function: F (M, x) = 1
N

∑
i∈U

1 (inci ≤ x)

2.2 Derivation of the influence function

By using the derivation rule (33), we obtain:

IARPRk (M) = IFk
[
M, ARPT (M) |ARPT (M) f ixed

]
+

[
dF (M, x)

dx

∣∣∣x=ARPT (M)

]
× IARPTk (M)

The expression of the influence function of F with respect to M holding ARPT (M) constant is given in (37):

IFk
[
M, ARPT (M) |ARPT (M) f ixed

]
=

1
N

[1 (inck ≤ ARPT (M)) − ARPR (M)]

As to the influence function IARPTk (M) of the at-risk-of-poverty threshold, an expanded formula has just been worked out in
the previous section:

IARPTk (M) = −
0.6

F̃′K [MED (M)]
×

1
N
× [1 (inck ≤ MED (M)) − 0.5]

Besides, let F̃ denote the function x 7→ F (M, x). Assuming the derivative F̃′ of F̃ exists and is strictly non-negative for all x,
we have:

IARPRk (M)

= 1
N [1 (inck ≤ ARPT (M)) − ARPR (M)] + F̃′ [ARPT (M)] ×

[
− 0.6

F̃′[MED(M)] ×
1
N × [1 (inck ≤ MED (M)) − 0.5]

]
= 1

N [1 (inck ≤ ARPT (M)) − ARPR (M)] − 0.6
N ×

F̃′[ARPT (M)]
F̃′[MED(M)] × [1 (inck ≤ MED (M)) − 0.5]

As with the previous case, the derivative of a cumulative distribution function is always 0 or not defined. In order to circumvent
this problem, let approximate F̃ by the following convolution product:



VARIANCE ESTIMATION FOR COMPLEX INDICATORS OF POVERTY AND INEQUALITY USING LINEARIZATION TECHNIQUES 183

F̃K (x) =

∫
F̃ (t) · K (x, t) · dt

where the function K(., .) is a Gaussian kernel: K (x, t) = 1
h
√

2π
exp

[
−

(x−t)2

2h2

]
It can be easily seen that the function F̃K is differentiable, and we have for all x:

F̃′K (x) =
1

h
√

2π
·

1
N
·
∑
k∈U

exp
[
−

(x − xk)2

2h2

]
The derivative F̃′K exists and is strictly non-negative. The smoothing parameter h can be estimated by: ĥ = σ̂

N−1/5 , where σ̂ is
the estimated standard deviation of the income distribution.
Finally, the influence function of the at-risk-of-poverty rate at k is given by:

IARPRk (M) =
1
N

[1 (inck ≤ ARPT (M)) − ARPR (M)] −
0.6
N
×

F̃′K [ARPT (M)]

F̃′K [MED (M)]
× [1 (inck ≤ MED (M)) − 0.5]

3. Linearization of the relative median poverty gap

3.1 Expression of the indicator as a functional of M

The relative median poverty gap RMPG is the difference between the at-risk-of-poverty threshold ARPT , that is, 60% of
the median income, and the median income MEDp of the persons whose income is lower than ARPT , the difference being
expressed relatively to ARPT :

RMPG =
ARPT − MEDp

ARPT
= 1 −

MEDp

ARPT

1. The at-risk-of-poverty threshold ARPT is set at 60% of the median income MED(M):

ARPT = 0.6 × MED (M) = T (M)

2. The median income MEDp of the persons whose income is below 60% of the median income actually satisfies the following
identity:

F (M,MEDp (M)) =
1
2

F [M, ARPT (M)]

where F is the cumulative income distribution function: F (M, x) = 1
N

∑
i∈U 1 (inci ≤ x).

3.2 Derivation of the influence function

The idea is to use the derivation rule (31) for a ratio of two functionals. Thus, we obtain:

IRMPGk (M) = −
ARPT (M) × IMEDp

k (M) − MEDp (M) × IARPTk (M)

ARPT (M)2

As to the influence function IARPTk (M) of the at-risk-of-poverty threshold, an expanded formula has been worked out in the
section (1.2) of this Appendix:

IARPTk (M) = −
0.6

F̃′K [MED (M)]
×

1
N
× [1 (inck ≤ MED (M)) − 0.5]

The only remaining issue is the derivation of the influence function IMEDp
k (M) of the median income of the persons who

are below 60% of the median income. By using the identity: F (M,MEDp (M)) = 1
2 F [M, ARPT (M)], we can say that the

corresponding influence functions are equal for all k:
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IFk
[
M,MEDp (M)

]
=

1
2
· IFk [M, ARPT (M)]

By using the derivation rule (33), we obtain:

1
N · [1 (inck ≤ MEDp (M)) − F (M,MEDp (M))] + F̃′K (MEDp (M)) × IMEDp

k (M)

= 1
2 ·

[
1
N · [ 1 (inck ≤ ARPT (M)) − F (M, ARPT (M))] + F̃′K (ARPT (M)) × IARPTk (M)

]
The influence function IMEDp

k (M) can thus be easily deduced from the above equation.

4. Linearization of the income quintile share ratio S80/S20

4.1 Expression of the indicator as a functional of M

Let q− (M) and q+ (M) denote the bottom and the top income quintile, respectively. The income quintile share ratio S80/S20
can be written as:

S 80/S 20 =

∫
inc>q+(M) inc · dM∫
inc≤q−(M) inc · dM

=

∫
inc · dM −

∫
inc≤q+(M) inc · dM∫

inc≤q−(M) inc · dM
=

R (M) − S
[
M, q+ (M)

]
S

[
M, q− (M)

] = T (M)

where the functionals R and S are defined as:

R (M) =

∫
inc · dM and S [M, x] =

∫
inc≤x

inc · dM

4.2 Derivation of the influence function

According to the previous section, the S80/S20 indicator can be expressed as a ratio of two functionals. The idea then is to
apply the derivation rule (31):

ITk (M) =
S

[
M, q− (M)

]
×

{
IRk (M) − IS k

[
M, q+ (M)

]}
−

{
R (M) − S

[
M, q+ (M)

]}
× IS k

[
M, q− (M)

]
S

[
M, q− (M)

]2

By using (34), we have: IRk (M) = inck.
The last issue is the derivation of the influence function of S

[
M, q (M)

]
, where q(M) stands for q−(M) (bottom income quintile)

and q+(M) (top income quintile). By using the derivation rule (33), we got:

IS k (M) = IS k
[
M, q (M) |q (M) f ixed

]
+

[
dS (M, x)

dx

∣∣∣x=q(M)

]
× Iqk (M)

1. The influence function of S holding the quintile value q(M) constant is:

IS k (M, q (M) |q (M) f ixed)

= Limt→0
S [M+tδk ,q(M)]−S [M,q(M)]

t

= Limt→0

∫
inc≤q(M) inc·d(M+tδk)−

∫
inc≤q(M) inc·dM

t

= Limt→0

∫
inc≤q(M) inc·d(tδk)

t =

{
inck i f inck ≤ q (M)

0 otherwise = inck × 1
[
inck ≤ q (M)

]
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2. The influence function Iqk(M) of the quintile is given by:

Iqk (M) = −
1

N · F̃′K
[
q (M)

] · [1 (inck ≤ q (M)) − α
]

where α ∈ [0, 1] is the order of the quintile (α = 0.2 for the bottom quintile, α = 0.8 for the top quintile). The derivation is
actually the same as for the influence function of the median income (see section 1.2).

3. Let S̃ denote the function x 7→ S ( M, x). Considering the derivative of S̃ is always 0 or not defined, let approximate S̃ by
the following convolution product:

S̃ K (x) =

∫
S̃ (t) · K (x, t) · dt

where the function K(., .) is a Gaussian kernel: K (x, t) = 1
h
√

2π
exp

[
−

(x−t)2

2h2

]
It can be easily seen that the derivative S̃ ′K of S̃ K exists and is strictly non-negative.

Finally, the influence function of S
[
M, q (M)

]
can be easily deduced from the three above results.

5. Linearization of the Gini coefficient

5.1 Expression of the indicator as a functional of M

Let U denote a population of size N and let y = {yi, i ∈ U} denote an income distribution over the population U. Let ri be the
rank of i in the distribution y after we sort it in ascending income. The Gini coefficient G is given by:

1 + G=

2 ×
∑
i∈U

ri · inci −
∑
i∈U

inci

N ·
∑
i∈U

inci
=

2 ×
∫

inci ·
[ ∫

1
(
inc j ≤ inci

)
· dM ( j)

]
· dM (i) −

∫
inc · dM(∫

dM
)
·
(∫

inc · dM
) = T (M)

5.2 Derivation of the influence function

Let us denote:

• T1 (M) = T1 =
∫

inci ·
[∫

1
(
inc j ≤ inci

)
· dM ( j)

]
· dM (i)

• T2 (M) =
∫

inc · dM = INC

• T3 (M) =
∫

dM = N

The Gini coefficient can then be expressed as:

T (M) =
2T1 (M) − T2 (M)
T2 (M) · T3 (M)

By using the derivation rule (31), we obtain:

ITk (M) =
T2 (M) · T3 (M) · I (2T1 − T2)k (M) − [2T1 (M) − T2 (M)] · I (T2T3)k (M)

[T2 (M) · T3 (M)] 2

By using the derivation rule (29) as well as the result (34), the influence function of (2T1 − T2) is given by:

I (2T1 − T2)k (M) = 2 × I (T1)k (M) − I (T2)k (M) = 2 × I (T1)k (M) − inck
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By using the derivation rule (30) and the result (34), the influence function of the product (T2 · T3) is given by:

I (T2 · T3)k (M) = T2 (M) · I (T3)k (M) + T3 (M) · I (T2)k (M) = INC × 1 + N × inck = INC + N · inck

Consequently, the influence function of the Gini coefficient can be written as:

ITk (M) =
T2 (M) · T3 (M) ·

[
2 · I (T1)k (M) − inck

]
− [2T1 (M) − T2 (M)] · (INC + N · inck)

[T2 (M) · T3 (M)] 2

=
2 · INC · N · I (T1)k (M) − INC · N · inck −

[
2 ×

∫
inci

(∫
1
(
inc j ≤ inci

)
· dM ( j)

)
· dM (i) − INC

]
· (INC + N · inck)

(N × INC)2

The last remaining hurdle is the derivation of the influence function of the functional T1 (M). For all t > 0, we have:

T1 (M + t · δk)

=
∫

inci ·
[∫

1
(
inc j ≤ inci

)
· d (M + t · δk) ( j)

]
· d (M + t · δk) (i)

=
∫

inci ·
[∫

1
(
inc j ≤ inci

)
· dM ( j)

]
· dM (i)

+
∫

inci ·
[

t ·
∫

1
(
inc j ≤ inci

)
· d (δk) ( j)

]
· dM (i)

+t ·
∫

inci ·
[∫

1
(
inc j ≤ inci

)
· dM ( j)

]
· d (δk) (i)

+t ·
∫

inci ·
[

t ·
∫

1
(
inc j ≤ inci

)
· d (δk) ( j)

]
· d (δk) (i)

= T1 (M)
+t ·

∫
inci · [1 (inck ≤ inci)] · dM (i)

+t · inck ·
[∫

1
(
inc j ≤ inck

)
· dM ( j)

]
+t2 · inck

Consequently, we have for all t > 0:

T1 (M + t · δk) − T1 (M)
t

=

∫
inci · [1 (inck ≤ inci)] · dM (i) + inck ·

[∫
1
(
inc j ≤ inck

)
· dM ( j)

]
+ t · inck

So the influence function of T1 is:

I (T1)k (M) = Limt→0
T1 (M + t · δk) − T1 (M)

t
=

∫
inci · [1 (inck ≤ inci)] · dM (i) + inck ·

[∫
1
(
inc j ≤ inck

)
· dM ( j)

]
Consequently, the influence function of the Gini coefficient can be easily obtained from the above expressions.
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Appendix 2: SAS macros to compute influence functions

* -------------------------------------------------------------------------------------
SAS MACROS TO CALCULATE THE INFLUENCE FUNCTIONS OF THE EU-SILC INDICATORS:
>>> THE AT-RISK-OF-POVERTY THRESHOLD
>>> THE AT-RISK-OF-POVERTY RATE
>>> THE RELATIVE MEDIAN POVERTY GAP
>>> THE INCOME QUINTILE SHARE RATIO
>>> THE GINI COEFFICIENT

AUTHOR: GUILLAUME OSIER

***** THESE MACROS HAVE BEEN ADAPTED FROM THE PROGRAMS THAT HAD BEEN DEVELOPED
BY EUROSTAT, AND WHICH ARE AVAILABLE ON CIRCA *****

--------------------------------------------------------------------------------------- ;

* -----------------------------------------------------
MACRO 1 : LINEARIZATION OF THE AT-RISK-OF-POVERTY

THRESHOLD
------------------------------------------------------ ;

%MACRO LIN_ARPT (DATA = , LIBRARY = , INCOME = , WEIGHT = , ORDER = 50, PERCENT = 60);
* -----------------------------------------------------------------
> DATA: SAS dataset
> LIBRARY: SAS library containing the dataset
> INCOME: income variable
> WEIGHT: weighting variable
> ORDER: Order of the income quantile (by default, 50%)
> PERCENT: Percentage of the income quantile (by default, 60%)

------------------------------------------------------------------- ;

data t;
set &library..&data;
run;

proc univariate data=t noprint;
var &income;
weight &weight;
output out=_out_ pctlpts=&order pctlpre=quant pctlname=ile;
run;

data _null_;
set _out_;
call symput(’quant_val’,quantile);
/* The value of the median income is stored
into the macro-variable &quant_val */

run;

proc iml;

edit work.t;
param={&income &weight};
read all var param into mat;

inc=mat[,1];
wght=mat[,2];
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/* Population size */
N=sum(wght);

/* Bandwith parameter - h=S/Nˆ(1/5) */
h=sqrt((sum(wght#inc#inc)-sum(wght#inc)*sum(wght#inc)/sum(wght))/sum(wght))
/exp(0.2*log(sum(wght)));

/* Estimate of F’(quantile) */
u=(&quant_val-inc)/h;
vect_f=exp(-(u##2)/2)/sqrt(2*3.1415926536);
f_quant=(vect_f‘*wght)/(N*h);

* ========== LINEARIZED VARIABLE OF THE AT-RISK-OF POVERTY THRESHOLD ============== ;
lin=-(&percent/100)#(1/N)#((inc<=&quant_val)-&order/100)/f_quant;

create lin_var from lin[colname={linvar}];
append from lin;

quit;

data &library..&data;
merge &library..&data lin_var;
run;

%MEND LIN_ARPT;

* -----------------------------------------------------
MACRO 2 : LINEARIZATION OF THE AT-RISK-OF-POVERTY

RATE
----------------------------------------------------- ;

%MACRO LIN_ARPR (DATA = , LIBRARY = , INCOME = , WEIGHT = , ORDER = 50 , PERCENT = 60);
* -------------------------------------------------------------------
> DATA: SAS dataset
> LIBRARY: SAS library containing the dataset
> INCOME: income variable
> WEIGHT: weighting variable
> ORDER: Order of the income quantile (by default, 50%)
> PERCENT: Percentage of the income quantile (by default, 60%)

--------------------------------------------------------------------- ;

* === I. CALCULATION OF THE AT-RISK-OF-POVERTY THRESHOLD === ;

data t;
set &library..&data;
run;

proc univariate data=t noprint;
var &income;
weight &weight;
output out=_out_ pctlpts=&order pctlpre=quant pctlname=ile;
run;
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data _out_;
set _out_;
threshold = (&percent/100)*quantile; /* At-risk-of-poverty threshold */
run;

data _null_;
set _out_;
call symput(’quant_val’,quantile);

/* Storage of the median income into the macro-variable &quant_val */
call symput(’thres_val’,threshold);

/* Storage of the poverty threshold into the macro-variable &thres_val */
run;

* === II. CALCULATION OF THE AT-RISK-OF-POVERTY RATE === ;

data t;
set t;
if &income<=&thres_val then poor=1; else poor=0;
run;

proc means data=t noprint;
var poor;
weight &weight;
output out=_out_ mean(poor) = poor; /* At-risk-of-poverty rate */
run;

data _null_;
set _out_;
call symput(’rate_val’,poor);
/* Storage of the at-risk-of-poverty rate into the macro-variable &rate_val */

run;

* === III. LINEARIZATION OF THE AT-RISK-OF-POVERTY RATE === ;

proc iml;

edit work.t;
param={&income &weight};
read all var param into mat;

inc=mat[,1];
wght=mat[,2];

/* Population size */
N=sum(wght);

/* Bandwith parameter - h=S/Nˆ(1/5) */
h=sqrt((sum(wght#inc#inc)-sum(wght#inc)*sum(wght#inc)/sum(wght))
/sum(wght))/exp(0.2*log(sum(wght)));

/* Estimate of F’(quantile) */
u1=(&quant_val-inc)/h;
vect_f1=exp(-(u1##2)/2)/sqrt(2*3.1415926536);
f_quant1=(vect_f1‘*wght)/(N*h);
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/* Estimate of F’(beta*quantile) */
u2=(&thres_val-inc)/h;
vect_f2=exp(-(u2##2)/2)/sqrt(2*3.1415926536);
f_quant2=(vect_f2‘*wght)/(N*h);

/* Linearization of the at-risk-of-poverty threshold */
lin_thres=-(&percent/100)#(1/N)#((inc<=&quant_val)-&order/100)/f_quant1;

* ========== LINEARIZED VARIABLE OF THE AT-RISK-OF-POVERTY RATE ============== ;
lin=100*((1/N)#((inc<=&thres_val)-&rate_val)+f_quant2*lin_thres);

create lin_var from lin[colname={linvar}];
append from lin;

quit;

data &library..&data;
merge &library..&data lin_var;
run;

%MEND LIN_ARPR;

* ---------------------------------------------------
MACRO 3 : LINEARIZATION OF THE RELATIVE MEDIAN

AT-RISK-OF-POVERTY GAP
---------------------------------------------------- ;

%MACRO LIN_RMPG (DATA = , LIBRARY = , INCOME = , WEIGHT = , ORDER = 50 , PERCENT = 60);
* ------------------------------------------------------------------
> DATA: SAS dataset
> LIBRARY: SAS library containing the dataset
> INCOME: income variable
> WEIGHT: weighting variable
> ORDER: Order of the income quantile (by default, 50%)
> PERCENT: Percentage of the income quantile (by default, 60%)

-------------------------------------------------------------------- ;

* === I. CALCULATION OF THE AT-RISK-OF-POVERTY THRESHOLD === ;

data t;
set &library..&data;
run;

proc univariate data=t noprint;
var &income;
weight &weight;
output out=_out_ pctlpts=&order pctlpre=quant pctlname=ile;
run;

data _out_;
set _out_;
thres=(&percent/100)*quantile; /* At-risk-of-poverty threshold */
run;
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data _null_;
set _out_;
call symput(’quant_val’,quantile);

/* Storage of the median income into the macro-variable &quant_val */
call symput(’thres_val’,thres);

/* Storage of the poverty threshold into the macro-variable &thres_val */
run;

* === II. CALCULATION OF THE AT-RISK-OF-POVERTY RATE === ;

data t;
set t;
if &income<=&thres_val then poor=1; else poor=0;
run;

proc means data=t noprint;
var poor;
weight &weight;
output out=_out_ mean(poor)=poor;
run;

data _null_;
set _out_;

call symput(’rate_val’,poor); /* At-risk-of-poverty rate */
run;

* === III. MEDIAN INCOME OF THE PERSONS WHOSE INCOME IS LOWER THAN THE POVERTY THRESHOLD === ;

proc summary data=t;
where &income <= &thres_val;
var &income;
weight &weight;
output out=_out_ median(&income)=mediane;
run;

data _null_;
set _out_;
call symput(’median_poor’,mediane);
run;

* === IV. LINEARIZATION OF THE RELATIVE MEDIAN AT-RISK-OF-POVERTY GAP === ;

proc iml;

edit work.t;
parametre={&income &weight};
read all var parametre into mat;

inc=mat[,1];\tab
wght=mat[,2];

/* Population size */
N=sum(wght);
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/* Bandwith paramter - h=S/Nˆ(1/5) */
h=sqrt((sum(wght#inc#inc)-
sum(wght#inc)*sum(wght#inc)/sum(wght))/sum(wght))/exp(0.2*log(sum(wght)));

u1=(&quant_val-inc)/h;
vect_f1=exp(-(u1##2)/2)/sqrt(2*3.1415926536);
f_quant1=(vect_f1‘*wght)/(N*h);

u2=(&thres_val-inc)/h;
vect_f2=exp(-(u2##2)/2)/sqrt(2*3.1415926536);
f_quant2=(vect_f2‘*wght)/(N*h);

u3=(&median_poor-inc)/h;
vect_f3=exp(-(u3##2)/2)/sqrt(2*3.1415926536);
f_quant3=(vect_f3‘*wght)/(N*h);

lin_thres=-(&percent/100)#(1/N)#((inc<=&quant_val)-&order/100)/f_quant1;
lin_rate=(1/N)#((inc<=&thres_val)-&rate_val)+f_quant2*lin_thres;
lin_median_poor=(0.5*lin_rate-(1/N)#((inc<=&median_poor)-0.5*&rate_val))/f_quant3;

* ============== LINEARIZED VARIABLE OF THE RELATIVE MEDIAN POVERTY GAP ============= ;
lin=100*(&median_poor*lin_thres/(&thres_val*&thres_val)-lin_median/&thres_val);

create lin_var from lin[colname={linvar}];
append from lin;

data &library..&data;
merge &library..&data lin_var;
run;

%MEND LIN_RMPG;

* ----------------------------------------------------
MACRO 4 : LINEARIZATION OF THE INCOME QUINTILE

SHARE RATIO S80/S20
----------------------------------------------------- ;

%MACRO LIN_IQR (DATA = , LIBRARY = , INCOME = , WEIGHT = , ALPHA = 20);
* ------------------------------------------------------------
> DATA: SAS dataset
> LIBRARY: SAS library containing the dataset
> INCOME: income variable
> WEIGHT: weighting variable
> ALPHA: Order of the income quantile (by default, 20%)

------------------------------------------------------------- ;

%let alpha2=%sysevalf(100-&alpha);

data t;
set &library..&data;
run;
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proc univariate data=t noprint;
var &income;
weight &weight;
output out=_out_ pctlpts=&alpha &alpha2 pctlpre=quant pctlname=i1 i2;
run;

data _null_;
set _out_;
call symput (’quant_inf’,quanti1); /* Bottom income quantile */
call symput (’quant_sup’,quanti2); /* Top income quantile */
run;

data t;
set t;
indinf = &income * (&income <= &quant_inf);
indsup = &income * (&income > &quant_sup);
run;

proc means data=t noprint;
var indinf indsup;
weight &weight;
output out=_out_ sum(indinf)=den /* Total income for the bottom quintile */

sum(indsup)=sup;/* Total income for the top quintile */
run;

data _null_;
set _out_;
call symput(’num_val’,num);
call symput(’den_val’,den);
run;

proc iml;

edit work.t;
param={&income &weight};
read all var param into mat;

inc=mat[,1];
wght=mat[,2];
v=wght#inc;

/* Population size */
N=sum(wght);

/* Bandwith parameter - h=S/Nˆ(1/5) */
h=sqrt((sum(wght#inc#inc)-
sum(wght#inc)*sum(wght#inc)/sum(wght))/sum(wght))/exp(0.2*log(sum(wght)));

/*===== 1. Linearization of the bottom quantile =====*/

u1=(&quant_inf-inc)/h;
vect_f1=exp(-(u1##2)/2)/sqrt(2*3.1415926536);
f_quant1=(vect_f1‘*wght)/(N*h);

lin_inf=-(1/N)#((inc<=&quant_inf)-&alpha/100)/f_quant1;
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/*===== 2. Linearization of the top quantile =====*/

u2=(&quant_sup-inc)/h;
vect_f2=exp(-(u2##2)/2)/sqrt(2*3.1415926536);
f_quant2=(vect_f2‘*wght)/(N*h);

lin_sup=-(1/N)#((inc<=&quant_sup)-&alpha2/100)/f_quant2;

/*===== 3. Linearization of the total income for the top quintile =====*/

u3=(&quant_sup-inc)/h;
vect_f3=exp(-(u3##2)/2)/sqrt(2*3.1415926536);
f_quant3=(vect_f3‘*v)/h;

lin_num=inc-inc#(inc<=&quant_sup)-f_quant3#lin_sup;

/*===== 4. Linearization of the total income for the bottom quintile =====*/

u4=(&quant_inf-inc)/h;
vect_f4=exp(-(u4##2)/2)/sqrt(2*3.1415926536);
f_quant4=(vect_f4‘*v)/h;

lin_den=inc#(inc<=&quant_inf)+f_quant4#lin_inf;

/*======== LINEARIZED VARIABLE OF THE IQ SHARE RATIO ========*/
lin=((&den_val)#lin_num-(&num_val)#lin_den)/(&den_val*&den_val);

create lin_var from lin[colname={linvar}];
append from lin;

quit;

data &library..&data;
merge &library..&data lin_var;
run;

%MEND LIN_IQR;

* ----------------------------------------------------
MACRO 5 : LINEARIZATION OF THE GINI COEFFICIENT

------------------------------------------------------;

%MACRO LIN_GINI (DATA= , LIBRARY = , INCOME = , WEIGHT = );
* ---------------------------------------------------
> DATA: SAS dataset
> LIBRARY: SAS library containing the dataset
> INCOME: income variable
> WEIGHT: weighting variable

----------------------------------------------------- ;

proc sort data=&library..&data;
by &income;
run;

proc iml;
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edit &library..&data;
param={&income &weight};
read all var param into mat;

taille=nrow(mat); /* Sample size */
N=mat[+,2]; /* Population size */
T=sum(mat[,1]#mat[,2]); /* Total income */

r=j(taille,1,1);
r[1,1]=mat[1,2];
do i=2 to taille;
r[i,1]=r[i-1,1]+mat[i,2]; /* r[i,1] is the cumulative weight of the person i */
end;

Num=sum((2*r[,1]-1)#(mat[,1]#mat[,2]));
Den=N*T;

/*** Gini coefficient ***/
Gini=Num/Den-1;

F=j(taille,1,1);
F[1,1]=mat[1,2]/N;
do i=2 to taille;
F[i,1]=F[i-1,1]+mat[i,2]/N; /* Cumulative income distribution function */
end;

G=j(taille,1,1);
G[1,1]=mat[1,1]*mat[1,2];
do i=2 to taille;
G[i,1]=G[i-1,1]+mat[i,1]*mat[i,2]; /* Weighted partial sum */
end;

/*========== LINEARIZED VARIABLE OF THE GINI COEFFICIENT ==========*/
lin=100*(2*(T-G[,1]+mat[,1]#mat[,2]+N*(mat[,1]#F[,1]))-mat[,1]-(Gini+1)*(T+N*mat[,1]))/(N*T);

create lin_var from lin[colname={linvar}];
append from lin;

quit;

data &library..&data;
merge &library..&data lin_var;
run;

%MEND LIN_GINI;


