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The National Health and Nutrition Examination Survey (NHANES) collects information on
both dietary intake and health conditions from a complex sample of individuals in the US.
Instrumental-variable regression can be used to model an individual’s health-related attribute
as a linear function of explanatory variables including the average daily intake of dietary com-
ponents. This overcomes the apparent limitation of the NHANES collecting dietary intake data
on only two days per sampled individual because the averages of two days per individual ex-
hibit considerable intra-individual variability. Readily available software routines can perform
survey-sensitive instrumental-variable regression with data like that collected by the NHANES,
but the relevant quantitative literature is not clear about what parameters these routines are ac-
tually estimating. We fit the long-term (usual) serum beta-carotene level of a population of
women aged 20-64 to a linear function of each woman’s long-term average (usual) daily beta-
carotene intake from food and other explanatory variables using survey-sensitive instrumental
regression and provide two interpretations of the results.
Keywords: extended linear model, instrumental-variable regression, measurement error, stan-
dard linear model, usual daily intake

1 Introduction

Much research has been conducted on the effects of di-
etary intake on health outcomes. One recurring point of crit-
icism in the analysis of diet-disease relationships is the lack
of confidence in the measures of the long-term or “usual”
intake of dietary components such as energy, nutrients, or
food groups. See, for example, Rumpler et al. (2008) and
Bingham et al. (2008).

The quest to improve dietary intake assessment and to
achieve more accurate estimates of average daily consump-
tion is ongoing. The primary dietary assessment method used
in the National Health and Nutrition Examination Survey,
conducted by the United States Center for Disease Control
and Prevention, is the 24-hour recall of dietary intake (Mosh-
fegh et al., 2008). Unfortunately, although this method is
considered by many to provide the most accurate estimates
for individual days, one day of intake is not representative of
an individual’s longerterm or “usual” diet because of day-to-
day variability.

Jackson et al. (2008) argue that the average of two 24-
hour dietary recalls is not much better and recommend re-
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searchers use the average of eight 24-hour recalls as a mea-
sure of the usual daily intake of a dietary component. This
approach however is not feasible in most studies and cer-
tainly not in large, national surveys. Post assessment statisti-
cal methods provide promising solutions to this problem. In
what follows, we focus on one such method.

Suppose we want to fit a linear regression model relating
some outcome variable to a number of explanatory variables,
but one or more of those variables are measured with error.
As discussed above, this type of measurement error occurs
when an individual’s long-term average or “usual” daily in-
take of a dietary component is an explanatory variable in a
linear regression model, but that individual’s dietary intake
is observed on only a small number of days. Using the in-
take from one of those days (or their average) as a proxy for
the individual’s usual daily intake can result in badly biased
regression estimates. Fortunately, it may be possible to re-
move nearly all of the bias in this situation by employing
instrumental-variable regression (see, for example, Fuller,
1987).

To explore this possibility, we use the example of a
biomarker of a health-related condition, an individual’s long-
term (usual) serum beta-carotene concentration, as a function
of his or her usual daily intake of beta-carotene. Increased
intake of carotenoids has been found to be associated with
decreased risk of chronic diseases, such as age-related mac-
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ular degeneration, certain type of cancers, and cardiovascu-
lar disease (Copper et al. 1999). Of the 34 or so different
carotenoids, serum beta-carotene is the one that has been
most studied for a potential link to health. Our aim is to
estimate how that concentration varies among individuals as
a function of their usual dietary intake of beta-carotene. We
apply a relatively simple, yet robust, method for which soft-
ware is readily available.

The National Health and Nutrition Examination Survey
(NHANES) is a periodic, stratified, multistage survey. It col-
lects information from nationally representative samples on
the health and nutritional status of the non-institutionalized,
civilian, US population. NHANES data are released in two-
year cycles. The 2003-2004 NHANES data set contains one
measure of total serum beta-carotene and beta-carotene in-
take calculated from each of two 24-hour dietary recalls per
sampled individual. The first dietary recall interview is gen-
erally administered on the same day that blood is drawn for
the serum beta-carotene measurement. In this study, we con-
sider only food sources of beta-carotene; we do not con-
sider beta-carotene that may be consumed in the form sup-
plements.

We restrict our attention to a subsample of women aged
20-64 from the 2003-2004 NHANES data set. This subset-
ting to a fairly homogenous population in terms of health fa-
cilitates model construction while maintaining a sufficiently
large sample size to make estimation practical. We fit a series
of linear regressions with the serum beta-carotene concen-
tration as the outcome variable and the first of the one-day
beta-carotene intakes as an explanatory variable. Within our
instrumental-variable regressions, the second one-day beta-
carotene intake serves as the instrumental variable for the
first.

Many statistical software packages can conduct
instrumental-variable regression. One package, Stata
(StataCorp, 2007), which we use here, allows for the incor-
poration of survey weights into the coefficient-estimation
process. Techniques from randomization-based sampling
theory are employed by Stata to compute (asymptotic)
standard errors when the data comes from a stratified,
multistage sample. Little theory exists to interpret what
conducting a surveysensitive instrumental-variable (SSIV)
regression is actually doing. An exception is Wu and Fuller
(2006). (Humphreys and Skinner, 1997, use instrumental
variables to analyze a categorical model with data from a
sample survey.)

Kott (2007) discusses two model-driven reasons for us-
ing survey weights in a traditional linear regression. We will
extend these rationales to SSIV regression, using them to in-
terpret our regressing individual’s serum beta-carotene con-
centration from the 2003-2004 NHANES on the first-day of
beta-carotene intake and other explanatory variables.

Section 2 first reviews the theory for fitting a standard
linear model with instrumentalvariable regression when one
of the explanatory model variables is measured with unsys-
tematic random error. In the standard model, the expectation
of the model error is assumed to be zero when conditioned
on the true values of the explanatory variables. The extended

linear model relaxes that assumption and requires only that
the model error be uncorrelated with the true values of the
explanatory variables. We show that incorporating the sur-
vey weights into an instrumental-variable regression on com-
plex survey data can (asymptotically) remove biases from the
coefficient estimates. These biases result either because the
standard linear model holds in the population, but not the
sample, or because the standard model fails in the population
and needs to be replaced by the extended linear model.

Section 3 discusses our subsample of 2003-2004
NHANES data: women aged 20-64 providing two days of
dietary beta-carotene intake data and one measure of serum
beta-carotene. The section also describes estimating the vari-
ance of an SSIV regression coefficient computed from this
subsample.

Section 4 displays the results of regressing the serum
beta-carotene concentration of each woman in our subsample
on her one-day intake of beta-carotene and other explanatory
variables. In order to assess, on the one hand, the impact
of using the instrumental variable in this regression and, on
the other, the impact of being sensitive to the survey design,
linear fits are made with and without the instrumental vari-
able and with and without the survey weights. The standard
errors computed for the coefficient estimates of regressions
incorporating the survey weights reflect the stratified, multi-
stage design of the NHANES. The regressions ignoring the
weights use a more conventional method for computing stan-
dard errors. In standard-error estimation, this method ignores
not only the survey weights but also the clustering and strat-
ification of the sample.

Section 5 provides a discussion of the strengths and
weaknesses of using our proposed SSIV methodology with
dietary data from a complex sample survey. Section 6 con-
tains some concluding remarks.

Our methodology depends on a number of assumptions,
some which have been challenged empirically (see, for ex-
ample, Kipnis et al., 2001).The first is that a single measure-
ment of an individual’s serum beta-carotene concentration is
an unbiased predictor of his (her) usual concentration. That
is less problematic than the following. We assume that an
individual’s first 24-hour recall provides an unbiased predic-
tor of his (her) usual daily intake of beta-carotene. We also
assume that the beta-carotene intake from that day is uncorre-
lated with the measurement error from the first recall (i.e., the
difference between the beta-carotene intake from this recall
and the individual’s usual intake). Our assumptions about 24-
hour recall follow an accepted convention in the usual-intake
literature which can be found from Nusser et al. (1996) to
Kipnis et al. (2009). The latter also assumes that a second
24-hour intake provides an unbiased predictor of an individ-
ual’s usual intake. We do not make that assumption here.
We remind the reader that all models based on simplifying
assumptions are wrong but some are useful.

2 Theory

Although the theory developed in this section can easily
be put into a more general form (e.g., with a number of ex-
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planatory variables having measurement error), we will ex-
press it in the context of the problem at hand: fitting a lin-
ear model relating usual serum beta-carotene concentration
to usual daily beta-carotene intake and other variables with
complex survey data containing one measure of blood con-
centration and two independent measures of daily intake per
sampled individual.

Assume first we have a population of N individuals, and
N is very large. Let yk be the usual serum beta-carotene con-
centration for individual k, qk be a single measure of serum
beta-carotene concentration for k, xk be the usual (i.e., long-
term average) daily intake of beta-carotene for k (say in a
year), pk be a randomly selected one-day intake of beta-
carotene for k, zk be the row vector of the J−1 additional ex-
planatory variables in the linear model including a constant
(or the equivalent), xk = (zk xk) be the row vector of all J
explanatory variables, pk = (zk pk), hk be a second randomly
selected one-day intake of beta-carotene for k, and hk = (zk
hk).

We will treat qk, pk, and hk as random variables with the
following properties:

N∑
k=1

(qk − yk)/N = OP(1/
√

N)

N∑
k=1

(pk − xk)/N = OP(1/
√

N)

N∑
k=1

hk(qk − yk)/N = OP(1/
√

N)

N∑
k=1

hk(pk − xk)/N = OP(1/
√

N), and

N∑
k=1

hk
′xk/N −Ψ = OP(1/

√
N),

(1)

or an unspecified matrix Ψ of full rank. The assumptions in
equation (1) mean that the biases in measurement errors in
qk and pk as predictors of yk and xk respectively (i.e., qk − yk
and pk− xk), are asymptotically zero. Moreover, hk is asymp-
totically uncorrelated with the measurement errors of qk and
pk.

Assuming the weighted-sample means of measurement er-
rors in qk and pk are asymptotically zero means there are no
systematic biases in the data-collecting instruments. Observe
that we are not assuming that the measurement error in hk is
also asymptotically zero. Under the assumptions in equation
(1), the vector

BIV = (
N∑

k=1
hk
′ pk)−1

N∑
k=1

hk
′qk (2)

is a consistent estimator for the parameter β =
(β1, β2, . . . , βJ)′ in the standard linear model (with an instru-
mental variable):

yk = xkβ + εk,

where E(εk |xk, hk) = 0,
(3)

and
∑N hk

′εk/N = OP(1/
√

N). The proof of a variant of
this assertion can be found in Fuller (1987; pp. 251-254).
We have not included formal proofs in this paper because
they are either well known or trivial extensions of others
in the literature. It will prove helpful later to observe that
BIV − β = (

∑N hk
′ pk)−1(

∑N hk
′[yk − pkβ]) ≈ Ψ−1∑N uk/N,

where

uk = hk
′(yk − pkβ)

= hk
′[εk + (qk − yk) − (pk − xk)β],

(4)

∑N uk/N = OP(1/
√

N), and Ψ is the probability limit
of N−1∑N h′k pk. Note that uk can be viewed as the
instrumental-vector-scaled element error, uk = hk

′ek, where
ek = yk − pkβ is the element error (more on this value in the
following section).

The only difference between the model in equation (3) and
the usual standard linear regression model is that the expec-
tation of the error term εk is zero conditioned on the instru-
mental variable as well as the explanatory variables. This ex-
pansion of the usual standard model is very mild compared
to the assumptions in equation (1).

Unfortunately, models can fail. That is frequently the case
when one tries to fit sample survey data to a linear model
because of the limited number of potential explanatory vari-
ables available from the survey. Kott (2007) proposed an
extended linear model that, in the absence of the need for
instrumental variables, will almost always holds. In our con-
text, the assumption E(εk |xk, hk) = 0 is replaced by a much
weaker one requiring only that εk be uncorrelated with xk and
hk. Now,

yk = xkβ + εk,

whereE(xkεk) = E(hkεk) = 0.
(5)

Of course, if we had full information on all N individuals
in our population, it would be more sensible to estimate β
with BOLS = (

∑N xk
′xk)−1∑N xk

′yk than with BIV . Often,
however, we only have partial information from a sample of
m individuals. In our case, the sampled individuals have been
selected using a stratified, multistage survey subject to nonre-
sponse. Moreover, only one serum measurement and two in-
dependent one-day beta-carotene intakes have been collected
from each sampled individual.

To estimate model parameters like β, the NHANES pro-
vides individual survey weights. We will assume that the
survey weights, wk, are such that
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N∑
k=1

wkIk(qk − yk)/N = OP(1/
√

n),

N∑
k=1

wkIk(pk − xk)/N = OP(1/
√

n),

N∑
k=1

wkIkhk(qk − yk)/N = OP(1/
√

n),

N∑
k=1

wkIkhk(pk − xk)/N = OP(1/
√

n),

N∑
k=1

wkIk hk
′εk/N = OP(1/

√
n), and

N∑
k=1

wkIk hk
′xk/N −Ψ = OP(1/

√
n),

(6)

whereΨ again has full rank. In equation (6), Ik is an indicator
variable equal to 1 when k is in the (respondent) sample and
0 otherwise, and n is the number of primary sampling units
(PSUs) selected for the sample, which we assume to be large.

Accepting the assumptions in equation (6),

bIV = (
N∑

k=1
wkIk hk

′ pk)−1
N∑

k=1
wkIk hk

′qk, (7)

which can be computed with data from a sample survey, is a
consistent estimator for β under either the standard model
in equation (3) or the extended model in equation (4). It
is important to realize that the standard linear model allows
the possibility, E(εk |xk, hk, Ik) , 0; that is to say, the stan-
dard model may fit in the population but not in the sample.
This can happen when the model errors, the εk, are corre-
lated with the individual probabilities of sample selection. In
other words, when the surveys weights are not ignorable with
respect to the model, they need to be incorporated into the
estimated instrumental-variable regression coefficient bIV .

3 The NHANES Data and
Variance Estimation

We focus here on a 2003-2004 NHANES data set contain-
ing health and nutritional information from sampled indi-
viduals providing two nonconsecutive (i.e., independent) 24-
hour dietary intakes. Each individual in that data set was as-
signed a survey weight roughly equal to the inverse of the in-
dividual’s probability of selection and response into the data
set. The weighting procedures also attempt to balance the
days of the week. This was complicated by the nature of the
two-intake-day data set. See NCHS (2007) for more details
on the weighting process.

The data set also contains indicators of the (pseudo) pri-
mary sampling unit (PSUs) and first-stage (pseudo) stratum
for each sampled individual for variance estimation purpose;

the actual PSUs and strata are masked for confidentiality rea-
sons. There are two sampled PSUs in each of the 15 strata in
the 2003-2004 NHANES data set.

Consider a particular subsample of the NHANES data set to
be used for estimating parameters of a particular target pop-
ulation, in our case civilian, non-institutionalized women,
aged 20-64, in the 2003-2004 US population. Invoking the
notation from the previous section, let ugi =

∑
wkIkuk, where

the summation is over every individual in the population as-
signed to PSU i of stratum g, and the uk = hk

′ek are the
instrumental-vector-scaled element errors defined in equa-
tion (4).

We assume for variance estimation purposes that the ugi are
independent random variables and the two ugi within each
stratum have a common mean. Note that when the yk |xk
are identically distributed regardless of stratum, this mean is
zero for all ugi. By not assuming the ugi have mean zero, we
are allowing the possibility that the stratification in the sam-
ple design matters. By aggregating the instrumental-vector-
scaled errors to the PSU, we are allowing for the possibility
that the element errors with each PSU are correlated.

An asymptotically unbiased estimator for the variance of
bIV under the extended model (and also the stronger standard
model) has the form,

V̂ = ACA′, (8)

where A = (
∑N wkIk hk

′ pk)−1,C =
∑15(ûg1 − ûg2)(ûg1 −

ûg2)′, ûgi =
∑

wkIk hk
′(qk−pk bIV ), and (again) the summation

is over every individual in the population assigned to PSU i
of stratum g. This is what Stata computes. More generally,
when there are ng sampled PSUs in stratum g out of G strata,

C =

G∑
g=1

[ng/(ng − 1)]{
ng∑
i=1

ûgiûgi
′
− (

ng∑
i=1

ûgi)(
ng∑
i=1

ûgi)′/nh}.

When there is only one stratum, C =
∑n[n/(n−1)]

∑n û1iû1i
′

(because
∑n û1i = 0), and V̂ = ACA′ has the form of a robust

variance estimator with a clustered sample.
Under simple random sampling, where m = n and the wk

are all 1, C becomes CR =
∑N[m/(m − 1)]

∑N Ikûkûk
′, and

V̂R = ACR A′. (9)

In contrast, the conventional variance estimator not only ig-
nores the sampling design (weights, clustering, and stratifi-
cation) and it assumes the element errors, the ek = εk + (qk −

yk) − (pk − xk)βJ , are homoscedastic. The conventional vari-
ance estimator is

V̂S = (
N∑

k=1
Ik hk

′pk)s2 (10)

where s2 =
∑N Ik(qk − pk bIV )2/(m − J).

The element error, ek, has three components: the model
error (εk), the error of the observed measure of serum beta-
carotene concentration as a predictor for usual serum beta-
carotene concentration (qk − yk), and a fixed multiple of
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the error of the one-day beta-carotene intake as a predictor
for usual intake of beta-carotene ((pk − xk)βJ); recall that
only one member of pk − xk, namely pk − xk, is nonzero in
our framework). Although it is not necessary that all three
components be homoscedastic for ek to be homoscedastic, it
is unlikely that the components’ heteroscedasticity perfectly
counterbalance each other. As a consequence, even when the
sample design is ignorable, and the instrumental-variance re-
gression coefficient bIV in equation (7) is estimated setting all
the wk to 1, it may be prudent to use the robust-tounspecified-
heteroscedasticity variance estimator V̂R rather than V̂S .

The standard error for a component of bIV is the square
root of the corresponding diagonal of V̂. Since V̂ is only
approximately unbiased, with a bias that vanishes asymp-
totically, standard errors of regression coefficients computed
using randomization-based techniques are sometimes called
“asymptotic standard errors.” The same nomenclature ap-
plies to standard errors from instrumental-variable regression
based on V̂S even when the sampling design can be ignored
and the ek = εk + (qk − yk) − (pk − xk)βJ are homoscedas-
tic because the estimated regression coefficient itself is not
unbiased, only consistent.

We confine our analyses in the next section to the 1,317
women aged 20 to 64 in the 2003-2004 NHANES who pro-
vided two days of dietary intake and a measure of serum
beta-carotene concentration. (For reasons explained in the
next section, one of these women is later dropped from our
analytic data set.) We adjusted the two-day survey weight for
each woman in our subsample by scaling her NCHS-supplied
two-day dietary weight to the sum of these weights across all
the 20-64 year-old women in the sampled PSU, divided by
the sum restricted to women in our subsample (i.e., those
with both two days of dietary intake and one serum beta-
carotene measurement). This effectively assumes that serum
beta-carotene measures are missing at random within PSUs.

4 The Results
The upper left-hand corner of Table 1 displays the coeffi-

cient estimates from naively using ordinary least squares to
regress the one measure of serum beta-carotene concentra-
tion (measured in micrograms per deciliter, ug/dL) for each
woman in our subsample on her first day of beta-carotene
intake (measured in milligrams, mg) and other explanatory
variables. To conduct ordinary least squares, the hk and wk
in equation (5) were changed to pk and 1, respectively.

In addition to first-day beta-carotene intake (Intake), the
other explanatory variables in what we label the “original
model” are the woman’s age in years centered at 43 (Age), an
indicator of whether the woman was both a current cigarette
smoker and had smoked at least 100 cigarettes in her life
(Smoker), an indicator of whether the woman was of His-
panic origin (Hispanic), and an indicator of whether the
woman’s family income was at or above 185% of the Fed-
eral poverty threshold (Poverty Income Ratio or PIR≥185%)
and an indicator of whether it was above 350% of the Fed-
eral poverty threshold (PIR>350%). See US Bureau of the
Census (2008) for a description of how the Federal poverty
threshold is computed. A family income of less than 185%

of the Federal poverty threshold is required to qualify for
the Special Supplemental Nutrition Program for Women, In-
fants, and Children (WIC). A family with a Poverty Income
Ratio in excess of 350% – the maximum level at which there
is any Federal or state nutrition and health-insurance assis-
tance program available – is considered middle to high in-
come.

The inclusion of each of these explanatory variables de-
creases the model root mean squared error of the regression
fit, and each is available for all of the women in our subsam-
ple set except one. Including an indicator for Hispanic origin
provides a slightly better fit than including an indicator for
Mexican-American. Including a race variable does not im-
prove the fit nor does incorporating other versions of the age
variable.

Current cigarette-smoking status was only queried in the
NHANES of participants who had smoked at least 100
cigarettes in their entire lifetime. One of our 1,317 women
did not answer whether she had smoked at least 100
cigarettes and is, therefore, excluded from the regression
analyses. Since this is less than 0.1% of the subsample, lit-
tle harm results. We do not include explanatory variables
on cigar and pipe smokers in our analyses because a greater
percentage of the respective answers were missing from the
1,317 women in our subsample.

Standard errors in the ordinary-least-squares regression are
computed as if a standard model relating serum beta-carotene
concentration to first-day beta-carotene intake and the other
explanatory variables is correctly specified, the attributes of
the sample design can be ignored, and the element model
errors are uncorrelated and homoscedastic. These assump-
tions appear to be wrong as evidenced by the very differ-
ent coefficient estimates resulting from an analogous survey-
weighted-least-squares regression to the right of the initial fit
in table.

The weighted-least-squares regression assumes only that
the extended model relating beta-carotene concentration to
one-day beta-carotene intake and the other explanatory vari-
ables is correct, an assumption that holds whenever regres-
sion estimates can be computed. Standard errors are com-
puted using the survey sensitive routine in Stata, and the re-
sulting “t-values” used in calculating the P[robability]> |t|
column have 15 degrees of freedom: the number of PSUs
minus the number of strata.

The P> |t| column relies on the commonly made, but du-
bious, assumptions that the ûgi are nearly normal and have
roughly equal variances. We will not use it in our model
assessments, nor do we assume that the t-values are anything
other than the standard errors of the estimated coefficients
divided by the coefficients themselves. Under the null hy-
pothesis that the true value of a coefficient is zero, we expect
the square of the associated t-value to be approximately equal
to 1.

Judging from the weighted-least-squares estimates in the
second set of results in Table 1, we might choose to remove
the Hispanic-origin indicator from the model since the as-
sociated t-value is less than 1 in absolute value. Determin-
ing explanatory variables using the weighted-regression fit
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and an absolute-t-value-greater-than-1 rule does not change
any of our other explanatory-variable determinations (e.g.,
the candidate race variable is still excluded).

The instrumental-variable regressions on the right-hand
side of Table 1 use the second day of beta-carotene intake
as an instrumental variable for the first-day intake. One is
unweighted; the other is weighted.

It is well known that an individual’s intake of a nutrient
often varies by the day of the week (see, for example, Nusser
et al., 1996). NCHS weights the NHANES dietary data sets
with this in mind. Moreover, NHANES protocol calls for
collecting the second dietary recall for a sampled individual
on a different day of the week from the first. For our pur-
poses, however, this effort has the potential for inducing a
negative correlation between the two daily intakes recorded
for the same individual, which would violate one of the as-
sumptions of instrumental-variance regression.

In order to remove this potential for negative correlation,
we adjust the first-day beta-carotene intakes from food in our
weighted instrumental-variable analyses to remove the day-
of-the-week effect. Paralleling a multiplicative adjustment in
Nusser et al. (1996), we replace each pk with

pa
k = pa(d)

k =

1
7

7∑
δ=1

∑
f∈S δ

w f p f∑
f∈S δ

w f∑
i∈S d

wi pi∑
i∈S d

wi

pk, (11)

where d is the day of the week of the beta-carotene intake
(d=1 is Sunday, d=2 Monday, and so forth), the w f are the
weights described in the last section, and S d is the subset of
our 1,316 women whose first day of reported intake was on
day-of-the-week d. Observe that the weighted mean of the
pa

k for each day of the week is identical.
Coefficient standard errors for the unweighted

instrumental-variable regression are computed using V̂S
in equation (10), while coefficient standard errors for
weighed instrumental-variable regression use V̂ in equation
(8).

The unweighted fit in the instrumental-variable regression
is based on a more scientifically plausible standard model
than the ordinary-least-squares regression since it relates to
serum beta-carotene concentration (both a single measure
and the usual concentration) to usual daily intake of beta-
carotene and other explanatory variables. Still, it appears that
incorporating weights into the instrumental-variable regres-
sion may be needed to avoid bias in the coefficient estimates
for age and the family income indicators.

The most important result comes from comparing the least-
squares regression fits with the instrumental-variable fits.
The coefficient on beta-carotene intake is more than four
times greater using instrumental-variable regression. This is
because serum beta-carotene concentration is a function of
usual beta-carotene intake, not one-day beta-carotene intake,

even though the daily intake value in the least-squared regres-
sion was generally for the day before the blood concentration
was measured.

Although the standard model relating serum beta-carotene
concentration to usual daily beta-carotene intake and the
other explanatory variables to hold, it appears some of the
coefficients are biased when the instrumental-variable regres-
sion is unweighted. In fact, the SSIV regression in Table 1
suggests that not only the Hispanic-origin indicator but also
the PIR≥350% indicator can be removed from the model.
This is not clear in the unweighted IV regression even though
the estimated standard error for this variable is about the
same in both regressions (around 2.1).

The Hispanic-origin and PIR≥350% indicators are re-
moved from the model estimated in Table 2. The other
family-income indicator is redefined to keep the intercept
significant. (We drop the Hispanic-indicator from this model
even though its absolute t value in the SSIV fit of the original
model is greater than 1 because its sign is opposite of what
we had been led to expect from the previous regressions.)

The fits of the “final model” in Table 2 tell essentially the
same story as Table 1: weights may matter only a little in
this context (although using weights helped us see that the
PIR≥350% indicator probably did not belong in the model),
but using instrumental-variable regression to determine the
relationship between the biomarker in blood and the usual
dietary intake matters a great deal.

5 Discussion

A survey-sensitive instrumental-variable (SSIV) regression
methodology allows us to estimate the impact of a change
in the usual daily intake of a dietary component for an in-
dividual on a biomarker for health-related outcome for that
individual using survey data containing only two indepen-
dent 24-hour dietary recalls. To do this, we must assume that
the reported intakes for the first of the 24-hour recalls, af-
ter adjusting for day-of-the-week effect (see equation (11)),
are free of systematic reporting error (i.e., are unbiased pre-
dictors of the individuals’ usual daily intakes) and that the
survey weights accurately reflect the probabilities of individ-
uals’ selection into and response to the survey.

In Table 2, we saw how treating one 24-hour recall as
a proxy for usual daily intake appears to seriously bias
the modeling of the relationship between usual serum beta-
carotene and usual daily intake of beta-carotene, age, smok-
ing status, and family income among women aged 20-64.
Such treatment of one 24-hour recall is not uncommon in
the nutritional literature. See, for example, Grandjean et al.
(2008). Modest biases were also caused by ignoring the sur-
vey weights associated with the survey data.

Table 2 also revealed some of the price we may have to
pay for using the SSIV method: increased standard errors.
The increases in standard error due to using an instrumental-
variable were very large, from under 0.5 to nearly 2.0 for the
intake coefficient in the weighted regressions. The increases
due to incorporating the survey weights were less profound,
but still noticeable. When the weights were ignored, the
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standard error for the intake coefficient in the instrumental-
variable regression was less than 1.6.

Table 3 shows that the impact of weighting on standard er-
ror had more to do with the assumption that the combination
of element errors are homoscedastic than with incorporat-
ing the weights or with being sensitive to the clustering and
stratification in the sample. Using equation (9) to compute
a more robust set of unweighted standard errors leads to a
standard error for the intake coefficient under instrumental-
variable regression of slightly more than 2.0 (as opposed to
less than 1.6).

Table 3 also shows that using the average of the two 24-
hour recalls as a proxy for usual intake apparently removes
some of the bias in the intake coefficient but not much.
The unweighted coefficient increases from roughly 1.1 when
using only one recall to 1.8 (the weighted coefficient esti-
mates are similar but not shown), which is still far short of
approximately 6, the coefficient estimate under unweighted
instrumental-variable regression.

The estimated mean intake of beta-carotene on the second
day among our 1,317 women was slightly larger than the
first; however, this difference was not significant (at the 0.05
level). It is tempting to argue that the increase in standard
error due to using instrumental-variable regression is like-
wise chimerical. The t-value for the intake coefficient in the
weighted regression in Table 2 is 2.9, while the analogous
t-value for the SSIV regression is only slightly higher, 3.0.
Viewing a t-value as a normalized standard error, these num-
bers appear to be nearly identical.

This argument does not mitigate the fact that the errors in
the SSIV regression coefficients come from three sources, the
model error in equation (3) (εk), the measurement error in the
serum beta-carotene concentration (qk−yk), and the measure-
ment error in the day-of-the-week- adjusted first-day intake
(pa

k − xk). There is nothing we can do about the first except
draw a larger sample. The second is likely to be small in this
context (as shown in Lin et al. 1998). The size of the third,
however, reflects our using the information from the second
day of intake only as an instrument rather than making it part
usual intake measure itself.

Regression calibration is a technique that allows a more ef-
ficient use of the second day of intake data while also po-
tentially removing the bias in regression modeling that em-
ploying a simple two-day average would cause. Kipnis et al.
(2009) describe how to use regression calibration when the
explanatory dietary-intake variable in the model is an infre-
quently consumed food, making the variance of pa

k particu-
larly large.

Regression calibration can also overcome another short-
coming of our approach to instrumental-variable regression
in this context. The model relating the biomarker of a health
outcome to the usual daily dietary-intake of a dietary com-
ponent need not be linear. There is a steep price to be paid,
however. Regression calibration requires the assumption of
a tightly specified stochastic model for daily dietary intakes
across the individuals in the target population in order to
compute an optimal proxy for an individual’s usual intake.
As described in Kipnis et al., the appropriate modeling of

individual daily intakes in order to determine the optimal
proxy is not a trivial exercise even when the dietary com-
ponent (food or nutrient) is consumed every day. Moreover,
the complex model(s) the authors develop ignores the clus-
tering and stratification in the sampling design (the model
has two parts when the dietary component is not consumed
every day).

The SSIV regression fits a simple linear model relating a
biomarker of a heath-related outcome (in our case, serum
beta-carotene) and a usual daily dietary-intake variable (beta-
carotene), which some may view as a limitation. Assum-
ing the extended model, however, provides protection against
model failure. In the standard model, model failure can take
of form of a misspecified functional form or missing explana-
tory variables. The extended model all but removes the pos-
sibility of misspecification if our assumptions about the rela-
tionship among oneday intakes based on 24-hour recalls and
usual daily intake and between a single outcome measure-
ment and its longer-term average value are correct. There is
a price to be paid, however: the interpretation of the results
are considerably weakened.

We can see how to what extent by returning to the last re-
gression in Table 2. Given the age of a woman from 20 to 64
in the 2003-2004 non-institutionalized, civilian population,
her smoking status, and whether or not the her family income
was less than 185% of the Federal poverty threshold, a one
milligram increase in her usual daily beta-carotene intake re-
sults in an estimated 5.8789 microgram per deciliter increase
in her serum beta-carotene concentration. Under the stan-
dard model, this impact on serum beta-carotene is the same,
plus or minus a random error associated with the individual,
no matter what the usual daily intake of the beta-carotene.
Under the extended model, this need no longer be the case.
The estimated impact of a one milligram increase of usual
daily beta-carotene intake on serum beta-carotene, holding
the other explanatory variables constant, is 5.9 micrograms
per deciliter on average across all possible usual intakes.

No similar distinction exists between the interpretations
of the standard and extended models for the smoking and
family-income explanatory variables because they are cate-
gorical. There would be such a distinction for the age vari-
able, in principle, except that our model fitting rejected the
inclusion of the additional explanatory variable age2, sug-
gesting that the impact of age on serum beta-carotene, hold-
ing the other explanatory variables constant, is as specified.

6 Concluding Remarks

We have proposed a survey-sensitive instrumental-variable
method for conducting a linear regression relating a
biomarker for a health-related outcome measure in a complex
survey like the NHANES to explanatory variables including
the usual daily intake of a dietary component despite the lim-
itation of the NHANES collecting no more than two 24-hour
dietary recalls per sampled individual. We have shown that
our method returns asymptotically unbiased coefficient esti-
mates under certain conditions which are numerous and sub-
ject to question, but relatively mild for dietary studies. The
methodology can be implemented with readily available soft-
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ware and can easily be adapted to model fitting with several
dietary components. The extension itself is left to the reader.

Some may question a model of serum beta-carotene con-
centration that does not include dietary supplements, oth-
ers our use of a strictly linear model. Neither criticism
undermines the methodology itself. Moreover, one of the
advantages of our simple linear approach is that it allows
an extended-model interpretation that does not require the
model to be as complete and free of misspecification error
as do more complicated statistical methods. Under neither
the extended nor standard-model interpretations do the error
components (εk, (qk − yk), and (pk − xk)βJ) need to have par-
ticular distributions.

There are competitors to the SSIV methodology. One such
method is regression calibration. It too produces asymptoti-
cally unbiased parameter estimates under certain conditions.
It is more difficult to execute, however, requiring the user
to conduct a classical measurement-error analysis for which
the sample data must be transformed so that the components
of the analysis can be assumed homoscedastic and normally
distributed. Furthermore, the user of regression calibration
needs to make even more questionable assumptions than with
the linear SSIV methodology (so far as we know, the com-
plex sampling structure must ignored in the measurement-
error modeling step of regression calibration).

When the user is willing to make these additional assump-
tions and overcome the technical difficulties, the resulting
coefficient will likely be more efficient than those returned
by SSIV regression. We believe, however, that making un-
verifiable assumptions should be done as sparingly as possi-
ble. For many scientific purposes, the use of a more robust
methodology should be considered before its competitors.
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