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Sampling and estimation techniques for the implementation of new
classification systems: the change-over from NACE Rev. 1.1 to NACE

Rev. 2 in business surveys
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This paper describes some of the methodological problems encountered with the change-over
from the NACE Rev. 1.1 to the NACE Rev. 2 in business statistics. Different sampling and
estimation strategies are proposed to produce reliable figures for the domains under both clas-
sifications simultaneously. Furthermore several methods are described that can be used to
reconstruct time series for the domains under the NACE Rev. 2.
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1 Introduction

1.1 Discontinuities in series of repeatedly con-
ducted sample surveys

Sample surveys conducted by national statistical insti-
tutes are generally conducted repeatedly in time with the pur-
pose of constructing time series that describe the evolution of
population parameters of interest. An important quality as-
pect of these surveys is comparability of the outcomes over
time. To maintain consistent time series, the underlying sur-
vey process is generally kept unchanged as long as possi-
ble. It remains, however, inevitable to change or redesign
a survey process from time to time. A major drawback of
such redesigns is that it often has systematic effects on the
outcomes of the survey, leading to discontinuities in the se-
ries. An important aspect of a survey redesign is to minimize
this inconvenience for data users. This can be accomplished
by quantifying the effect of the redesign on the outcomes of
the main parameters. To maintain consistent time series, one
might consider to correct the series observed in the past with
the observed effects of the redesign. This is sometimes re-
ferred to as backcasting.

Van den Brakel et al. (2008) discuss different statistical
methods to deal with discontinuities due to survey redesigns.
The methods required to quantify a discontinuity depend on
the phase of the survey process that is changed. In cases
where the underlying sample data remain the same, the dif-
ferences can be investigated by recalculation. An example
is the introduction of a new economic activity classification
system in business surveys. When, however, data collection
procedures are affected the data are not consistent. In these
cases the effect of the change can be quantified by conduct-
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ing a field experiment where the regular and new survey de-
signs are run concurrently, see e.g. Van den Brakel (2008)
for examples and details. Such a parallel run is not always
tenable due to budget constraints. In such cases a time series
modelling approach can be considered as an alternative. A
so-called intervention analysis is described in detail by Van
den Brakel and Roels (2010) using state-space models.

This paper describes the statistical methods that can be
applied to assess the effect of a new economic activity classi-
fication system in business surveys. These methods are also
applicable to the implementation of revised versions of the
International Standard Classification of Occupations used by
the International Labour Organization, the Standard Occupa-
tional Classification, used by Federal statistical agencies in
the US and Canada, or the International Standard Classifi-
cation of Education used by the United Nations Educational
Scientific and Cultural Organisation.

1.2 Introduction of a new economic classification
system in business surveys

In all European Union countries the classification of eco-
nomic activities that is used in the Business Surveys was
from 1993 through 2008 based on NACE Rev 1.1. NACE
stands for the French abbreviation for European Classifica-
tion of Economic Activities.1 Since the economic structure
gradually changed, a new classification system, called NACE
Rev. 2, was adopted in 2006 by Eurostat, the European na-
tional statistical institutes, European trade and business as-
sociations, the European Central Bank and United Nations
Statistical Division. See Eurostat (2008) for a detailed de-
scription of the NACE Rev. 2. This classification system is
introduced in the Short Term Statistics (STS) since 2009 and
the Structural Business Surveys (SBS) since 2010.

1 NACE is derived from the French title: “Nomenclature
générale des Activités économiques dans les Communautés Eu-
ropéennes”
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Table 1: Number of occurrences of different types of transitions

Transition Number of occurrences

1-to-1 196 classes
1-to-n 17 classes
m-to-1 87 cases
m-to-n 214 cases

In a descending order of aggregation, the following lev-
els are distinguished under the NACE Rev. 1.1: sections (one
character alphabetic code), subsections (two character alpha-
betic code), divisions (two digit code), groups (three digit
code) and classes (four digit code). Under the NACE Rev.
2, the level of the subsections is dropped. In general terms,
the NACE Rev. 2 resulted in a more detailed classification of
the activities in Services and less detail in the Industrial ac-
tivities, reflecting the general development of the economic
structure in Europe.

Annex A contains two tables, which summaries the ef-
fect of the change-over from the NACE Rev. 1.1 to the NACE
Rev. 2. Table A.1 describes the change-over of the sections.
This table indicates which sections under NACE Rev. 1.1
are grouped into one section under NACE Rev. 2 and which
sections under NACE Rev. 1.1 are divided into two or more
sections under NACE Rev. 2. Table A.2 provides further
details about the number of subsections, divisions, groups
and classes that are distinguished within each section of the
NACE Rev. 1.1 and the NACE Rev. 2.

For many classes there are no changes, all business units
belonging to a specific class under the NACE Rev. 1.1 trans-
fer to a corresponding class under the NACE Rev. 2 and no
other business units join this new class. These are the so-
called 1-to-1 transitions. In several cases, however, business
units transfer to different classes under the new classification.
As a result, business units that are classified to the same class
under the NACE Rev 1.1 can transfer to two or more classes
under the NACE Rev. 2. These are called the 1-to-n transi-
tions. It is also possible that business units that are classified
to different classes under the NACE Rev. 1.1 transfers to the
same class under the NACE Rev. 2; the so-called m-to-1 tran-
sition. The most complex situation is the m-to-n transitions,
where business units that are classified to m classes under the
NACE Rev. 1.1 transfers to n classes under the NACE Rev.
2. To illustrate the importance of the problem, an overview of
the number of occurrences of the different types of transitions
is given in Table 1.

The implementation of a new classification system re-
sults in several methodological challenges. The change-over
from NACE Rev. 1.1 to NACE Rev. 2 in the business sur-
veys starts with adding a NACE Rev. 2 code to all units in
the Business Register (BR), see Eurostat (2006b) for details.
To facilitate a smooth transition from the old to the new clas-
sification system, it is recommended to publish figures for
a period of one or two years under both classifications for
both the SBS and STS, Eurostat (2006a, 2006c). During this
period, all units in the BR are preferably double coded under

the NACE Rev 1.1 and NACE Rev. 2. It may be necessary
to adjust the sample design to produce reliable figures for the
domains under both classifications. If it is decided that the
sample design is not changed during this period of double re-
porting, then this will generally require at least an adjustment
of the estimation procedure for the domains under the new
classification. Sooner or later the sample design needs to be
adjusted to this new classification system, since the business
statistics will finally be based on the NACE Rev. 2 only. This
requires an adjustment of the stratification, determination of
the sample size and a reconsideration of the allocation of the
business units over the strata.

The results obtained during this period of double coding
of the BR and double reporting will be used to reconstruct
time series for the NACE Rev. 2 domains starting from the
year 2000. This is generally referred to as backcasting. De-
pending on the available information and resources, a com-
bination of estimation techniques from the classical survey
sampling approach and more synthetic adjustment and link-
ing procedures can be applied to construct historical time se-
ries for domains under the NACE Rev. 2.

In many national statistical institutes business surveys
are based on stratified simple random sampling. Generally
the stratification variable is based on the crossing of size
class based on employment and publication cells based on
the NACE Rev. 1.1. This is for example the situation at
Statistics Netherlands where the stratification variables are
defined by size based on employment in 10 classes crossed
with the primary publication cells (PPC’s) under the NACE
Rev. 1.1. The PPC’s are the most detailed publication cells,
which almost correspond one to one with the classes of the
NACE Rev. 1.1 at the four digit level.

Taking this situation as a starting point, four approaches
are distinguished to produce figures for the domains un-
der both classifications simultaneously. The first three ap-
proaches are based on the design-based estimation proce-
dures known from classical sampling theory for stratified
simple random sampling using three different stratification
schemes. The fourth approach is based on model-based esti-
mation procedures, known from the realm of small area es-
timation. This will be input for different backcasting proce-
dures.

The paper is organised as follows. Section 2 briefly re-
views the procedure used to implement the NACE Rev. 2 in
the Dutch BR. The design-based estimation procedures for
three different stratification schemes are discussed in sections
3, 4, and 5. The model-based approach is described in sec-
tion 6. In section 7 an overview of backcasting procedures is
provided. The paper concludes with a discussion in section
8.

2 Double coding the BR:
the Dutch situation

In 2007 and 2008, the NACE Rev. 2 is implemented in
the Dutch BR with the purpose to maintain a double coded
BR until 2010. The Dutch BR contains about 1,200,000 en-
terprises. Ninety percent of these enterprises are recoded au-
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tomatically using information from the Commercial Regis-
ter of the Chambers of Commerce. For the remaining ten
percent, the NACE Rev. 2 classification is derived man-
ually from the information available from the registration
records of the Chambers of Commerce and from the avail-
able knowledge of subject matter specialists from Statistics
Netherlands. For a small proportion of these enterprises, this
information was insufficient to establish their classification
under the NACE Rev. 2. For these cases questionnaires were
sent to gather the required information. The classification of
the BR according the NACE Rev. 2 is checked, and corrected
if necessary, with available information from the PRODCOM
(“Products of the European Community”, the Eurostat sys-
tem for the collection and dissemination of statistics on the
production of manufactured goods) and the SBS. This classi-
fication information is further treated as being without error.

3 Stratifying to NACE Rev 1.1
The first approach to produce figures under the old and

new domains is to draw a stratified simple random sample,
with a stratification that is based on the classes of NACE Rev.
1.1 crossed with size class. This implies that the sampling
design is kept unchanged and classical design-based estima-
tors are applied for estimating domain parameters under both
classifications.

Estimators for the PPC’s under the old classification are
based on an estimator for a population parameter for strati-
fied simple random sampling since the domains exactly coin-
cide with unions of strata. Due to the 1-to-n, m-to-1 or m-to-
n transitions, the domains under the new classification will
not necessarily coincide with unions of the strata. Therefore,
the estimators for the new classification should be based on
a domain estimator that accounts for the possibility that the
domains of the publication cells cut through the applied strat-
ification scheme.

Let πi denote the inclusion probability for sampling unit
i and πi j the joint inclusion probability for the units i and j.
For stratified simple random sampling it follows that:

πi =
ng,k

Ng,k
if i ∈ Ug,k, (1)

πi j =


ng,k(ng,k−1)
Ng,k(Ng,k−1) if i, j ∈ Ug,k

ng,kng′ ,k′

Ng,k Ng′ ,k′
if i ∈ Ug,k, j ∈ Ug′,k′

, (2)

where Ug,k denotes the subpopulation or stratum defined by
the crossing of size class g and PPC k.

Most target parameters of STS’s are defined as indices,
e.g. Laspeyres indices. Therefore the growth rate is an appro-
priate variable to illustrate estimation procedures and sample
size determination. Parameters under the NACE Rev. 1.1
and the NACE Rev. 2 classification are distinguished with
subscripts k and l respectively.

The monthly or quarterly growth rate of the turnover for
the k-th domain under the NACE Rev. 1.1, for example, is an
important target parameter, which is defined as

Q(t)
k =

Y (t)
k

Y (t−1)
k

. (3)

In (3) Y (t)
k and Y (t−1)

k denote the total turnover in the k-th PPC
under the NACE Rev. 1.1 for period t en t-1. An estimator
for (3) for the PPC’s under the NACE Rev. 1.1 is given by

Q̂(t)
k =

Ŷ (t)
k

Ŷ (t−1)
k

, (4)

with

Ŷ (t)
k =

G∑
g=1

Ng,k

ng,k

ng,k∑
i=1

y(t)
i,g,k. (5)

Here y(t)
i,g,k denotes the turnover of business unit i that belongs

to size class g and PPC k at time period t, Ng,k the total num-
ber of business units in the population of stratum (g,k) and
ng,k the sample size in stratum (g,k). An expression for Ŷ (t−1)

k

is defined analogously to (5) with y(t)
i,g,k replaced by y(t−1)

i,g,k .
In many national statistical institutes, the precision of a

direct estimator like (5), is improved by taking advantages of
available auxiliary information through the generalised re-
gression (GREG) estimator, see e.g. Särndal et al. (1992).
Let X(t)

k denote the vector with the known population totals of
the auxiliary information in the k-th PPC for period t. Then
the GREG estimator for Y (t)

k is defined as

Ŷ (t)
k;greg = Ŷ (t)

k + b̂
(t)
′

k (X(t)
k − X̂

(t)
k ), (6)

with X̂
(t)
k a direct estimator for X(t)

k of the form (5), with y(t)
i,g,k

replaced by a vector with the auxiliary information of the i-
th business unit belonging to stratum (g,k) for period t, say
x(t)

i,g,k. Furthermore, b̂
(t)
k denotes the regression coefficient of

the regression function of y(t)
i,g,k on x(t)

i,g,k. See formula (6.4.1)

in Särndal et al. (1992) for an expression of b̂
(t)
k . Regression

estimator (6) can also be expressed as the weighted sum over
the observations obtained in the sample:

Ŷ (t)
k;greg =

∑G
g=1

∑ng,k

i=1 w(t)
i,g,ky(t)

i,g,k, (7)

where w(t)
i,g,k are the so-called regression weights. These

weights can be interpreted as the minimally adjusted design
weights d(t)

i,g,k = Ng,k/ng,k, under a quadratic loss function,
such that the requirement is fulfilled that the weighted aux-
iliary variables in the sample adds up to the known popula-
tion totals. See Särndal et al. (1992), section 6.5 for an ex-
pression of the regression weights in (7) and Luery (1986),
Alexander (1987) or Deville and Särndal (1992) for a more
general treatment of the GREG estimator as a special case of
the family of calibration estimators.

The notation in (6) suggests that the weighting scheme
of the GREG estimator is also stratified according to NACE
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Rev. 1.1 classification. This might be preferable, but it is
not necessarily required. The weighting scheme might be
defined on a larger aggregation level, for example to avoid
unstable regression weights.

The ratio estimator can be derived as a special case from
the GREG-estimator, Särndal et al. (1992), section 6.4, and is
often used in business surveys, for example with value added
tax as the auxiliary variable. If, for example, value added tax
is used at the level of the PPC’s under the NACE Rev. 1.1
classification in a ratio estimator, then (6) simplifies to:

Ŷ (t)
k;greg =

Ŷ (t)
k

X̂(t)
k

X(t)
k , (8)

where X̂(t)
k is defined by (5), with y(t)

i,g,k replaced by the value
added tax of the i-th business unit belonging to stratum (g,k)
for period t, say x(t)

i,g,k.
An approximately design-unbiased estimator for the vari-

ance of (4) is given by (Cochran, 1977, Ch. 6):

Vâr(Q̂(t)
k ) =

1

(Ŷ (t−1)
k )2

G∑
g=1

Ng,k(Ng,k − ng,k)
Ŝ (t)2

g,k

ng,k
, (9)

with

Ŝ (t)2

g,k =
1

ng,k − 1

ng,k∑
i=1

(ẑ(t)
i,g,k −

ˆ̄Z(t)
g,k)2, (10)

ẑ(t)
i,g,k = y(t)

i,g,k − Q̂(t)
k y(t−1)

i,g,k , (11)

and

ˆ̄Z(t)
g,k =

1
ng,k

ng,k∑
i=1

ẑ(t)
i,g,k. (12)

In the case of the GREG-estimator, the same formula’s can
be used for variance estimation. In (9) Ŷ (t−1)

k must be replaced
by the GREG-estimator Ŷ (t−1)

k;greg and the residuals in (11) are
replaced by:

ẑ(t)
i,g,k = y(t)

i,g,k − b̂
(t)
′

k x(t)
i,g,k − Q̂(t)

k;greg(y(t−1)
i,g,k − b̂

(t−1)
′

k x(t−1)
i,g,k ) (13)

with Q̂(t)
k;greg = Ŷ (t)

k;greg/Ŷ
(t−1)
k;greg. For the example with the ratio

estimator where value added tax is used as auxiliary infor-
mation, the residuals in (11) are defined as:

ẑ(t)
i,g,k = y(t)

i,g,k −
Ŷ (t)

k

X̂(t)
k

x(t)
i,g,k − Q̂(t)

k;greg(y(t−1)
i,g,k −

Ŷ (t−1)
k

X̂(t−1)
k

x(t−1)
i,g,k ). (14)

Small stratum sample sizes result in unstable estimates for
the stratum population variance S (t)

g,k
2
. Stable estimates for

S (t)
g,k

2
can be obtained by pooling the within-stratum variance

for the strata with assumed equal population variances. Let

Ŝ (t)
g,k,(P)

2
denote the pooled estimate for the population vari-

ance of the strata from size class g = g1, ..., ga and PPC’s
k = k1, ..., kb. In the case of stratified simple random sam-
pling the following ANOVA-type estimator can be used to
pool the within-stratum variances:

Ŝ (t)
g,k,(P)

2
=

1∑ga
g=g1

∑kb
k=k1

ng,k − M

ga∑
g=g1

kb∑
k=k1

ng,k∑
i=1

(ẑ(t)
i,g,k −

ˆ̄Z(t)
g,k)2.

(15)
Here M denotes the number of strata that are pooled. Since
the pooled estimator (15) assumes equal within-stratum vari-
ances for the strata that are pooled, it is not necessary to ac-
count for unequal sampling fractions in the different strata.

The growth rates for the turnover for the PPC’s under the
NACE Rev. 2 are estimated analogously to (4) as

Q̂(t)
l =

Ŷ (t)
l

Ŷ (t−1)
l

. (16)

The total turnover for PPC l can be estimated with, for exam-
ple, the following Hájek-type domain estimator:

Ŷ (t)
l =

∑
i∈s

y(t)
i δ

(l)
i

πi∑
i∈s

δ(l)
i
πi

Nl =

∑K
k=1

∑G
g=1

Ng,k

ng,k

∑ng,k

i=1 y(t)
i,g,kδ

(l)
i∑K

k=1
∑G

g=1
Ng,k

ng,k

∑ng,k

i=1 δ
(l)
i

Nl. (17)

Here δ(l)
i is an indicator variable taking value 1 if sampling

unit i is classified to the l-th PPC and zero otherwise:

δ(l)
i =

{
1 if i ∈ Ul
0 if i < Ul

. (18)

An expression for Ŷ (t−1)
l is defined analogously to (17)

with y(t)
i,g,k replaced by y(t−1)

i,g,k . Note that (16) can be written as

Q̂(t)
l =

∑K
k=1

∑G
g=1

Ng,k

ng,k

∑ng,k

i=1 y(t)
i,g,kδ

(l)
i∑K

k=1
∑G

g=1
Ng,k

ng,k

∑ng,k

i=1 y(t−1)
i,g,k δ

(l)
i

. (19)

An approximately design-unbiased estimator for the
variance of (19) is given by:

Vâr(Q̂(t)
l ) =

1

(Ŷ (t−1)
l )2

K∑
k=1

G∑
g=1

Ng,k(Ng,k − ng,k)
Ŝ (t)

g,k
2

ng,k
, (20)

with Ŝ (t)
g,k

2
and ˆ̄Z(t)

g,k defined by (10) and (12), respectively with

ẑ(t)
i,g,k = y(t)

i,g,kδ
(l)
i − Q̂(t)

l y(t−1)
i,g,k δ

(l)
i . (21)

In the case of the GREG-estimator, (19) simply reads as

Q̂(t)
l;greg =

∑K
k=1

∑G
g=1

∑ng,k

i=1 w(t)
i,g,ky(t)

i,g,kδ
(l)
i∑K

k=1
∑G

g=1
∑ng,k

i=1 w(t−1)
i,g,k y(t−1)

i,g,k δ
(l)
i

, (22)

with w(t)
i,g,k the regression weights as described below formula

(7). The variance of (22) can be estimated using formula
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(20), where Ŷ (t−1)
k is replaced by Ŷ (t−1)

k;greg and the residuals in
(21) are defined by

ẑ(t)
i,g,k = [y(t)

i,g,k − b̂
(t)
′

k x(t)
i,g,k − Q̂(t)

k;greg(y(t−1)
i,g,k − b̂

(t−1)
′

k x(t−1)
i,g,k )]δ(l)

i .

(23)
The major drawback of this approach is that there is no con-

trol over the sample sizes in the PPC’s under the new clas-
sification, since this variable is not used in the stratification.
As a result there will be PPC’s with a small number of obser-
vations. The design variances will be unacceptably large for
these weak domains. One possibility to avoid large design
variances is to control the sample size in the PPC’s under
the old and the new classification by stratifying to the NACE
Rev. 1.1 and the NACE Rev. 2. Another possibility is to
improve the precision of the domain estimators by using a
model-based small area estimator for the domains under the
new classification.

The domain estimators (17) and (19) are design unbiased
but become unstable in some situations. For example in situ-
ations where sample units under the NACE Rev. 1.1. belong-
ing to different PPC’s transfer to the same PPC under the
NACE Rev. 2 and are selected with different sample frac-
tions. This gives rise to large variation between the design
weights. If these sampling units are also heterogeneous, then
this will result in unstable domain estimators accompanied
by large design variances.

One option is to change the design weights, for example
by treating the sample as if it is selected by stratified simple
random sampling, where the stratification variable is based
on the crossing of size class and the publication cells based
on the NACE Rev. 2. This results in more stable estimates
and smaller standard errors but it will introduce design bias
since the design weights are modified. Subject matter knowl-
edge can be used to judge whether this approach results in
an improvement of the estimates. Alternative solutions are
drawing additional samples in combination with the correct
design-based estimator (section 4) or applying a model-based
small area estimator (section 6).

4 Stratifying to NACE Rev. 1.1
and NACE Rev. 2

The standard approach to achieve sufficiently reliable esti-
mates for the PPC’s under the old and the new classification
is to stratify to both domain classifications and calculate the
minimum sample size for each domain to guarantee a pre-
specified precision. This implies that for the year of double
reporting the stratification of the sample design changes to
the full crossing of:
• size based on employment in 10 classes (abbreviated

with the subscript g)
• PPC’s based on the NACE Rev. 1.1 (abbreviated with

the subscript k)
• PPC’s based on the NACE Rev. 2 (abbreviated with

the subscript l)
To settle the sample size and allocation, decisions about the

type of allocation and minimum precision requirements must

be made. Common allocations are proportional allocation,
optimal or Neyman allocation, and power allocations.

Let Q̂(t)
q denote the estimated growth rate of the turnover for

period t and domain q. These domains are:
• PPC’s under the NACE Rev. 1.1 (in which case q

equals k)
• PPC’s under the NACE Rev. 2 (in which case q equals

l)
• Aggregates of the PPC’s under NACE Rev. 1.1 or

NACE Rev. 2
Let d(t)

q denote the pre-specified maximum absolute devia-
tion between the real growth rate of the turnover Q(t)

q and its
estimate Q̂(t)

q , that is
∣∣∣Q̂(t)

q − Q(t)
q

∣∣∣ ≤ d(t)
q . If it is conjectured

that Q̂(t)
q is a normally distributed random variable and if it

is required that the probability that
∣∣∣Q̂(t)

q − Qt
q

∣∣∣ > d(t)
q must

be smaller then α, then it follows that the variance of Q̂(t)
q is

bounded by:

Vâr(Q̂(t)
q ) ≤

 d(t)
q

Z(1−α/2)

2

,with

Vâr(Q̂(t)
q ) =

1

(Ŷ (t−1)
q )2

∑
k∈q

∑
l∈q

∑
g∈q

Ng,k,l(Ng,k,l − ng,k,l)
Ŝ (t)

g,l,k
2

ng,k,l
.

(24)
Here Z(γ) is the γ-th percentile point of the standard normal
distribution. Generally α is set to 5%, so Z0.975 = 1.96. The
sample size for each ng,l is obtained by assuming optimal
allocation within each PPC:

ng,k,l = nq
Ng,k,lŜ g,k,l∑

k∈q
∑

l∈q
∑

g∈q Ng,k,lŜ g,k,l
. (25)

Substituting (25) in () and solving for nq gives the follow-
ing expression for the minimum sample size within the q-th
domain:

nq =

(∑
k∈q

∑
l∈q

∑
g∈q Ng,k,lŜ

(t)
g,k,l

)2

(
Ŷ (t−1)

q

)2
(

d(t)
q

Z(1−(1/2)α)

)2
+

∑
k∈q

∑
l∈q

∑
g∈q Ng,k,l(Ŝ

(t)
g,k,l)

2

.

(26)
In order to calculate sample sizes and allocations under this

design, a double coded sample and BR for a preceding pe-
riod must be available, since parameter estimates, popula-
tion variance estimates and population totals are required for
strata that are based on the NACE Rev. 2 classification.

There are several ways to proceed. One approach is to de-
termine the sample size and allocation at the most detailed
publication level, i.e. the PPC’s under the old and new classi-
fication. Subsequently the precision obtained with this sam-
ple size and allocation for aggregates can be checked. Under
this approach the precision for the PPC’s is controlled. The
allocation is not necessarily optimal for aggregates, result-
ing in insufficient precision for the estimates at an aggregate
level.
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An alternative approach is to determine the sample size and
allocation for publication cells at an aggregate level, e.g. sec-
tions at two digits. This approach, however, will result in
sub-optimal estimates at the level of the PPC’s. The variation
between the precision of the PPC’s will increase, and as a re-
sult the precision of the estimates for some of the PPC’s will
be insufficient while others will be estimated unnecessarily
precise.

Another possibility is to determine the sample size and al-
location in two steps. First, a power allocation is applied to
the estimates at an aggregate level assuming stratified simple
random sampling where PPC’s are considered as the strata.
Power allocations can be used to find the right balance be-
tween the precision requirements for aggregates and strata
(Bankier, 1988). After having determined the sample size
and allocation over the PPC’s, an optimal or a proportional
allocation can be applied to the strata within each PPC.

Stratifying to the full crossing of size class, PPC’s under
NACE Rev 1.1 and NACE Rev. 2 can result in a very de-
tailed stratification. To obtain stable estimates for the popula-
tion variances within the strata, the pooled variance estimator
(15) could be considered. Optimal allocations are in general
not very robust for outliers. Therefore it will be necessary to
smooth the sample fractions obtained with an optimal allo-
cation manually. An alternative approach to avoid the prob-
lems with instable estimates for the population variances, is
to base the optimal allocation on an auxiliary variable that is
available from a register for the entire population, and corre-
lates well with the target parameter, e.g. value added tax.

Under this stratification scheme, the domains under the
NACE Rev. 1.1 and 2 are both controlled. Estimates for
both domains are obtained with (4) and (5) or (6). In the case
of the GREG estimator, it might be efficient to stratify the
auxiliary information in the weighting scheme to the classi-
fication of both the NACE Rev. 1.1 and 2. The level of detail
depends on the available sample size.

5 Stratifying to the NACE Rev. 2

Another approach is to base the stratification on the cross-
ing of size class and the PPC’s under the NACE Rev. 2. This
stratification will finally be used after the implementation of
the NACE Rev. 2. During the period of double reporting,
estimates for the NACE Rev. 2 domains are obtained by esti-
mators for stratified simple random sampling, that is (4) and
(5) or (6), but now applied to the domains under the NACE
Rev. 2. Estimates for the NACE Rev 1.1 domains are now
obtained with estimator (19) or (22).

Sample size and allocation is based on stratified simple ran-
dom sampling where the stratification is based on the cross-
ing of size class and the PPC’s under the NACE Rev. 2. The
procedure set out in the preceding section can be applied in
an equivalent way to this design. An additional complica-
tion is that the stratum population variances S 2

g,l must be es-
timated from a sample obtained by stratified simple random
sampling where the stratification is based on the crossing of
size class and the PPC’s under the NACE Rev. 1.1. Sam-
ple units that are classified to the same stratum (g,l) can be

selected with unequal selection probabilities, since they orig-
inate from different strata under the NACE Rev. 1.1 classifi-
cation.

A design-unbiased estimator for the population variance
S 2

g,l, that accounts for unequal selection probabilities for the
units belonging to stratum (g,l), is given by:

Ŝ 2
g,l =

1
2Ng,l(Ng,l − 1)

ng,l∑
i=1

ng,l∑
j,i

(z(t)
i − z(t)

j )2

πi j
. (27)

The joint inclusion probabilities πi j are defined by (2).
The proof that (27) is a design-unbiased estimator for the
population variances S 2

g,l proceeds as follows. Let ai denote
the indicator variable taking value 1 if unit i is selected in the
sample and zero otherwise:

ai =

{
1 if i ∈ s
0 if i < s . (28)

Now expression (27) can be written as:

Ŝ 2
g,l =

1
2Ng,l(Ng,l − 1)

Ng,l∑
i=1

Ng,l∑
j,i

(z(t)
i,g,l − z(t)

j,g,l)
2

πi j
aia j. (29)

That (27) is a design-unbiased estimator for S 2
g,l follows by

taking the expectation with respect to the sample design
conditionally on the realised sample and its allocation over
the strata. The expectation of the product of two sample
membership indicators with respect to the sample design is
by definition equal to the joint inclusion probability, that is
E(aia j) = πi j. Since the sample membership indicators ai are
the only random variables with respect to the sample design,
it follows that:

E(Ŝ 2
g,l) =

1
2Ng,l(Ng,l − 1)

Ng,l∑
i=1

Ng,l∑
j,i

(z(t)
i,g,l − z(t)

j,g,l)
2

πi j
E(aia j)

=
1

2Ng,l(Ng,l − 1)

Ng,l∑
i=1

Ng,l∑
j,i

(z(t)
i,g,l − z(t)

j,g,l)
2

=
1

2Ng,l(Ng,l − 1)

Ng,l∑
i=1

Ng,l∑
j,i

((z(t)
i,g,l)

2 + (z(t)
j,g,l)

2 − 2z(t)
i,g,lz

(t)
j,g,l)

=
1

2Ng,l(Ng,l − 1)

2(Ng,l − 1)
Ng,l∑
i=1

(z(t)
i,g,l)

2 − 2
Ng,l∑
i=1

Ng,l∑
j,i

z(t)
i,g,lz

(t)
j,g,l



=
1

2Ng,l(Ng,l − 1)

2Ng,l

Ng,l∑
i=1

(z(t)
i,g,l)

2 − 2
Ng,l∑
i=1

Ng,l∑
j=1

z(t)
i,g,lz

(t)
j,g,l


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=
1

(Ng,l − 1)

 Ng,l∑
i=1

(z(t)
i,g,l)

2 − Ng,lZ̄2
g,l


=

1
(Ng,l − 1)

Ng,l∑
i=1

(z(t)
i,g,l − Z̄i,g,l)2 = S 2

g,l.

If the estimates for S (t)
g,l

2
are unstable, the population

variance estimates can be pooled. Suppose that the within
stratum variances of the strata of size classg = g1, ..., ga
and PPC’s l = l1, ..., lb are equal. In this situation a pooled
estimator for the population variances is obtained by the
weighted average:

Ŝ (t)
g,l,(P)

2
=

ga∑
g=g1

lb∑
l=l1

Ng,l∑ga
g=g1

∑lb
l=l1

Ng,l
Ŝ (t)

g,l
2
. (30)

Similar to the stratification proposed in section 4, a double
coded sample and BR for a preceding period must be avail-
able to calculate the sample size and allocation for this strat-
ification scheme.

For the STS at Statistics Netherlands the stratification
for the year of double reporting will be based on size class
crossed with the PPC’s under the NACE Rev. 2. The sam-
ples for the STS are, however, based on a rotating panel.
Each year a fraction of about 10% of the businesses in the
panel are replaced by a sample of new businesses. In gen-
eral it takes three or four months before the sample of new
businesses that enter the panel has reached an acceptable re-
sponse level. The major drawback of an optimal allocation
under the NACE Rev. 2 is that this results in a large frac-
tion of the businesses in the existing panel to be replaced by
new businesses. This will result in an unacceptable loss of
accuracy in the first months after the change-over to the new
sample. Kish and Scott (1971) discuss sampling techniques
to retain a maximum amount of sampling units after chang-
ing the stratification scheme of repeatedly conducted survey
samples. For the STS at Statistics Netherlands, the following
approach is adopted.

In a first step the sample fractions for the new strata are
derived from the existing strata. If a stratum under the old
classification entirely transfers 1-to-1 to a new stratum or if a
stratum splits in two or more new strata (1-to-n transitions),
then the sample fractions from the strata under the NACE
Rev. 1.1 will be applied to the new strata of the NACE Rev.
2. In the case that two or more existing strata under the
NACE Rev 1.1 transfer to 1 new stratum (m-to-1 or m-to-
n transition), then the sample fraction in the new stratum is
derived as an average of the sample fractions in the old strata
weighted with the population sizes. If A denotes the union
of strata under the NACE Rev. 1.1 that are joined in stratum
of size class h and PPC l under the NACE Rev. 2, then the
sample fraction for this new stratum is given by

fh,l =

∑
g,k∈A fg,kNg,k∑

g,k∈A Ng,k
, (31)

with fg,k the sample fraction in the stratum (g,k). In the case
of large deviations from the optimal allocation, the sample
fractions are adjusted to guarantee sufficient precision.

To achieve a sample that can be considered as obtained
by stratified simple random sampling, sampling units are re-
moved from or added to the existing sample as follows. If
fg,k > fh,l, then a simple random sample from the sample of
stratum (g,k) that transfers to (h,l) is removed such that the
sample fraction (approximately) equals (31). If fg,k < fh,l,
then a simple random sample from the subpopulation of stra-
tum (g,k) that transfers to (h,l) is added to the existing sam-
ple, such that the sample fraction (approximately) equals
(31).

6 Small Area Estimation

The major drawback of stratifying to the NACE Rev 1.1 is
that the sample size in the domains of the NACE Rev. 2 are
not controlled, which can result in unacceptable large stan-
dard errors for some of these domains. The same problem
can occur for the domains under the NACE Rev. 1.1 if the
NACE Rev. 2 is used as a stratification variable. Instead
of drawing additional samples, model-based estimation pro-
cedures may be considered to improve the precision of the
estimates in the weak domains.

The design-based estimation procedures considered in the
preceding sections are widely applied by national statistical
institutes. The main advantage of the classical design-based
approach is that these estimators are always (approximately)
design unbiased. As a result these estimators have a built-in
robustness against model-misspecification. These properties
also hold for GREG and calibration estimators that incorpo-
rate available auxiliary information in the estimation proce-
dure. Another advantage is that only one set of weights needs
to be derived to estimate all possible target parameters. This
is not only convenient for multi-purpose surveys, but also
has the advantage that the various output tables will be con-
sistent. These properties make the design-based estimators
very appropriate to apply in a statistical process where there
is generally limited time available for the analysis phase.

The major drawback of the design-based approach, how-
ever, is the unacceptably large standard errors in the case of
small sample sizes. Instead of increasing sample sizes, esti-
mation procedures can be considered that explicitly rely on
a statistical model to improve the precision of domain esti-
mates with sample information observed in other domains or
preceding time periods. This is the realm of small area es-
timation. For a comprehensive overview, see Rao (2003).
A briefer but very nice overview is given by Pfeffermann
(2002).

There is a wide range of methods available in the literature
of small area estimation. A potential approach for the STS is
the so-called area level model, developed by Fay and Herriot
(1979). In this approach the direct estimates for the domains
are modelled with a mixed model:

θ̂q = θq + eq, eq � N(0, ψq), (32)
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θq = β
′

xq + νq, νq � N(0, σ2
ν). (33)

Here θ̂q denotes the direct estimator for the unknown domain
parameter θq for domain q, eq the sample error, ψq the de-
sign variance of θ̂q. The model incorporates available aux-
iliary information xq on the level of the domains, for exam-
ple value added or the monthly growth rate of value added
that might be available from tax registers. The domains are
linked through the common fixed regression coefficients β.
The unexplained variation between the domains is modelled
with the random domain effects νq.

Equations (32) and (33) describe a linear mixed model
for the domain parameters. Under this model an empirical
best linear unbiased predictor (EBLUP) can be derived to es-
timate the unknown domain parameters, see Rao (2003), sec-
tion 6.2 for an expression. This EBLUP-estimator can be ex-
pressed as a weighted average of the direct estimator θ̂q and
the synthetic regression estimator β

′xq where the weights are
based on the variance estimates of both components:

θ̃q = γ̂qθ̂q + (1 − γ̂q)β
′

xq, (34)

γ̂q =
σ̂2
ν

σ̂2
ν + ψq

. (35)

See Rao (2003) section 7.1 for an estimator of β and
various methods for estimating σ2

ν . An appealing property
of the area level model for this application is that the direct
domain estimates are the input for the model and therefore
accounts for the applied sampling design. Moreover, value
added is a potentially strong auxiliary variable, but generally
not available at the unit level for all business units. The area
level model, nevertheless, makes advantage of the available
value added information at the domain level.

The direct estimates for domains with large sample sizes
will have small design variances. In these cases, the model-
based estimates for the domain parameters obtained with
(34), are largely based on the direct estimator since γ̂q in (35)
tends to one. Direct estimates for the domains with small
sample size or large fluctuations in the design weights, will
have large design variances. This results in more emphasis
on the synthetic regression part of the EBLUP estimator in
(34) since γ̂q tends to zero. For domains were no observa-
tions are available at all, the EBLUP estimator is completely
based on the regression part since the variance estimator for
the direct estimator goes to infinity. Therefore the small area
estimation approach might provide a solution for the domains
that have been out of scope under the NACE Rev. 1.1 and
enter the domains of the NACE Rev. 2.

If the auxiliary information is available at the unit level,
then it is also possible to specify a multi-level model on the
unit level that is originally proposed by Battese, Harter and
Fuller (1988). This approach has the advantage that it uses
the auxiliary information in a more efficient way and has
more degrees of freedom for parameter and variance esti-
mation. The major drawback is that this approach generally
assumes self-weighted samples, which is not the case in this

application. One solution is to incorporate the sample de-
sign into the model, which requires additional work on the
modelling part.

7 Backcasting procedures
Replacing the NACE Rev. 1.1 by the NACE Rev. 2 re-

sults in disrupted time series. A part of the implementation
process concerns the reconstruction of historical series for
the domains under the NACE Rev. 2. This is generally re-
ferred to as backcasting. There are two important reasons
for backcasting series for the NACE Rev. 2 domains. First,
consistent series are of crucial importance for many users.
Second, sufficiently long series are required to construct sea-
sonally adjusted series for the domains under the new classi-
fication directly after the change-over to the new classifica-
tion system. Eurostat (2006d), James (2008), and Buiten et
al. (2008) describe various backcasting procedures.

Usually a distinction is drawn between backcasting pro-
cedures that operate on the level of business units and on an
aggregated level, e.g. strata or publication domains. The
first are the so-called micro approaches, while the latter are
referred to as the macro approaches.

7.1 Micro approach
The micro approach implies that the individual business

units in the samples observed in the past, and preferably also
the BR are classified with respect to the NACE Rev. 2, result-
ing in a double coded sample or BR. Subsequently, estimates
for the domains under the NACE Rev. 2 are calculated using
the same design-based approach described in section 3, for
example the domain estimators defined in (17) and (19). If it
is not possible to recode the BR, then the Hájek-type domain
estimator (17) must be replaced by the Horvitz-Thompson
estimator for a domain total. Problems with large design
variances due to small sample sizes in weak domains, or in-
stable domain estimators due to extreme variability in the de-
sign weights might be overcome with the model-based esti-
mation techniques from the theory of small area estimation.
These approaches might also be applied to obtain estimates
for the domains that have been out of scope under the old
classification system.

The area level model, proposed in section 6, can be
used to obtain model-based estimates at each period in time,
where sample information from neighbouring domains is
used to improve the precision for the estimates in the weak
domains. Since time series for the NACE Rev. 2 domains
are reconstructed, it will be efficient to apply an estimation
approach that combines sample information from different
domains with sample information observed in preceding pe-
riods. Rao and Yu (1994) extended the area level model with
a first order autoregressive component to combine cross-
sectional sample information with sample information ob-
served in preceding periods. A different approach is followed
by Pfeffermann and Burck (1990) and Pfeffermann and Bluer
(1993). They combine time series data with cross-sectional
data by modelling the correlation between domain parame-
ters in a multivariate structural time series model. The gen-
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eral finding in the literature is that methods based on time-
series data result in more precise domain estimates com-
pared to cross-sectional data, Eurarea (2004), Boonstra et al.
(2008).

The main advantage of the micro approach is that the
estimated series are still based on empirical evidence. As a
result, the structural evolution of the economy will be better
retained compared to the macro approach that strongly relies
on synthetic estimation procedures. The major drawback is
that it requires the availability of micro data and more re-
sources for double coding of the sample or the BR in the past.
Also the computations are, compared to the macro approach,
more intensive.

It is worthwhile to consider the micro approach if the
NACE Rev. 2 classification codes are available for the busi-
ness units in preceding periods or can be derived in a rel-
atively straightforward manner. At Statistics Netherlands,
for example, the STS for industry are based on a complete
enumeration of the strata with large and intermediate size
classes. In this case the number of business units in the sam-
ple is relatively small and sufficient retrorespective data are
available to derive the NACE Rev. 2 classification for preced-
ing time periods. Therefore the micro approach will be ap-
plied in this situation. Such considerations might also apply
for panel designs, where sufficient information is available to
derive the NACE Rev. 2 codes automatically, or NACE Rev.
2 codes can be imputed through recoding of the main activity
using transition or conversion schemes.

7.2 Macro approach

In many situations it will not be feasible to apply the
micro approach since it is very time costly and often requires
the collection of additional retrorespective data to recode the
business units for the NACE Rev. 2 classification. In such
situations the so-called macro approach can be considered
for backcasting purposes. The macro approach can also be
used as an alternative for the micro approach, if the direct
estimators mentioned in section 7.1 are unstable or have un-
acceptably large standard errors due to small sample sizes
in the weak domains. From this point of view, the macro
approach is a synthetic form of small area estimation, based
on naive implicit models.

The macro approach implies that estimates for the do-
mains under the NACE Rev. 2 are derived from a linear com-
bination of the estimates for the domains under the NACE
Rev. 1.1. For example the total turnover for the l-th domain
of the NACE Rev. 2 is calculated as

Ỹ (t)
l =

∑
k

βk,lŶ
(t)
k , (36)

where Ŷ (t)
k is a direct estimator for the total turnover in the k-

th domain of the NACE Rev. 1.1, and βk,l a conversion factor
specifying the fraction Ŷ (t)

k that transfers from the k-th do-
main under NACE Rev. 1.1 to the l-th domain under NACE
Rev.2. The conversion factors are fractions that specify the
distribution of Ŷ (t)

k over the classes of NACE Rev. 2, that is

∑
l

βk,l = 1. (37)

The conversion factors can be obtained in several ways
and are often derived from so-called transition matrices, Eu-
rostat (2006d), James (2008). The entries for the rows cor-
respond to the NACE Rev. 1.1. classes and the columns to
the NACE Rev. 2 classes. The cells of these matrices spec-
ify a variable of interest that transfers from class k under the
NACE Rev. 1.1 to class l under the NACE Rev. 2 and is
denoted by Xk,l. Possible variables are the number of busi-
ness units, estimated total turnover from STS or SBS during
the year of double reporting, total value added, or number
of employees. The conversion factors βk,l are easily derived
from these matrices by dividing the cells by the column total:

βk,l =
Xk,l∑
l Xk,l

. (38)

The advantage of using auxiliary register information to
construct conversion factors is the absence of sampling error.
The economic structure that is assumed with (38), however,
might differ substantially between the various auxiliary vari-
ables that are available. As a result, the evolution of the back-
casted series mainly depends on the choice of the auxiliary
variable and its validity is mainly determined by the corre-
lation between the auxiliary variable and the target variable.
A natural choice is to use the same variables that are used
as auxiliary information in the calibration estimator for the
target variable to be backcasted, James (2008).

As an alternative, direct estimates for the target param-
eter obtained with STS or SBS can be used to construct the
conversion factors. This avoids the choice between different
auxiliary variables but may result in unstable estimates for
the conversion factors due to sampling error.

If the estimated turnover is used to construct the conver-
sion factors, then a domain estimator like (17) can be used.
In this case it follows that

Xk,l = Ŷ (T )
k,l =

∑G
g=1

Ng,k

ng,k

∑ng,k

i=1 y(T )
i,g,kδ

(l)
i∑G

g=1
Ng,k

ng,k

∑ng,k

i=1 δ
(l)
i

Nk,l, (39)

where T refers to the period of double reporting. If the
Horvitz-Thompson estimator is used, then it follows that

Xk,l = Ŷ (T )
k,l =

G∑
g=1

Ng,k

ng,k

ng,k∑
i=1

y(T )
i,g,kδ

(l)
i . (40)

The advantage of this estimator is that in the year of double
reporting it follows that

Xk+ =
∑

l

Ŷ (T )
k,l =

G∑
g=1

Ng,k

ng,k

ng,k∑
i=1

y(T )
i,g,k, (41)

which is equal to the direct estimator (5) for the domains
under the NACE Rev. 1.1. As a result it follows that
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Ỹ (T )
l =

∑
k

Ŷ (T )
k,l =

K∑
k=1

G∑
g=1

Ng,k

ng,k

ng,k∑
i=1

y(T )
i,g,kδ

(l)
i . (42)

If the Horvitz-Thompson estimator instead of the Hájek esti-
mator (17) is used for the domains under the NACE Rev. 2,
then it follows that the backcasted values equals their direct
estimates in the year of double reporting. With this approach,
no discontinuities occur in the series of the NACE Rev. 2
domains at the moment that the series change from a back-
casting approach to a direct estimation procedure. In other
cases some kind of linking procedure might be necessary to
deal with this kind of discontinuities (section 7.5).

In formula (36) linear combinations of classes under the
NACE Rev. 1.1 are used to backcast the series for the do-
mains under the NACE Rev. 2. Instead of working on a four
digit level, it is also possible to work on a more detailed or
aggregated level. The lower the level of aggregation, the bet-
ter the real evolution of the economy is retained. Choosing
a low level of aggregation, however, might result in instable
estimates for the conversion factors and therefore also for the
backcasted domains. Using the SBS for constructing conver-
sion factors has the advantage that the direct estimators are
more precise since the sample size of the SBS is generally
larger compared to the STS. Small area estimators might also
be considered as input for the construction of the conversion
factors.

7.3 Macro approaches with time dependent con-
version factors

The main disadvantage of the macro approach is that it
is based on very strong assumptions. Using time indepen-
dent conversion factors assumes that the economic structure
observed in the period to construct the conversion factors is
constant over time. Generally, this assumption will not be
met. Particularly for new activities this approach easily re-
sults in an unrealistic evolution of the backcasted indicators.
Therefore it is worthwhile to consider the application of time
dependent conversion factors.

One option is to combine the micro and macro approach.
The micro approach, for example, can be applied for one or
two years in the past, preferably the base years to compile in-
dices. Conversion factors can be constructed for these years.
Subsequently the conversion factors for the intervening years
can be derived through linear or non-linear interpolation. It
is also possible to use the micro approach for the most recent
years, or extend the period of double coding and reporting
after the change-over to the NACE Rev. 2. This offers the
possibility to evaluate the assumption that conversion fac-
tors are time independent and to construct time dependent
conversion factors that allow for trend or seasonal patterns if
necessary.

Subject matter specialists can and should be consulted
to judge whether the evolution of a backcasted series seems
realistic. Such subject matter knowledge might also be use-
ful to adjust the conversion factors. For example to make

decisions about the moment that innovations and new eco-
nomic activities are introduced, including realistic interpo-
lation functions for the conversion factors between this mo-
ment and the year of double coding or double reporting.

Another approach is to construct transition matrices and
conversion factors for the separate years. This might be an
option if the BR or the SBS can be double coded in a relative
straightforward way, via an automatic procedure.

7.4 Backcasting indices

Most target parameters of STS’s are defined as indices.
One way to proceed is to backcast the underlying series for
total turnover. Also the SBS in the base year must be back-
casted for the purpose of deriving weights for aggregating the
indices from classes to groups, divisions or sections. For this
purpose the micro as well as the macro approach, discussed
in the preceding sections, can be used. A more detailed dis-
cussion is provided by James (2008).

An alternative approach, appealing due to its simplicity,
is described in Eurostat (2006d), section 2.2.3. According
to this approach, indices are backcasted in two steps. First a
transition matrix is constructed for the variable that is used
to construct weights for aggregating indices, for example the
total value added. This is generally accomplished with the
macro approach described in section 7.2 or 7.3, but it is also
possible to use the micro approach described in section 7.1.
In the second step, the distribution of the total value added
over the NACE Rev. 1.1 domains within a domain of the
NACE Rev. 2 are calculated, that is

ϕk,l =
Xk,l∑
k Xk,l

, (43)

with Xk,l the total value added that transfers from domain k
under the NACE Rev. 1.1 to domain l under the NACE Rev.
2. Formula (43) specifies the distribution of the total value
added over the domains under the NACE Rev. 1.1 within
a domain of the NACE Rev. 2, so

∑
k ϕk,l = 1. Note the

difference with (38), which specifies the distribution over the
domains under the NACE Rev. 2 within a domain of the
NACE Rev. 1.1. The conversion factors defined by (43) are
the weights to be used in (36) to backcast or convert the in-
dices from the NACE Rev. 1.1 to the NACE Rev. 2.

7.5 Linking series

Another consequence of applying backcasting proce-
dures is that discontinuities may occur in the series for the
domains under the NACE Rev. 2 at the moment that the
macro approach changes to the micro approach during the
period that a backcasting procedure is used or at the mo-
ment of the change-over from the backcasting procedure to
the direct estimation approach after the implementation of
the NACE Rev. 2 as the regular classification system. A
structural time series model with an intervention variable that
models both types of change-over could be used to quantify
these discontinuities. These models can also be applied as
a linking procedure to restore the continuity of these series.
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See Van den Brakel et al. (2008) for details and alternative
linking procedures, for example based on simple ratios.

Discussion

In this paper a set of sampling and estimation techniques
are reviewed that can facilitate a smooth transition from the
NACE Rev. 1.1 to the NACE Rev. 2 in business statistics.

The first step of the transition is the implementation
of the new classification system in the BR. Having a dou-
ble coded BR offers the possibility to produce figures under
both classification systems simultaneously. Appropriate do-
main estimators for the domains under both classifications
are available from classical sampling theory if a probabil-
ity sample is used. Generally the domains are used in the
stratification to control the sample size within each domain
to meet pre-specified precision requirements. Stratifying to
both classifications to meet the precision requirements for the
domains under both classifications simultaneously, might re-
sult in a substantial increase of the sample size. The tra-
ditional design-based domain estimators, on the other hand,
may result in unreliable estimates due to small sample sizes
in domains under the classification that is not used as a strat-
ification variable in the sample design. Model-based esti-
mation procedures from the realm of small area estimation
might be used as an alternative for drawing additional sam-
pling units. The three different stratification schemes in com-
bination with the design- and model-based estimation proce-
dures, discussed in this paper, result in six different sampling
strategies for the domains under both classifications during
the period of double coding. The pros and cons of these six
strategies are summarized in Table B.1 of Annex B.

There is a strong demand for producing historical time
series for the domains under the new classification in the
past. Many users require consistent series without discon-
tinuities due to the introduction of a new classification sys-
tem. Also for the purpose of studying cycles and producing
seasonally adjusted series it is important to construct series
under the NACE Rev. 2 in the past. For this purpose dif-
ferent backcasting procedures are described. The micro ap-
proaches, operating at the level of the sampling units, are
essentially the traditional domain estimators from classical
sampling theory. The advantage is that these approaches are
design unbiased. The results can, however, still be unreliable
for domains with small sample sizes. Another drawback is
that this approach is costly and computation intensive.

Several macro approaches provide alternatives to the mi-
cro approach. These procedures operate at an aggregated
level and predict the series for a domain under the NACE
Rev. 2 as a linear combination from the domain estimates
of the NACE Rev. 1.1. These approaches are less compu-
tation intense and can result in more stable estimates. They
rely, however, on strong and often naive model assumptions,
particularly if the transition coefficients are assumed to be
constant over time because they are based on one period of
double coding or double reporting only. This could result in
strongly biased predictions for the domains under the NACE
Rev. 2.

It is expected that more accurate predictions for the

NACE Rev. 2 domains in the past can be obtained with more
advanced model-based estimation procedures that are avail-
able from the theory of small area estimation. These pro-
cedures borrow sample information from other domains or
previous time periods by relying explicitly on a mixed model
or time series model. The underlying assumptions are gen-
erally more realistic compared to the synthetic procedures
that predict the domains under the NACE Rev. 2 as a linear
combination from the domain estimates of the NACE Rev.
1.1.

The small area estimation approach provides some use-
ful solutions for problems encountered by the NACE Rev.
2 implementation. Depending on the available auxiliary in-
formation, it can be used to improve the precision of esti-
mates for weak domains. These are for example the domains
were large design variances occur due to small sample sizes
or large fluctuations between sample fractions, resulting in
instable parameter estimates. This approach is also useful to
obtain synthetic regression estimates for the empty domains
that have been out of scope under the old classification. The
success of this approach strongly depends on the quality of
the available auxiliary information. It can be expected that
auxiliary information like value added, available from tax
registers, strongly correlates with parameters as turnover.

Model-based estimation procedures require careful
model selection and evaluation, since they are not robust for
model misspecification. This could hamper the application
in a statistical production process, where there is generally
a limited amount of time available for the analysis phase to
produce timely figures. Since STS generally have a limited
set of target parameters, these obstructions may be manage-
able.

It can be concluded that three different classes of back-
casting procedures are distinguished in this paper. The first
approach is the micro approach in combination with design-
based estimation procedures. The second one is also a micro
approach in combination with model-based estimation pro-
cedures. The third one is the macro approach, which basi-
cally relies on very synthetic model-based procedures. The
different properties of these three backcasting approaches are
summarized in Table B.2 in Annex B.
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Appendix A: Overview of the classification of NACE Rev. 1.1 and NACE Rev. 2
Table A.1: Change-over of the section of NACE Rev. 1.1 to the NACE Rev. 2

NACE rev. 1.1 NACE Rev. 2

Section Description Section Description
A Agriculture, hunting and forestry A Agriculture, forestry and fishing
B Fishing
C Mining and quarrying B Mining and quarrying
D Manufacturing C Manufacturing
E Electricity, gas and water supply D Electricity, gas, steam and air conditioning supply

E Water supply, sewerage, waste management and
remediation activities

F Construction F Construction
G Wholesale and retail trade: repair of motor vehicles, G Wholesale and retail trade: repair of motor

motorcycles and personal and household goods vehicles and motorcycles
H Hotels and restaurants I Accommodation and food service activities
I Transportation, storage and communication H Transportation and storage

J Information and communication
J Financial intermediation K Financial and insure activities
K Real estate, renting and business activities L Real estate activities

M Professional, scientific and technical activities
N Administrative and support service activities

L Public administration and defence; O Public administration and defence;
compulsory social security compulsory social security

M Education P Education
N Health and social work Q Human health and social work activities
O Other community, social and personal services activities R Arts, entertainment and recreation

S Other services
P Activities of private households as employers and T Activities of private households as employers;

undifferentiated production activities of private households undifferentiated goods- and services-producing
activities of households for own use

Q Extraterritorial organizations and bodies U Activities of extraterritorial organizations
and bodies

Sections A and B under NACE Rev. 1.1 are joined into one section A under NACE Rev. 2.
Section E under NACE Rev. 1.1 is divided in two sections D and E under NACE Rev. 2.
Section I under NACE Rev. 1.1 is divided in two sections H and J under NACE Rev. 2.
Section K of NACE Rev. 1.1 is divided in three sections L, M and N under NACE Rev. 2.
Section O under NACE Rev. 1.1 is divided in two sections R and S under NACE Rev. 2.



116 JAN VAN DEN BRAKEL

Table A.2: Overview of the number of subsections, divisions, groups and classes within each section
of the NACE Rev. 1.1 and the NACE Rev. 2.

NACE rev. 1.1 NACE Rev. 2

Section Subsec. Divisions Groups Classes Section Divisions Groups Classes
A 1 2 6 14 A 3 13 39
B 1 1 1 2
C 2 5 13 16 B 5 10 15
D 14 23 103 242 C 23 95 230
E 1 2 4 7 D 1 3 8

E 4 6 9
F 1 1 5 17 F 3 9 22
G 1 3 19 79 G 3 21 91
H 1 1 5 8 I 2 7 8
I 1 5 14 21 H 5 15 23

J 6 13 26
J 1 3 5 12 K 3 10 18
K 1 5 23 39 L 1 3 4

M 7 15 19
N 6 19 33

L 1 1 3 10 O 1 3 9
M 1 1 4 6 P 1 6 11
N 1 1 3 7 Q 3 9 12
O 1 4 12 30 R 4 5 15

S 3 6 19
P 1 3 3 3 T 2 3 3
Q 1 1 1 1 U 1 1 1
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Table
B

.1:continued.
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