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Predictive modeling methods from the field of machine learning have become a popular tool
across various disciplines for exploring and analyzing diverse data. These methods often do not
require specific prior knowledge about the functional form of the relationship under study and
are able to adapt to complex non-linear and non-additive interrelations between the outcome
and its predictors while focusing specifically on prediction performance. This modeling per-
spective is beginning to be adopted by survey researchers in order to adjust or improve various
aspects of data collection and/or survey management. To facilitate this strand of research, this
paper (1) provides an introduction to prominent tree-based machine learning methods, (2) re-
views and discusses previous and (potential) prospective applications of tree-based supervised
learning in survey research, and (3) exemplifies the usage of these techniques in the context of
modeling and predicting nonresponse in panel surveys.
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1 Introduction

Investigating and explaining error sources in surveys of-
ten involves applying some form of (parametric) regression
method in the research process. In many situations, such
models are used to achieve an overarching goal, such as es-
timating contact and response propensities (e.g. Bethlehem,
Cobben, & Schouten, 2011; Schonlau, Van Soest, Kapteyn,
& Couper, 2009), constructing weights (Brick, 2013), or im-
plementing targeted designs (e.g. Calderwood, Cleary, Flore,
& Wiggins, 2012; Peytchev, Riley, Rosen, Murphy, & Lind-
blad, 2010). These tasks require that the underlying model
represents a proper approximation of the true function f (x)
(e.g. the relations between nonresponse and all relevant co-
variates predicting nonresponse). In the context of para-
metric regression, this implies careful model specification.
However, prior knowledge about the correct functional form
might not always be available, or estimating the potentially
complex function in a parametric framework might be com-
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putationally infeasible (perfect separation in a logit model).
Concurrently, advances in the field of machine learning

created an array of flexible modeling techniques that often
do not require prior knowledge about the functional form of
the relationship and are able to adapt to complex non-linear
and non-additive interrelations between outcome and covari-
ates. These methods therefore represent interesting alterna-
tives to parametric regression and may be used to substitute
any given regression model when a more flexible representa-
tion of the relationship is needed (Berk, 2006).

In a survey context, various sources of errors may be
thought of as constituting prediction problems which can be
used to develop targeted interventions based on learned expe-
rience (i.e. prediction models). Examples include predicting
unit nonresponse in cross-sectional studies or panel surveys
or predicting break-offs and straightlining in a web survey
context. Machine learning techniques facilitate to tackle such
research problems due to their inherent focus on prediction
performance. The prediction setting requires to build mod-
els that generalize well to new data, a task that is handled
in supervised learning by introducing some regularization to
model flexibility (e.g. by controlling the depth of a decision
tree). We will come back to this when describing the meth-
ods.
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The methodology and potential of machine learning has
been discussed in the context of economics (Mullainathan
& Spiess, 2017; Varian, 2014), psychology (Strobl, Mal-
ley, & Tutz, 2009), political science (Hainmueller & Hazlett,
2014; Jones & Linder, 2015), within social science (Ghani &
Schierholz, 2017; Kopf, Augustin, & Strobl, 2013), and sur-
vey research (Buskirk, Kirchner, Eck, & Signorino, 2018).

The present study extends the introductory work of
Buskirk et al. (2018) by focusing on the usage of tree-based
methods as both exploratory modeling and prediction tools
in a panel data setting. Tree-based methods represent an
important branch of supervised learning that offers a vari-
ety of flexible methods which build on a common frame-
work. In this context, we discuss tree building algorithms
such as Classification And Regression Trees (CART), Con-
ditional Inference Trees (CTREE), and model-based recur-
sive partitioning (MOB) and ensemble methods such as ran-
dom forests, boosting and Bayesian additive regression trees
(BART). CTREE, MOB and BART represent relatively re-
cent approaches that have rarely been considered in a sur-
vey context (see Kern, 2017; Klausch, 2017), but have valu-
able characteristics for the types of questions asked by survey
methodologists.

Supervised learning is particularly beneficial for large data
analysis, such as in the context of panel data. From a model-
ing perspective, the wealth of information that accumulates
over time and involves different types of observations (e.g.
individuals, households, regions, interviewers) intensifies
specification issues when an accurate representation of f (x),
e.g. for deriving longitudinal weights, is sought. Further-
more, longitudinal data collection naturally connects with the
idea of adaptive designs (Groves & Heeringa, 2006; Lynn,
2017), e.g. by learning about dropout patterns from previous
waves in order to derive interventions for new waves of the
panel.

Following this argument, the present study illustrates the
usage of machine learning for modeling and predicting unit
nonresponse in the German Socio-Economic Panel study
(GSOEP). GSOEP consists of a diverse pool of data from
different subsamples, collected using different modes over
time and also involves information from various sources. We
show that feeding this information to flexible modeling tech-
niques allows researchers to gather insights that would likely
be overlooked by traditional regression modeling. Further-
more, preliminary findings indicate that tree-based ensemble
methods such as random forests and boosting markedly out-
perform logistic regression when focusing on nonresponse
prediction. Variable importance and partial dependence plots
are used to investigate this result.

This paper is structured as follows: Section 2 introduces
and compares and contrasts the various supervised learning
methods. Section 3 reviews applications of machine learn-
ing methods in survey research, and discusses some potential

additional applications. The application of these methods to
panel nonresponse follows in section 4. We close with a dis-
cussion and outlook in section 5.

2 Supervised Learning Methods

In this paper we focus on techniques from the field of
supervised learning, which aim to build prediction models
for some outcome of interest, given a set of predictor vari-
ables (features). The relationship between outcome and fea-
tures is learned with training data (predictors and outcome
available), such that the derived model can be applied to
predict the outcome for new, previously unseen observa-
tions (test data). This task requires to find a model that is
flexible enough to closely approximate the true function be-
tween the outcome and its predictors while also being robust
to (changes in) the particular training set being used (bias-
variance trade-off; Hastie, Tibshirani, & Friedman, 2009).
Against this background, the machine learning pipeline often
involves finding the optimal model setup for a given method
(model tuning) and/or selecting the best model among dif-
ferent learning methods, both with respect to expected per-
formance in new data. Within a given training set, out-
of-sample prediction performance can e.g. be estimated
by cross-validation, which (repeatedly) uses different train-
ing data pieces for model building and evaluation (for an
overview, see Ghani & Schierholz, 2017; Kuhn & Johnson,
2013).

While a wide range of supervised learning methods can be
used in the prediction setting, tree-based approaches might
be particularly useful in a (longitudinal) survey research con-
text: Tree-based methods offer a variety of flexible tools that
are (a) able to handle diverse data without the need of ex-
tensive pre-processing and for which (b) fast computational
implementations are often available. Using trees furthermore
precludes the necessity to pre-select predictor variables from
a set of potential features since the informative variables can
be detected by the tree building algorithm. Tree-based meth-
ods, however, differ in terms of the prediction performance
they may achieve and the effort that is typically needed for
model tuning, as outlined in the following sections.

2.1 Decision Trees

CART and CTREE. While decision trees can be grown
in different ways (see Loh, 2014), we begin with focusing
on one prominent algorithm – Classification And Regression
Trees (CART; Breiman, Friedman, Olshen, & Stone, 1984),
and on one more recent tree building approach – Conditional
Inference Trees (CTREE Hothorn, Hornik, & Zeileis, 2006)
– to outline the main ideas of tree-based learning.1 In the
CART context, the predictive model is built by partitioning

1The following sections draw on Hastie et al. (2009), Kuhn and
Johnson (2013), Zhang and Singer (2010).
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the predictor space (the set of values of all predictors) into a
set of regions or nodes, which are sought to be homogeneous
with respect to the outcome. In order to find these regions,
given training data (xi, yi) for i = 1, 2, . . . , n observations
with xi being a vector of j = 1, 2, . . . , p predictors and yi rep-
resenting the outcome, the tree growing process starts with
all observations (representing the root node) and searches for
the variable j and cut point c, i.e. the best split, which lead to
the two most homogeneous subregions. More specific, a split
s is sought which leads to the largest decrease in node impu-
rity I when splitting a node τ into two child nodes τL and
τR. For continuous outcomes (regression trees), the splitting
criterion

∆IS S (s, τ) = IS S (τ) − IS S (τL) − IS S (τR) (1)

simply boils down to investigating decreases in residual sums
of squares, since in this case node impurity can be defined
by summing over the squared deviations from the mean in a
given node

IS S (τ) =
∑
i∈τ

(yi − ȳτ)2. (2)

Thus, the splitting objective (argmaxs ∆IS S (s, τ)) seeks to
find regions with low within but high between variance over
all potential split points.

For categorical outcomes (classification trees), node im-
purity can be measured with e.g. the Gini index in order to
determine the heterogeneity of a group with respect to their
composition of class labels. For a categorical outcome with
classes k = 1, 2, . . . ,K, this measure is given by

IGini(τ) =

K∑
k=1

p̂kτ (1 − p̂kτ ) (3)

with p̂kτ being the proportion of observations from class k in
node τ. On this basis, the reduction in overall impurity due
to a split can be assessed by

∆IGini(s, τ) = IGini(τ) − p(τL)IGini(τL) − p(τR)IGini(τR). (4)

Here, p(τL) and p(τR) represent the probability of falling into
the left and right nodes, respectively. As with continuous
outcomes, the variable and cut point which lead to the most
homogeneous subregions – and thereby to the largest reduc-
tion in overall impurity – are chosen for splitting.

Equipped with a way to determine the best split, the CART
algorithm takes a recursive approach to growing a tree (see
Algorithm 1). Once the first split is found, the resulting
subregions are themselves considered for splitting, i.e. the
splitting process is repeated given the results of the previous
step. This leads to a top-down tree structure with a poten-
tially large number of fine-grained regions as terminal nodes.
Since very large trees can overfit the training data, stop-
ping criteria such as a minimum number of cases per node

are introduced in order to limit tree size. In addition, cost-
complexity pruning can be used with which the best subtree
can be found by cutting back tree branches. Subtree per-
formance is hereby typically estimated via cross-validation
while treating tree complexity as a tuning parameter.

While finding an optimal CART tree for prediction in-
volves iterative pruning procedures, Hothorn et al. (2006)
proposed a tree growing framework which utilizes statistical
tests to determine the best tree size (Conditional Inference
Trees; CTREE). In this context, the global null hypothesis
of independence between the outcome and any of the pre-
dictor variables is tested as a first step via permutation tests.
The result of this test is then used to determine whether any
(further) splitting should be performed, i.e. the associated
p-value is used as a stopping criterion. Given a positive test
decision, the predictor variable with the strongest associa-
tion with the outcome (smallest p-value of the partial null
hypotheses tests) is selected and a variant of the permutation
test statistic is used to determine the best split point in the
next step. As this procedure separates the variable selection
and split point decision, CTREE overcomes a major limita-
tion of CART, which is a selection bias towards predictors
with many potential split points.

After the – CART or CTREE – partitioning process, a
decision tree can be considered to consist of a set of m =

1, 2, . . . ,M terminal nodes which can be used for predicting
the outcome for new data. For this task, a constant γm is used
for each new observation which falls into τm, such that a tree
T with parameters Θ = {τm, γm} can be expressed as

T (x; Θ) =

M∑
m=1

γmI(x ∈ τm). (5)

For regression trees, γm simply represents the mean of the
outcome variable for all training observations in τm. With
categorical outcomes, the majority class in τm is used for
prediction.

The prediction surface of decision trees as outlined here
has a block-wise structure with regions or boxes of constant
predictions for different sections of the predictor space. As a
result of the recursive partitioning process, this structure can
approximate complex interactions and non-linearities, which
may be detected with a simple visual representation of the
tree result (for modest tree sizes). Decision trees can there-
fore be used as a data-driven tool for exploring distinct sub-
groups that can be defined by complex constellations of the
predictor set. In the survey context, such groups might rep-
resent observations that have a high risk of dropping out of a
panel study (see section 4.2).

Model-based Recursive Partitioning. The tree-
building concept of splitting the data into smaller and more
homogeneous pieces can also be utilized in a different set-
ting. While decision trees such as CART or CTREE consist
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Algorithm 1: Tree growing process
Parameter : Stopping criteria
Initialization: Assign training data to root node

1 if stopping criterion is reached then
2 end splitting;
3 else
4 find the optimal split point;
5 split node into two subnodes at this split point;
6 for each node of the current tree do
7 continue tree growing process;
8 end
9 end

of a set of nodes with constant values for prediction, model-
based recursive partitioning (MOB) combines parametric
regression with the tree idea (Zeileis, Hothorn, & Hornik,
2008). In general, this approach first fits a parametric
regression model with all available observations (root node)
and then passes this model to a partitioning algorithm
that considers whether a single model is suitable for all
observations and – if this is not the case – subsequently
fits distinct models for different subgroups via recursive
partitioning to account for heterogeneous effects across
these groups.

In order to grow models on a tree, a set of partitioning
variables zi has to be selected to provide potential split points
for partitioning e.g. a pre-specified generalized linear model
(whereas some overlap with xi is allowed). The decision on
whether to estimate distinct models for different sections of
the data is based on generalized M-fluctuation tests (Zeileis
& Hornik, 2007), which are used to detect parameter insta-
bilities in the current model given the partitioning variables.
More precisely, consider an objective function Ψ (e.g. error
sum of squares) and a vector of parameter estimates

θ̂ = argmin
θ

n∑
i=1

Ψ(yi, xi, θ). (6)

The parameter instability tests are based on the individual
contributions to the partial derivatives of the objective func-
tion

ψ(yi, xi, θ) =
∂Ψ(yi, xi, θ)

∂θ
(7)

evaluated at the current estimates, i.e. ψ̂i = ψ(yi, xi, θ̂). Po-
tential instabilities are detected by ordering these contribu-
tions (e.g. ψ̂i = xi(yi−x′i θ̂) for OLS) according to a given par-
titioning variable, whereas systematic deviations from their
mean zero would indicate a structural change in the inspected
relationship. The instability test evaluates the strength of the
change and eventually rejects the null hypothesis of a con-
stant effect of a given covariate in the case of considerable
deviations.

If parameter instabilities are detected, the associated par-
titioning variable is used to split the current model into two
locally optimal submodels. This involves searching for the
best subgroup partition over the range of potential cutpoints
of the selected partitioning variable. Having parametric mod-
els in the left (τL) and right (τR) daughter nodes, optimality
for the cutpoint decision can be defined by comparing the
sum of the segmented objective function∑

i∈τL

Ψ(yi, xi, θ̂
(L)) +

∑
i∈τR

Ψ(yi, xi, θ̂
(R)) (8)

over all potential cutpoints of the partitioning variable.
After the initial model in the root node has been tested

for parameter instabilities and eventually split into two sub-
models by searching for the cutpoint that minimizes (8), the
coefficients of the resulting models in both tree nodes might
be subject to further instabilities. Therefore, M-fluctuation
tests can be carried out for both models, respectively, in or-
der to determine whether a tree with two nodes is sufficient.
Model-based recursive partitioning therefore adapts the re-
peated splitting approach of decision trees and continues the
partitioning process within each node (see Algorithm 2). As
with decision trees, stopping criteria have to be defined in
order to control tree complexity. A natural criterion is to stop
splitting when no significant parameter instabilities are found
in a given node, although additional rules can be defined as
well (e.g. requiring a minimum number of cases per node).2

In a prediction setting, MOB can be used to predict the
outcome of interest with a set of local regression models or
to predict node membership, i.e. identifying which model is
appropriate for a new observation. In a survey research con-
text, the latter usage could be useful to e.g. identify observa-
tions for which a particularly strong effect of a certain survey
management variable in a nonresponse model is expected.
An additional feature of MOB is that the partitioning process
can also be informative from a model specification perspec-
tive (Kopf et al., 2013). Since the split decision is based on
parameter instabilities, a model-based tree with at least one
split suggests that the initial model in the root node is not
adequate for the entire sample. MOB therefore allows to find
interactions in the data that can be used to identify subgroups
that are distinct in terms of the specified relationships. In a
sense, this could be viewed as exploratory modeling based
on a theory-guided initial guess.

2.2 Random Forests

The aforementioned methods have in common that their
splitting process results in a single tree. Given a research ob-
jective which focuses on prediction performance, this might

2Alternatively, pruning can be performed by cutting back a large
(unrestricted) tree with many submodels by inspecting improve-
ments in AIC or BIC due to a split.
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Algorithm 2: Recursive partitioning with GLMs
Parameter : p-value threshold
Initialization: Fit initial model using all observations

1 Perform M-fluctuation tests for each partitioning
variable;

2 if minimum p-value exceeds threshold then
3 end partitioning;
4 else
5 choose partitioning variable associated with the

smallest p-value;
6 find the optimal split point;
7 split node into two subnodes at this split point;
8 for each node of the current tree do
9 continue partitioning process;

10 end
11 end

not be a desirable property. Besides approximating the rela-
tionship between features and outcome with a (non-smooth)
step function, decision trees are vulnerable to small changes
in the training data given the hierarchical nature of the tree
growing process (i.e., a change in one split point affects the
remaining splits down the tree). As a result, decision trees
are often thought of as being instable high-variance proce-
dures that, built on a given training data set, typically do not
generalize well to new test data. This limitation is addressed
by ensemble methods.

Random forests (Breiman, 2001) represent a prominent
ensemble approach that builds on the CART algorithm for
growing individual trees.3 Instead of building only one deci-
sion tree for prediction, the guiding idea is to combine many
trees into a robust ensemble. In order to grow multiple trees,
random forests utilize the bagging approach (Breiman, 1996)
by drawing a large number of bootstrap samples from the
training data, i.e. generating samples of the same size as the
training data by sampling with replacement. The sampled
data is then handed over to a CART-like algorithm in order to
grow a decision tree on each bootstrap sample, respectively.
Since these bootstrap samples contain different portions of
the original data, the corresponding trees are likely to differ
across samples and therefore form an ensemble of distinct
trees.

However, in addition to bagging, random forests introduce
an extra trick when growing the individual decision trees.
The tree growing algorithm is restricted to consider only a
random sample of features at each split point when growing
trees for a forest (see Algorithm 3). Building a random for-
est therefore involves randomization with respect to the rows
(bootstrapping) and columns (sampling features) of the train-
ing data. Since bootstrapping induces trees that all draw from
the same training data, this approach helps to decorrelate the

individual trees such that – in comparison with pure bagging
– a more diverse ensemble is formed. An interesting feature
of this approach is that utilizing multiple trees precludes the
necessity to penalize tree complexity. Therefore, trees in a
random forest are grown deep. While the number of trees
of the forest is typically set to a sufficiently large number
(e.g. 500), the best subset size m of the p predictors depends
strongly on the specific problem such that a range of try-out
values should be considered (starting from p/3 (regression)
and
√

p (classification)).
After growing a random forest, the ensemble of trees

can be used for prediction. With continuous outcomes, this
amounts to recording the predictions of each individual (re-
gression) tree Tb for a new observation and then taking the
average over all B trees:

f̂B(x) =
1
B

B∑
b=1

Tb(x). (9)

For categorical outcomes, the predicted class Ĉb(x) of each
classification tree of the forest is recorded and the most com-
monly occurring class over all trees is chosen:

ĈB(x) = majority vote{Ĉb(x)}B1 . (10)

Averaging (or voting) helps in counterbalancing the instabil-
ity of single decision trees, which is further facilitated by
growing decorrelated trees to effectively decrease variance.
As a result, random forests typically achieve a considerable
boost in prediction performance in comparison with CART.

Combining predictions from an ensemble of diverse trees
also leads to a smoother prediction surface in comparison
with the block-wise structure of a single tree. As this struc-
ture is picked up solely from the data, i.e. not specified in
advance, random forest results can be useful for exploring
relationships and identifying non-linear and/or non-additive
patterns in the context of a powerful ensemble, e.g. through
graphical techniques (besides using them in a prediction set-
ting; see section 4.2). A related usage would be to directly
compare the performances of a random forest and a paramet-
ric model, whereas large differences might point to model
misspecification in the latter case (Berk, 2006).

2.3 Boosting

While in random forests each tree is grown separately, i.e.
independent of the other trees, boosting represents a fam-
ily of ensemble methods that focuses on sequential learning.

3However, other tree growing algorithms can be used as well.
For CTREE this results in conditional random forests (Strobl,
Boulesteix, Zeileis, & Hothorn, 2007) and for MOB in the mobFor-
est approach (Garge, Bobashev, & Eggleston, 2013). An alternative
approach for building an ensemble of trees has been proposed by
Geurts, Ernst, and Wehenkel (2006).
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Algorithm 3: Grow a Random Forest
Parameter: Number of trees B, predictor subset size

m, stopping criteria

1 for b = 1 to B do
2 draw a bootstrap sample from the training data;
3 assign sampled data to root node;
4 if stopping criterion is reached then
5 end splitting;
6 else
7 draw a random sample m from the p

predictors;
8 find the optimal split point among m;
9 split node into two subnodes at this split

point;
10 for each node of the current tree do
11 continue tree growing process;
12 end
13 end
14 end

In this context, decision trees are – again – most commonly
used as building blocks to form an ensemble, whereas the
individual trees are now built in sequence such that each tree
depends on the results of its predecessor. Here we consider
a prominent framework for boosting; Gradient Boosting Ma-
chines (GBM Friedman, 2001; Friedman, Hastie, & Tibshi-
rani, 2000).

GBM seek to find a sequence of trees where each com-
ponent provides an improvement to the previous tree. At a
given iteration t in this process, the goal is to find the tree pa-
rameters Θt = {τmt, γmt}, the nodes with associated constants
of the new tree, that reduce the (e.g. quadratic) loss as much
as possible, given the previous tree ft−1(xi):

Θ̂t = argmin
Θt

n∑
i=1

Ψ(yi, ft−1(xi) + T (xi; Θt)). (11)

One way to think about this problem is that the ultimate goal
of the new tree is to improve the predicted values that the pre-
vious tree got wrong. Stated differently, the new tree should
focus on “difficult” observations. In GBM, difficulty is rep-
resented by pseudo-residuals, which take on different forms
depending on the type of the outcome variable and the chosen
loss function. The GBM solution to (11) is to grow a regres-
sion tree using the pseudo-residuals of the previous tree as
the outcome:

Θ̃t = argmin
Θ

n∑
i=1

(−git − T (xi; Θ))2. (12)

Here, denoting pseudo-residuals as −git refers to the relation
of GBM to optimization via gradient descent, as fitting a re-
gression tree to pseudo-residuals aligns with moving into the

direction of the negative gradient. With continuous outcomes
and squared error loss, −git = yi − ft−1(xi), i.e. the usual
regression residual. For binary outcomes the difference be-
tween the observed class and the predicted probability (based
on the logit transformation) is used, i.e. −gi = yi − p̂(xi).

Equipped with a way to optimize results of a given tree,
the GBM approach starts with a simple model for all train-
ing observations, e.g. for regression f0(x) = ȳ. Given this
initial model, pseudo-residuals are computed and handed
over to the tree growing algorithm. In contrast to random
forests only small trees are grown, i.e. boosting uses a num-
ber of “weak learners” as building blocks that are sequen-
tially combined into a powerful ensemble. Individual tree
size is controlled by the number of splits (interaction depth),
which is a tuning parameter in the GBM context. The ini-
tial f0(x) is then updated by adding the predictions from the
first tree, whereas these predictions are typically shrunken
towards zero which eventually allows to fit a large number of
trees at a slow learning rate to improve flexibility. The new
combined model is used to compute new pseudo-residuals
in the next iteration (see Algorithm 4). As there is no clear
stopping rule for the resulting loop, the number of iterations
is a tuning parameter which should be tuned in accordance
with the shrinkage rate (higher shrinkage needs more trees).

After a potentially large number of iterations, the final
prediction model consists of a sequence of trees (including
f0(x)),

f̂T (x) =

T∑
t=1

T (x; Θt). (13)

Besides slowing down the learning rate by shrinkage, addi-
tional optimizations have been introduced in the context of
boosting. This includes e.g. drawing random samples of
the training data (without replacement) while growing trees,
which has been shown to improve prediction performance
while also decreasing computational costs. This approach –
termed stochastic gradient boosting – thereby introduces yet
another tuning parameter, the subsample size to be drawn
in each iteration (Friedman, 2002). Other boosting variants
borrow the random forest trick and consider random subsam-
pling of features at each split point when growing trees. This
idea is – along with other tweaks – picked up by extreme
gradient boosting (XGBoost), a scalable boosting implemen-
tation that allows efficient parallelization (Chen & Guestrin,
2016).

As it was the case for random forests, boosting provides a
data-driven approach to building a prediction ensemble that
typically outperforms single decision trees. However, boost-
ing often requires considerable tuning given the number of
hyperparameters involved. Potential applications in survey
research are therefore predominantly related to pure predic-
tion problems that e.g. might arise in the context of develop-
ing adaptive designs.
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Algorithm 4: Gradient Boosting for regression
Parameter : Number of trees T , interaction depth

D, shrinkage λ
Initialization: Use ȳ as initial predicted values

1 for t = 1 to T do
2 compute residuals based on current predictions;
3 assign data to root node, using the residuals as the

outcome;
4 while current tree depth < D do
5 tree growing process;
6 end
7 compute the predicted values of the current tree;
8 add the (λ-)shrunken new predictions to the

previous predicted values;
9 end

2.4 Bayesian Additive Regression Trees (BART)

Random forest and boosting can be seen as two differ-
ent approaches to fit and linearly combine trees. A re-
cent addition to this group of ensemble learning techniques
are Bayesian additive regression trees, BART (Chipman,
George, & McCulloch, 2010). The technique aims at ap-
proximating the functional relationship between outcomes
and predictors by a sum-of-trees model in which each tree
only explains a small variation of the outcome. In doing so,
BART shares similarities with boosting. However, contrary
to the aforementioned techniques that focus on optimizing
predictive performance by minimizing an objective function,
BART proceeds differently by imposing a probability model,
which entails priors for different elements of each tree in the
ensemble and a data likelihood. This procedure is used for
two goals. First, priors are chosen in such a way that in-
dividual trees are kept small in terms of depth and pertain
moderate predictions in the tree leaves relative to the overall
sample mean. Such ’regularized trees’ only explain small
shares of the overall outcome variance, resulting essentially
in ’weak learners’ similar to gradient boosting. Secondly,
due to its Bayesian non-parametric methodology BART al-
lows for posterior inference on the final predictions by con-
sidering, for example, their posterior (credible) intervals. It is
this inference feature that sets BART apart from boosting and
random forests, besides having shown comparable or better
predictive performance.

The BART model (Chipman et al., 2010) consisting of T
additive trees is given by

yi =

T∑
t=1

g(xi;Tt,Mt) + εi, εi ∼ N(0, σ2) (14)

with g the function returning the tree’s leave node mean cor-
responding to xi with tree structure Tt and parametersMt. It

can be seen that the conditional likelihood of y is normal. Tt

contains the interior node decision rules as well as the leave
nodes. The parameter vector Mt = {µ1, µ2, ..., µM} contains
the leave node means, where g returns exactly the µit ∈ Mt

corresponding to xi.
Assuming prior independence of trees and leave nodes,

the probability model assigns priors to the tree structure
p(Tt), the tree leave means given the tree structure p(µt |Tt),
and the variance p(σ2). As noted the primary role of the
choice of priors is regularizing the individual trees. The first
way in which this is achieved is assigning a prior probability
of α(1 + d)−β to the event that a node at depth d is not the
leave node. A default recommended by Chipman et al. is
α = 0.95, β = 2 putting most probability mass on trees of
depth d = 2, i.e. very small trees. Prior p(µt |Tt) is specified
normal N(0, σσ) with σσ = 0.5/k

√
T . This choice effec-

tively shrinks all leave nodes towards zero, the overall sam-
ple mean after centering y at 0. In doing so, nodes with ex-
treme values receive low prior probability, effectively avoid-
ing overfitting by regularization akin to the gradient boosting
shrinkage parameter. Chipman et al. recommend k = 2 as
a default which assigns 95 % prior probability to the event
that E(Y |x) is in the interval (ymin, ymax) denoting the sample
minimum and maximum respectively. The prior on σ, fi-
nally, is determined by first fitting an OLS regression of y on
x obtaining residual standard deviation σ̂. The goal is then
to choose an inverse chi-square prior distribution σ2 ∼ ν/λχ2

ν

such that P(σ < σ̂) = q. This prior formulates the (plausible)
expectation that the BART residual variance will be smaller
than the variance from a simple OLS model. Chipman et
al. suggest to choose q = 0.75, 0.90, 0.99. The exact form
of the inverse Chi-square distribution is given by degrees of
freedom ν suggested between 3 and 10.

The exact choice of prior parameters can impact the pos-
terior distribution. It is therefore warranted to cross-validate
all prior parameters within plausible ranges. For suggested
ranges see Chipman et al. (2010). Another model parameter
which is candidate for cross-validation is the number of trees
T typically chosen in the range of 50 to 200. Chipman et
al. report lager values for T will lead to improvements in fit
until some point after which fit slowly decreases again due to
over-fitting.

The actual model fitting algorithm is implemented as part
of a MCMC (Markov Chain Monte Carlo) algorithm called
backfitting. It owes its name to the fact that upon each se-
quence of draws in a Gibbs sampler the residuals

Rt := y −
∑
k,t

g(xi;Tk,Mk) (15)

are conditioned on in a draw of tree structure Tt |Rt, σ. A
mathematically complex procedure is used here to make
small changes to trees that improve fit. Conditional on Tt

a draw fromMt |Tt,Rt, σ of leave node means is taken from
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a normal distribution. A schematic overview on the MCMC
sampler is given in Algorithm 5 and for details we refer to
Chipman et al. (2010) and Kapelner and Bleich (2016).

A particularity emerges for binary responses Y . In this
case, the probit model is assumed which says for continuous
latent variable Z that Y = 1 if Z > 0 and Y = 0 if Z ≤ 0 while
implying εi ∼ N(0, 1) for zi|xi such that a prior for σ2 is not
needed. The MCMC Algorithm 5 is altered by adding a data
augmentation step imputing unobserved values of Z.

Algorithm 5: Bayesian Additive Regression Trees
Parameter : Number of trees: T ; Prior parameters:

α, β, k, ν, q
Initialization: T single node trees

1 repeat
2 for t = 1 to T do
3 update residuals Rt;
4 draw tree structure Tt |Rt, σ;
5 draw leaf parametersMt |Tt,Rt, σ;
6 end
7 draw error variance σ2|T1, ...,TT ,M1, ...,MT ;
8 until convergence;

3 Machine Learning in Survey Research

Machine learning applications in survey research often ex-
ploit the flexibility of trees or ensembles in order to tackle
research problems that usually involve specifying parametric
regression models. In addition, these tools are also beginning
to be used as pure prediction methods in another branch of
research which thereby offers promising directions for devel-
oping responsive or adaptive designs.

The most prominent (“traditional”) application of super-
vised learning methods in survey research is their usage in
the context of modeling and correcting for unit nonresponse.
This is particularly the case for (single) classification trees,
where various tree building algorithms have been used for
constructing nonresponse weights (for an overview, see Toth
& Phipps, 2014). Decision trees are considered as an alterna-
tive to logistic regression that can be used to derive weights
in the presence of considerable interactions among the non-
response predictors. In this context, response propensities
are estimated based on the proportions of respondents in the
terminal nodes of a given tree. Various studies consider deci-
sion tree methods, such as CHAID (CHi-squared Automatic
Interaction Detector; Kass, 1980) as a flexible approach for
detecting subgroups with homogeneous response propensi-
ties and – ultimately – for constructing nonresponse weights
(e.g. Judkins, Hao, Barrett, & Adhikari, 2005; Lynn, 2006;
Rizzo, Kalton, & Brick, 1996; Roth, Montaquila, & Chap-
man, 2006). As a side effect of using trees, the resulting ter-

minal nodes can directly be used as adjustment cells, bypass-
ing the problem of highly variable weights that might result
from logistic regression (Toth & Phipps, 2014). A related
application of trees is the usage of CART for bias analysis
by utilizing the tree structure from a nonresponse model in
order to investigate whether the derived interactions are also
associated with (a proxy of) the outcome of interest (Phipps
& Toth, 2012).

More recent studies investigate the usage of conditional
inference trees or tree-based ensemble methods such as ran-
dom forests and conditional random forests for estimating
response propensities. Random forests are considered to ro-
bustly handle sparse data with many factors and relatively
few observations per category and are therefore expected
to provide better response propensities in situations where
parametric regression would run into problems (Buskirk &
Kolenikov, 2015). Not surprisingly, simulations indicate
that tree-based methods outperform logistic regression when
comparing true with predicted response propensities, given
a non-additive functional form of the nonresponse model
(Lohr, Hsu, & Montaquila, 2015). It was also shown that
particularly CTREEs’ weights performed well in terms of
mitigating bias for a substantive variable across different
simulated nonresponse mechanisms. In terms of repro-
ducing true response propensities, the simulation results of
Buskirk and Kolenikov (2015) also favored random forest
over logistic regression, given a complex underlying nonre-
sponse model. However, when focusing on the performance
of the derived weights, their results indicated that random
forests are best combined with response propensity weight-
ing, whereas propensity stratification weights based on ran-
dom forests yielded higher bias and variance than corre-
sponding weights from logistic regression. In a similar con-
text, random forests were considered as an exploratory tool
to study whether a tree ensemble and a multilevel logistic re-
gression identify the same top predictors from a pool of fea-
tures when modeling nonresponse (Iachan, Prosviryakova,
Peters, & Restivo, 2015). Furthermore, Wengrzik, Eck-
man, and Bach (2016) use boosting for estimating response
propensity scores and study whether reluctant respondents
with low response propensities are more prone to moti-
vated misreporting. Mercer (2018) utilizes BART to employ
propensity score weighting and doubly-robust estimation in
order to correct for selection bias in non-probability surveys.

Supervised learning methods have also been considered
as imputation tools. When dealing with item nonresponse,
Borgoni and Berrington (2013) argue that complex missing
patterns in surveys may require flexible methods that can
handle a large number of predictor variables computationally
efficient and propose a sequential tree procedure for multi-
variate imputation under the assumption of missing at ran-
dom. Tree-based imputation has also been introduced to re-
place observed values of sensitive variables in the context of
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generating synthetic data with lower disclosure risks (Caiola
& Reiter, 2010). As in missing value imputation, this task
requires careful model specification when parametric meth-
ods are used which may be bypassed by plugging in non-
parametric models in the imputation process. In a simula-
tion study, particularly CART has been shown to efficiently
balance analytical validity and disclosure risks (Drechsler &
Reiter, 2011).

Another field of survey research where the usage of super-
vised learning methods as an alternative to parametric mod-
eling has been proposed is model-assisted estimation of pop-
ulation parameters (Breidt & Opsomer, 2017; McConville,
Breidt, Lee, & Moisen, 2017). In this context, the idea of
supplementing survey estimators with auxiliary information
that is known for the population in order to improve effi-
ciency requires relating the auxiliary variables to the out-
come of interest. The functional form of such models might
not be known in advance, especially since (administrative)
auxiliary data often includes categorical variables with many
categories, which may give rise to a number of interactions.
Considering regression trees in the model-assisted estimation
framework, McConville and Toth (2017) demonstrate that
such an approach can improve efficiency over both the linear
regression and the Horvitz-Thompson estimator.

Besides using machine learning tools as flexible substi-
tutes for regression, their origin in the context of predic-
tive modeling opens up new research questions by switching
the focus onto prediction. Whereas various research objec-
tives in survey research can be formulated as prediction prob-
lems, the most straight-forward application is predicting non-
response. Focusing on tree-based methods, Buskirk (2018)
predict response status based on a simulated non-additive re-
sponse model in a cross-sectional setting and demonstrate
that a classification tree and random forest outperform a lo-
gistic regression model, with random forest yielding the best
performance on most measures. In a longitudinal setting,
Earp, Mitchell, McCarthy, and Kreuter (2014) train a tree
ensemble for predicting nonresponse using census data and
response status from multiple years of an establishment sur-
vey. Applying the model to a new survey year indicated a
weak but significant relationship between the tree ensemble
propensity score and actual nonresponse. An important fea-
ture in the context of repeated surveys is that the prediction
model can be applied prior to data collection, which was uti-
lized by Earp, Mitchell, McCarthy, and Kreuter (2012) to
tailor the data collection process given nonresponse predic-
tions. It was shown that specific treatments were effective in
increasing response rates among establishments which were
originally least likely to respond and most likely to bias esti-
mates when not responding.

Recent work extends the prediction perspective to other
contexts. In web surveys, break-offs before completion of
the questionnaire raise concerns of break-off bias and in-

creased variance due to a lower number of complete observa-
tions. However, prediction models might be employed to tar-
get interventions that aim to prevent early break-offs, while
drawing on the wealth of response-level paradata that is typ-
ically available for web surveys (Eck, Soh, & McCutcheon,
2015; Mittereder & West, 2018). Optimizing data collection
can also motivate predicting other sources of errors such as
straightlining (Eck & Soh, 2017), reporting errors (McCarthy
& Earp, 2009) or, more generally, the quality of survey ques-
tions (Saris et al., 2011).

Instead of focusing on errors as the prediction objective,
supervised learning can also be used to assist in the data col-
lection process in order to improve data quality and efficiency
directly. This approach has been considered for error-prone
tasks such as occupation coding, for which Schierholz, Gen-
sicke, Tschersich, and Kreuter (2018) present an automated
technique that suggests candidate job categories based on ini-
tial verbal descriptions of the respondents during the inter-
view. In a similar spirit, Arunachalam et al. (2015) predict
potential next activities given reported previous activities in
a time diary to provide live suggestions in a time use survey.
More generally, Schonlau and Couper (2016) utilize super-
vised learning to automate coding of easy-to categorize text
answers from open-ended questions.

Inspired by the ideas in responsive (Groves & Heeringa,
2006) and adaptive (Schouten, Peytchev, & Wagner, 2017)
survey design, several surveys are exploring the use of pre-
diction models for this purpose. A good example is the an-
nual Agricultural Resource Management Survey (ARMS),
where targeted data collection procedures were developed
based on input from field staff and tested in an adaptive de-
sign (McCarthy, Wagner, & Sanders, 2017) or the work done
in the Center for Adaptive Design at the U.S. Census Bureau
(see for example Coffey & Reist, 2013).

4 Empirical Example - Panel Nonresponse

To give a practical example for the potential of utilizing
machine learning techniques in a panel survey context we
use one of the most widely used panel studies in Germany –
the German Socio-Economic Panel (GSOEP Wagner, Frick,
& Schupp, 2007). GSOEP is an annual longitudinal survey
of the German population that started in 1984 and includes a
wide range of topics from the field of economics, sociology,
psychology and political science. The first panel wave in-
cluded two subsamples (A: Households in West Germany, B:
Immigrants), which were complemented by additional sam-
ples in later waves to account for population dynamics (C:
Households in East Germany, D: Immigrants II, M: Immi-
grants III), ensure sufficient coverage of specific subpopu-
lations (G: High income households, L: Families, single par-
ents), or enlarge overall sample sizes (E, F, H, I, J, K: refresh-
ment samples). Given its household concept and academic
organization, GSOEPs’ architecture is similar to household
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panels in other countries (see CNEF) and can therefore be
thought of as representing an important type of longitudinal
survey.

Since GSOEP provides data that is used to study a wide
range of research questions across various disciplines, main-
taining a high quality panel over time is a critical aspect to
enable valid inference. However, as it is also the case for
other panel studies (see Watson & Wooden, 2009), GSOEP
struggles with decreasing samples sizes due to drop-outs over
time. As an example, roughly 25% of the original sample
dropped out during the first four years (1984 to 1988) due
to survey-related attrition. Attrition rates for newer refresh-
ment samples are markedly higher (sample H: about 42.5%
from 2006 to 2010; sample J: about 45% from 2011 to 2015
Kroh, Kühne, & Siegers, 2017). In order to correct for bi-
ases that might arise from systematic drop-outs, GSOEP pro-
vides longitudinal weights which draw on predicted proba-
bilities from logistic regressions that model response status
in a given wave (Goebel et al., 2008).

For the purpose of the analysis below, we use GSOEP
data from wave 2013 to model response status in 2014 us-
ing tree-based methods (SOEP 2016). More precisely, the
analysis sample consists of GSOEP members that were in-
terviewed in 2013, excluding cases that mailed in their ques-
tionnaire (n = 31, 360).4 On this basis, the outcome variable
distinguishes between a re-interview in 2014 and a tempo-
ral or final refusal in that year (see Table 1a). The latter
category combines the original response codes “Unwilling
Then”, “No Time, Desire”, “Other Unclear Case”, “Final Re-
fusal”, and “Not Usable”. Non-contacts in 2014 were treated
as missing.5

The following analyses draws on two sets of predictor
variables (see Table 1b). The first set includes respondent-
related variables such as socio-demographics, household in-
come and income nonresponse, as well as some contex-
tual characteristics (East/West Germany, rural/urban, house
type). The second set of predictors includes interview-related
variables, such as the number of contact attempts, survey
mode, ratio of item nonresponse and interviewer characteris-
tics in 2013. Information from previous waves is added im-
plicitly by considering subsample membership and GSOEP
experience (number of GSOEP years), and explicitly by in-
cluding response status in 2012. Furthermore, the inverse
staying probability (based on estimated contact and response
probabilities; provided by GSOEP) is treated as an additional
feature, assuming that a low estimated staying probability in
2013 is associated with an increased risk of nonresponse in
the next wave.

We use machine learning methods with respect to two ob-
jectives: First, we use model-based recursive partitioning and
conditional inference trees as data-driven approaches to ex-
plore the relationship between the outlined features and panel
nonresponse. Second, we use a wider set of supervised learn-

ing methods (CTREE, MOB, random forests (RF), XGBoost,
BART) to study nonresponse from a prediction perspective.
To facilitate both objectives, we split the sample into a train-
ing (80%) and a test set (20%), based on random sampling
within the categories of the outcome variable (stratified ran-
dom splitting). In the following, the training set is used to
both exemplify the usage of recursive partitioning in the con-
text of modeling panel nonresponse and to build the machine
learning models for prediction. The analysis is implemented
in R (R Core Team, 2017) using the partykit (Hothorn &
Zeileis, 2015), randomForest (Liaw & Wiener, 2002), xg-
boost (Chen, He, Benesty, Khotilovich, & Tang, 2018), bart-
Machine (Kapelner & Bleich, 2016) and caret (Kuhn, 2017)
packages.

4.1 Modeling Panel Nonresponse

For an illustration of the insights that can be gained when
modeling panel nonresponse from a data-driven perspective,
model-based recursive partitioning provides a suitable tool
due to its “hybrid” approach to data analysis. In this example,
a logit model of response status in 2014 is considered which
includes only respondent-related variables as predictors (set
1 in Table 1b) and interview-related variables as potential
partitioning variables (set 2 in Table 1b). This setup allows to
study whether e.g. the effects of socio-demographic variables
on panel nonresponse depend on survey-operational charac-
teristics.

The MOB results are illustrated in Figure 1.6 The final
tree encompasses three terminal nodes, i.e. three distinct
logit models, suggesting that a single model as specified in
the root node is not sufficient given the data at hand. Start-
ing with the initial model, parameter instability tests identi-
fied varying effects of the predictor variables across GSOEP
subsamples, leading to the first split that partitions the data
into observations that belong to older (A–D, E–G, H–K) and
newer (L and M) samples. Whereas the first group already
represents a terminal node (Figure 1a), the second subgroup
was subject to further splitting, given parameter instabili-
ties induced by response status in the previous wave (2012).
As sample M was introduced in 2013, the second terminal
node is essentially formed by individuals of GSOEP sample
L who were interviewed in 2012 (Figure 1b), whereas the

4As limited survey-related information for these observations is
available (e.g. concerning number of contact attempts, interviewer
characteristics), it is suspected that this group can not be modeled
adequately with the set of predictor variables used here.

5Machine learning could also be used to predict contact status.
We also experimented with a three-class outcome that distinguishes
between temporal and final refusal. Results are available upon re-
quest.

6The partitioning process was governed by rather strict thresh-
olds in order to ensure building models with a sufficient number of
cases in each node (minsplit = 1500, maxdepth = 3).
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Table 1
Description of Variables
(a) Outcome

Variable Scale/Categories Year

Refusal 2014 interview/temp. or final refusal 2014

(b) Features

Variable Scale/Categories Year

Age 16–99 2013
Education (years) 7–18 2013
Gender male/female 2013
Migration background no/direct/indirect 2013
Employment status full-time/part-time/in training/

marginal employed/not employed 2013
Household incomea 0–70000 (180–70000) 2013
Household income: Missing missing/non missing 2013
Home owner/renter 2013
Household type 1-pers./couple without ch./single parent/

couple w. ch. ≤ 16/couple w. ch. > 16
couple w. ch. ≤ & > 16/other 2013

Marital status married, together/married, separate
unmarried/divorced/widowed 2013

Household size 1–13 2013
Subjective health 1–5 2013
Subjective well-being 0–10 2013
Region East/West Germany 2013
Area rural/urban 2013
House farm/1-2 fam. house/

apt. 3-8 unit/apt. 9+ unit 2013

SOEP years 0–29 1984-2013
Interviewer contacts 1–3/4–6/7+ 2013
Mode oral/written/mixed/CAPI 2013
Refusal in household no refusal/refusal 2013
Contact information no contact/mail or phone/mail & phone 2013
Response 2012 new household/interview/nonresponse 2012
Item missing ratio 0–0.556 2013
Interviewer: Gender male/female 2013
Interviewer: Age 23–91 2013
Interviewer: Experience (years) 1–30 2013
Interviewer: Response rate 0.333–1 2013
Interviewer: ∅ Interview length 5–120 2013
SOEP sample A–D/E–F/H–K/L/M 1984-2013

Inverse staying probability 0–5.27 2013
a Missings have been imputed (used in Logit, MOB) or set to zero (used in CTREE, RF, XGBoost,
BART).

third node predominantly represents individuals from sam-
ple M who were not interviewed in 2012 since they were not
GSOEP members yet (as well as individuals from sample L
who were not interviewed due to nonresponse; Figure 1c).
In this context, it is worth noting that sample L and M are
not only the most recent GSOEP samples, but also repre-

sent specific populations (L: low income and large families,
single parents, M: immigrants, second-generation migrants).
While this might induce estimating distinct models also from
a substantive perspective, it is important to keep in mind that
the three node solution obtained here is solely the result of
applying automated recursive partitioning with a set of po-
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tential splitting variables.
Across the three terminal nodes, distinct effect patterns

emerge. As an example, in node one being marginally or
non-employed is associated with a lower probability of re-
fusing to participate in 2014, whereas in node two and three
only the status “in training” is predictive of nonresponse,
with opposing effect directions in both nodes. Furthermore,
household income nonresponse in 2013 is a strong predictor
of unit nonresponse in 2014 particularly for individuals in
node one and three, whereas node two is the only node where
a substantial positive effect of having a direct migration back-
ground can be observed. Differences between groups also be-
come evident with respect to contextual variables, with lower
refusal probabilities of individuals living in an urban environ-
ment in node one and an opposing effect in node three.

While model-based recursive partitioning is a powerful
approach to find subgroups given a prespecified paramet-
ric model, following interactions through nodes of a model-
based tree in order to identify observations that are at high
risk of non-participation in a given wave can become cum-
bersome. In addition, in an exploratory setting one might not
know which variables are predictors that establish the model
and which features should be considered as partitioning vari-
ables.

As an alternative approach, Figure 2 presents a small con-
ditional inference tree where both respondent- and interview-
related characteristics were considered as potential splitting
variables for predicting refusal in 2014.7 Starting at the root
node, CTREE reproduces the first split of the MOB result,
i.e. partitions the data into two branches based on GSOEP
sample membership. Within these branches, different combi-
nations of respondent- and interview-related variables lead to
markedly diverging risks of non-participation. It can be seen
that, somewhat similar to the MOB result, household income
nonresponse is particularly predictive of refusal for observa-
tions in sample L and M that did not respond in 2012 and are
members of certain household types (1-person household,
couple without children, single parents, couple with chil-
dren under 16 years, node 8). On the other hand, individuals
from sample A to K that have been GSOEP members for at
least 10 years show a relatively high risk of non-participation
in 2014 if they were interviewed by an older interviewer in
2013 which exhibits long average interview lengths (node 6).
The CTREE approach can therefore be used to identify risky
combinations of respondent- and interview-characteristics,
again solely based on a data-driven partitioning process. As
with MOB, finer-grained regions can be found by adjusting
the tree building parameters.

4.2 Predicting Panel Nonresponse

Besides using recursive partitioning with models or con-
stant leaves as terminal nodes in an exploratory setting, tree-
based methods are particularly suitable for prediction. Build-

ing on the previous example, the following analysis consid-
ers a set of machine learning methods for predicting refusal
in wave 2014, including single tree approaches (CTREE,
MOB) and ensemble methods (RF, XGBoost, BART). A sin-
gle (main effects only) logistic regression is used as a refer-
ence model. For each method, the modeling process includes
the following steps:

1. Tune hyperparameters within the training set using
stratified 10-fold cross-validation

2. Re-train model with best hyperparameter setup on full
training data

3. Evaluate performance of the final model in the test set

Stratification in step 1 refers to random sampling within
the categories of the outcome variable to preserve the class
distribution across splits. The tuning process is governed by
searching over a grid of hyperparameter settings for each
method. After cross-validation, the respective best model
(i.e. tuning parameter setup for each method) is chosen by
evaluating which tuning parameter constellation maximizes
the cross-validated AUC-ROC. This setup is then used to
train the final model on the full training data (step 2) which
is subsequently applied and evaluated with multiple metrics
in the test set (step 3), respectively.

Starting with the overall test set performance (step 3), Fig-
ure 3 displays the receiver operating characteristic (ROC)
and precision-recall (PR) curves which plot sensitivity (pro-
portion of all nonrespondents that are correctly classified)
versus one minus specificity (proportion of all respondents
that are correctly classified; Figure 3a) and precision (pro-
portion of correctly classified nonrespondents among all pre-
dicted nonrespondents) versus recall (same as sensitivity;
Figure 3b) over the range of applicable classification thresh-
olds given the predicted probabilities of the final prediction
models. The corresponding AUC-ROC and AUC-PR mea-
sures (areas under the ROC, PR curves) are listed in Table
3a. It can be seen that simply estimating a logistic regression
model with the training set and using this model for predict-
ing refusal in the test set leads to fair performance with an
AUC-ROC of 0.707. Similar, or slightly lower, discrimina-
tion can be obtained when applying MOB and CTREE as
prediction methods, suggesting that for the problem at hand
not much can be gained from using a set of logistic regres-
sions or constant leaves in terms of test set prediction per-
formance. However, it becomes evident that random forest
(RF) and boosting (XGBoost) markedly outperform the for-
mer methods by achieving AUC-ROC values at and above
0.8. While – at first sight – this might demonstrate the effec-
tiveness of ensembles over single models or trees, applying

7In order to obtain a manageable tree, high thresholds for split-
ting a node were defined (mincriterion = 0.999, maxdepth = 4).
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(a) Sample: A–D, E–G, H–K, n = 11768
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(b) Sample: L, M & Interview 2012, n = 4487
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(c) Sample: L, M & New HH, Nonresponse 2012, n = 3560
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Figure 1. Coefficient Plots of Terminal Node Models of MOB Tree (y = Refusal in GSOEP Wave 2014)

BART in the current context shows (somewhat surprisingly)
only a modest improvement over logistic regression, MOB
and CTREE. However, it should be noted that for interme-
diate thresholds Figure 3b suggests BART predictions to be
more precise in comparison with single trees, although still
on a considerably lower level than the results from random
forest and boosting.

In a real-world application, the prediction models would

most likely be used to predict class membership, i.e. inter-
view or refusal, at a specific probability threshold in order to
implement measures that keep likely nonrespondents from
non-participation. Performance metrics for class predictions
at two different sets of thresholds are displayed in Table 3b
and 3c. In both cases, the optimization criterion aims at find-
ing thresholds that are closest to the top-left point of the ROC
graph, while putting a stronger weight on specificity by set-
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Figure 2. Conditional Inference Tree (y = Refusal in GSOEP Wave 2014)

ting the prevalence (of refusal) to 0.1. For computing the
second set of thresholds, a higher relative cost of a false pos-
itive classification is considered as an additional condition,
resulting in more restrictive, i.e. higher, cutoff values.8 Us-
ing the first (“optimal”) threshold criterion, a similar ranking
as with AUC-ROC occurs, with random forest and boost-
ing markedly outperforming logistic regression, MOB and
CTREE (Table 3b). Both methods are able to find more than
50% nonrespondents out of all true nonrespondents (sensitiv-
ity), while correctly predicting participation for about 87% of
all true participants (specificity). However, in an application
that allocates survey resources based on a prediction model
one might not only be interested in the ability of a classifier
to find nonrespondents, but also in the precision of the classi-
fiers’ predictions. With the second, more restrictive threshold
criterion, 46% (280/603) of the individuals that are predicted
by XGBoost as being nonrespondents are truly nonrespon-
dents (precision), at the expense of a somewhat lower sensi-
tivity (Table 3c). With a precision of about 33% (181/552),
using a logit model results in a lower number of true non-
respondents that would be targeted if predictions would be
used to inform the data collection process. Given the rather
basic set of predictor variables, the performance of random

forests and boosting therefore points to a promising potential
for building an effective prediction model for panel nonre-
sponse using machine learning methods.

The trained models can also be used to gather insights
about the predictive structure that was learned from the train-
ing data. Figure A1 presents variable importance plots for
the logit, CTREE, RF, XGBoost and BART model.9 While
in the logit case, t−values are often used as measures for
variable importance, importance’s with tree-based methods
can, for example, be obtained by summarizing the decrease
in impurity that is induced by the splits of a given variable.
For comparison purposes, the importance scores in Figure
A1 are scaled to have a maximum value of 100. It can be
seen that the predictor variables are utilized quite differently
across prediction methods, with markedly different impor-
tance profiles when e.g. comparing the two best performing
ensemble models (RF, XGBoost) with logistic regression. As

8For this example, threshold optimization has been conducted in
the test set, whereas in an elaborated application this would be part
of the tuning process.

9Since MOB was trained by using respondent-related variables
as predictors and interview-related variables for partitioning, equiv-
alent importance’s with both types of variables cannot be obtained.
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Figure 3. Performance Curves in Test Set (y = Refusal in GSOEP Wave 2014)

the former methods are able to learn complex relationships
from the data, this result might indicate that variables such as
age or average interview length per interviewer exhibit non-
linear and/or non-additive effects that have not been picked
up by the logit model.10

To get an idea of the predictive structure that drives the
predictions of the random forest model, Figure A2 displays
partial dependence plots for a selected set of features based
on the random forest result (Greenwell, 2017). These fig-
ures plot the predicted probabilities of refusal over a range
of fixed values of the predictors of interest, while averaging
over the effects of the remaining variables. It becomes clear
that strong non-linear relationships occur in the data that
have been incorporated in the random forest model. As an
example, the lowest predicted probabilities of refusal occur
for combinations of medium respondent and interviewer age,
whereas nonresponse risks increase when moving to more
extreme combinations (Figure A2a). Nonlinearities also be-
come evident with respect to the aforementioned variables
household income and average interview length, indicating
higher predicted probabilities of refusal on either end of the
distributions (Figure A2b, A2c). Finally, Figure A2d nicely
demonstrates that nonresponse risks are highest in the be-
ginning of GSOEP participation and level off after the first
years.

5 Discussion

The machine learning approach to data analysis offers a
wide range of methods which are beginning to be utilized by
survey researchers in a variety of contexts. These applica-
tions suggest that supervised learning can not only be thought
of as offering flexible substitutes for parametric regression,
but also as providing powerful prediction methods that can be
used to target interventions, which naturally aligns with the
idea of adaptive designs. Against this background, this paper
focused on tree-based learning methods, which are able to
adapt to complex relationships while at the same time being
effective in terms of computational costs and pre-processing
effort needed. We argued that these methods can be particu-
larly useful in a panel survey setting, e.g. for building a non-
response model with a diverse set of features which might
involve complex interactions.

Using supervised learning for modeling nonresponse in
the German Socio-Economic Panel study (GSOEP) exempli-
fied that different (groups of) tree-based methods offer dis-
tinct advantages that can be utilized in different contexts.
First, model-based recursive partitioning has been consid-
ered as a data-driven tool for finding an optimal set of sub-
groups when effect heterogeneity in a pre-specified regres-
sion model is suspected. In the present application, MOB

10Note that the importance of household income is not compa-
rable across methods since in trees it can be used to split between
reported and non-reported income and within reported income.
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Table 3
Performance Metrics in Test Set (y = Refusal in GSOEP Wave 2014)
(a) AUCs

Logit MOB CTREE RF XGBoost BART

AUC-ROC 0.707 0.691 0.702 0.818 0.800 0.733
AUC-PR 0.263 0.264 0.265 0.458 0.408 0.288

(b) Performance at Optimal Threshold

Accuracy Sens. Spec. Prec. F1 Kappa

Logit 0.799 0.371 0.865 0.301 0.333 0.216
MOB 0.816 0.314 0.894 0.316 0.315 0.209
CTREE 0.809 0.284 0.891 0.289 0.287 0.176
RF 0.836 0.559 0.879 0.419 0.479 0.384
XGBoost 0.828 0.556 0.871 0.402 0.467 0.367
BART 0.818 0.377 0.887 0.342 0.359 0.253

(c) Performance at Restrictive Threshold

Accuracy Sens. Spec. Prec. F1 Kappa

Logit 0.826 0.272 0.913 0.328 0.297 0.199
MOB 0.835 0.244 0.928 0.345 0.286 0.196
CTREE 0.824 0.251 0.913 0.311 0.278 0.179
RF 0.850 0.490 0.907 0.451 0.470 0.383
XGBoost 0.856 0.421 0.924 0.464 0.442 0.359
BART 0.832 0.322 0.912 0.364 0.342 0.246

showed that newer GSOEP subsamples induce distinct effect
patterns and should therefore be modeled separately. The
CTREE approach has then been used for identifying combi-
nations of respondent- and interview-related features that are
associated with high drop-out risks, indicating that for new
GSOEP subsamples and certain household types household
income nonresponse is particularly predictive of unit nonre-
sponse in the next wave.

Finally, tree-based ensemble methods have been shown
to be effective when studying nonresponse from a prediction
perspective, with random forests and boosting markedly out-
performing logistic regression and single trees in the GSOEP
example. Class predictions based on these two ensemble
methods resulted in considerably higher precision scores,
such that – given a specific classification threshold – a higher
number of true nonrespondents were identified that could po-
tentially be targeted in an adaptive design. Inspecting ran-
dom forests’ partial dependence plots suggested that the en-
sembles’ performance might be driven by non-linear rela-
tionships of some nonresponse predictors, which have not
been included adequately in the (main effects only) logistic
regression model. However, even though random forest and
boosting showed better prediction performance, it is impor-
tant to note that these methods still might have been underuti-

lized in the present application, given the rather basic set of
predictor variables considered. This is particularly the case
with respect to the longitudinal aspect, since the prediction
models predominantly used information from only one pair
of GSOEP waves.

Building on the latter argument, further research is needed
to investigate how to best utilize supervised learning methods
with longitudinal survey data. In the context of predicting
nonresponse in the next wave given a number of previous
waves in a panel study, longitudinal information can (and
should) be introduced in the model building, tuning and eval-
uation process. This could be achieved by combining wave-
specific tree-based models into a higher-level ensemble or
by building pooled models with features that introduce lon-
gitudinal information (via aggregation). Concerning model
tuning and evaluation with multiple waves, the train and test
splits should account for the temporal structure of the data,
e.g. by iterating through pairs of panel waves such that the
train and test sets move in time (temporal cross-validation).
In summary, this problem set can be understood as consti-
tuting one example where techniques and practices of the
machine learning field have to be combined and/or adjusted
such that they fit the needs of a specific application in survey
research.
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Appendix
Figures
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Figure A1. Top-20 Variable Importance (y = Refusal in GSOEP Wave 2014)
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ŷ

(d) SOEP Years & Intw.: Response Rate

SOEP years Int.: Response rate

ŷ

Figure A2. Partial Dependence Plots Based on Random Forest Result (y = Refusal in GSOEP Wave 2014)
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