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This article addresses the approximate approach to assess measurement invariance with (lon-
gitudinal) confirmatory factor analysis. Approximate measurement invariance uses zero-mean,
small-variance Bayesian priors to allow minor differences in estimated parameters across time,
while still maintaining comparability of the underlying constructs. The procedure is illustrated
for the first time with panel data on young peoples’ preferences to maximize pleasure and
enjoy life. Results indicate whereas the traditional approach of exact measurement invariance
failed to establish scalar invariance across time and precluded comparisons of latent means, it
was possible to establish approximate scalar invariance. Based on a monitoring procedure for
model fit and convergence, a rather small prior variance was deemed sufficient to account for
minor deviations of cross-time intercept differences from zero.
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1 Introduction

Comparative research is a core subject in different fields of
social science. Research interests can be cross-national and
cross-cultural or longitudinal and developmental. For exam-
ple, it may be of interest to compare mean scores of variables,
such as ethics, values, attitudes, and social or political trust
across cultures, countries, or across time (Davidov, Schmidt,
& Billiet, 2011). Regardless of whether the comparison is fo-
cused on different contexts or time points, the mere applica-
tion of the same scale across groups or time does not ensure
that the same concept is actually analyzed. Response charac-
teristics to survey questions may be different across groups or
over time which implies that people from different contexts
may not understand the concept in the same way or that the
understanding has changed. Thus, if the studied variables are
latent variables measured by multiple indicators, a compar-
ison across groups or time requires measurement invariance
(hereafter: MI) to ensure that the concept remains compara-
ble across groups or time. However, methodology reports of
relevant large-scale panel studies, such as the Socioeconomic
Panel (SOEP) in Germany, British Household Panel Survey
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(BHPS) in Great Britain, National Crime Victimization Sur-
vey (NCVS) in the United States, and European Union Statis-
tics on Income and Living Conditions (EU-SILC) usually do
not include systematic assessments of MI for key concepts
across time. It seems that testing for MI usually remains
within the area of responsibility of the individual data user.
For this reason, the article aims at capacitating researchers
to apply the innovative concept of Bayesian approximate MI
for situations where conventional approaches turn out to be
inappropriate.

Since traditional tests of MI build on very restrictive as-
sumptions about the equivalence of measurement properties
across groups or time, it cannot always be achieved to a sat-
isfactory degree.1 With the introduction of Bayesian ana-
lytic properties into confirmatory factor analysis (hereafter:
CFA) and structural equation modeling (hereafter: SEM), re-
searchers are able to relax exact equality constraints by as-
suming that parameters are only approximately equal, but
comparability of the underlying constructs is maintained. For
this purpose, cross-group or cross-time parameter differences
are expressed as Bayesian priors which are assumed to be
shaped as a normal distribution with a mean of zero and
a small variance (B. Muthén & Asparouhov, 2013; Van de

1See Van de Schoot, Schmidt, De Beuckelaer, Lek, and
Zondervan-Zwijnenburg (2015) for a recent overview of recent de-
velopments in the analysis of MI.

29

http://dx.doi.org/10.18148/srm/2018.v12i1.7210
http://www.surveymethods.org


30 DANIEL SEDDIG, HEINZ LEITGÖB

Schoot et al., 2013).2

In the following we will emphasize the properties of
Bayesian approximate MI as an alternative to exact MI and
demonstrate how it can be assessed within longitudinal CFA.
Further, we will demonstrate the use of Bayesian approxi-
mate MI in an empirical application with panel data. So far,
to the best of our knowledge, Bayesian approximate MI has
not been applied to longitudinal data. The variables of inter-
est are young peoples’ preferences to maximize pleasure and
enjoy life which are conceptualized as a latent variable called
“hedonism”. We will conclude with a summary of our find-
ings and will discuss the implications for future comparative
research.

2 Measurement Invariance

The indication of MI is “whether or not, under different
conditions of observing and studying phenomena, measure-
ment operations yield measures of the same attribute” (Horn
& McArdle, 1992, p. 117). If MI does not hold, assum-
ing differences in latent variable means or regression coef-
ficients can be incorrect or actual differences may be con-
cealed. For longitudinal modeling, MI guarantees that the
same latent variable is measured at all times and avoids in-
terpreting change in the meaning or understanding of a latent
variable as change in terms of an underlying developmental
process (Ferrer, Balluerka, & Widaman, 2008; Little, 2013;
Stoel, van den Wittenboer, & Hox, 2004; Widaman, Ferrer,
& Conger, 2010).

To illustrate the parameters that can be subject to MI con-
straints, recall a confirmatory factor model (Bollen, 1989;
Brown, 2015; Jöreskog, 1979; Steenkamp & Baumgartner,
1998; Vandenberg & Lance, 2000):

yt = τt + Λtηt + ε t (1)

where yt is a (M×1) vector of M observed indicators (for time
t consecutively), ηt is a (N ×1) vector of N latent unobserved
variables, τt is a (M×1) vector of indicator intercepts, Λt is a
(M×N) matrix of factor loadings linking observed indicators
and unobserved latent variables, and ε t is a (M × 1) vector of
measurement errors with E(ε t) = 0; COV(ηt, ε t) = 0.3

MI is typically assessed by imposing different equality
restrictions on the parameters across time (Hertzog & Nes-
selroade, 2003; Horn & McArdle, 1992; Meredith, 1993;
Meredith & Teresi, 2006; Reise, Widaman, & Pugh, 1993;
Vandenberg & Lance, 2000). Configural MI assumes struc-
tural equivalence. This means that only the patterns of factors
and factor loadings are constrained to be equal across time.
Metric MI requires the factor loadings to be equal across time
(factor loading invariance), indicating that the meaning of a
latent variable is the same across time. Metric MI is consid-
ered necessary to compare factor covariances or unstandard-
ized regression coefficients. Scalar MI additionally requires

indicator intercepts to be equal across time (intercept invari-
ance), indicating the similar use or origin of a scale across
time. Scalar MI is considered necessary to compare latent
means.4

3 Approximate Measurement Invariance

Factor loadings and intercepts are usually constrained to
be exactly equal across time. When exact MI does not hold,
one can reduce the of number time points that are com-
pared. However, this maybe be rather unsatisfactory. An-
other alternative is partial MI (Byrne, Shavelson, & Muthén,
1989) where non-invariant parameters are freely estimated
and the remaining are held exactly equal. However, it has
been shown that approximate MI provides a better alterna-
tive when relatively small parameter differences occur (Van
de Schoot et al., 2013).

Bayesian approximate MI is based on less strict assump-
tions about parameter differences, i.e. parameter differences
are allowed some leeway or “wiggle room” (Van de Schoot
et al., 2013, p. 1). Differences are assumed to be almost zero,
but not exactly. However, differences are still kept at a min-
imum to ensure that concepts remain approximately compa-
rable. The degree of leeway can be expressed in terms of a
prior distribution, usually a normal distribution with a mean
of zero and a small variance, i.e. N(0, υ). The prior variance
υ can be changed to express different levels of confidence in
the assumption that the differences are (close to) zero. The
larger υ, the more a prior is uninformative and reflects un-
certainty. Values of less than 1 for υ are considered small
(Asparouhov & Muthén, 2017). Figure 1 shows cross-time
differences for a measurement parameter τ. Panel a displays
exact MI with no differences and panel b shows Bayesian
approximate MI with differences in the shape of a normal
distribution with a mean of zero and a small variance. The
prior variance in panel b implies that 95% of the variation
of the differences is between -0.2 and 0.2 (B. Muthén & As-
parouhov, 2012, p. 316).

4 In Brief: Principles of Bayesian Analysis

The principles of Bayesian statistics are described in great
detail by several authors (Gelman, Carlin, Stern, & Rubin,

2Alternative approaches exist that estimate the variance of pa-
rameter differences from the data. These are random effect (Fox &
Verhagen, 2017) or multilevel models (Davidov, Dülmer, Schlüter,
Schmidt, & Meuleman, 2012; Jak, Oort, & Dolan, 2014).

3Note that this terminology can be used compatibly for cross-
group and cross-time analysis. From here on, we refer to the cross-
time case.

4Additional restrictions can be tested for other parameters, for
example, equal disturbances of the same items across time, equal
factor variances and covariances across time, and equal latent fac-
tor means across time (Vandenberg & Lance, 2000). However, for
our purposes scalar MI is sufficient.
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Figure 1. Exact (a) and Bayesian approximate (b) MI (see B. Muthén & Asparouhov, 2012)

2004; Kaplan, 2014; Lynch, 2007) and have also been intro-
duced to structural equation modeling and related topics (Ka-
plan & Depaoli, 2012; Lee, 2007; B. Muthén & Asparouhov,
2012; Scheines, Hoijtink, & Boomsma, 1999; Song & Lee,
2012; Van de Schoot et al., 2014). The Bayesian perspective
shares a specific understanding of probability that is related
to the researcher’s expectations or beliefs about a parameter
of interest. When probability is generally seen as a quan-
tification of uncertainty (Zyphur & Oswald, 2015), Bayesian
probability refers to the researcher’s uncertainty about the
potential true value of a parameter. This implies parameters
are treated as random and thus variable within a prespeci-
fied range of values that can be expressed in terms of a prior
probability distribution. Useful and reasonable prior infor-
mation as well as strong confidence in the prior belief can
be translated into a sharp and narrow shaped prior distribu-
tion whereas uncertain information and poor confidence is
reflected by a uniform and flat shaped distribution. A uni-
form and flat (uninformative) prior distribution does not fa-
vor any single parameter value to be more likely than an-
other.5

Prior beliefs about the parameter of interest are updated
with observed data (i.e., the likelihood) resulting in the poste-
rior distribution, which is a trade-off between priors and data
(i.e., between expectations and evidence). A strong prior will
have more influence on the posterior and a weak prior will
give way for the data to have a stronger influence on the pos-
terior. The posterior distribution carries the usually desired
information about a parameter. The posterior mean, mode, or

median can serve as a point estimate and the posterior stan-
dard deviation is an indication of precision.

To determine the posterior parameter distribution,
Bayesian estimation procedures use Markov chain Monte
Carlo (hereafter: MCMC) sampling methods (Geyer, 2011;
Lynch, 2007). MCMC algorithms (e.g., Gibbs sampler,
Metropolis-Hastings) iteratively sample from multivariate
posterior distributions or conditional distributions of each
parameter. Previous parameter values are repeatedly up-
dated each time the algorithm passes through the process
until the joint posterior distribution can be approximated.
Since MCMC sampling methods directly generate the pos-
terior distribution, asymptotic arguments (e.g., normality of
a parameter distribution) are not needed.

The iterative process is called a chain and it is possible to
use more than one chain to obtain a posterior solution. The
first half of iterations in a chain is usually discarded as “burn-
in phase” and the second half is used to approximate the
joint posterior distribution. Convergence of the iterative pro-
cess can be assessed with the potential scale reduction fac-
tor (hereafter: PSR) (Gelman & Rubin, 1992). The PSR as-
sesses within- and between-chain variation where between-
chain variation should be small compared to within-chain
variation (see also Asparouhov and Muthén, 2010b; Gelman
and Shirley, 2011; Kruschke, Aguinis, and Joo, 2012).

Models can be compared by means of the deviance infor-

5Prior distributions are not necessarily uniform. Commonly
used conjugate prior distributions are discussed in Lynch (2007,
:68–70)
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mation criterion (hereafter: DIC; Spiegelhalter, Best, Carlin,
& van der Linde, 2002). The DIC contains a model complex-
ity term that captures the effective number of parameters:

pD = D − D(θ̄) (2)

where D is the average deviance across MCMC iterations
and D(θ̄) is the average of parameters across the MCMC it-
erations. The DIC is then calculated as:

DIC = D + pD (3)

Since parameters based on small variance priors are not
recognized as actual parameters that add to model com-
plexity, the DIC may be preferred over the Bayesian in-
formation criterion (BIC; Schwarz, 1978) in BSEM (As-
parouhov, Muthén, & Morin, 2015). The model with the
smallest DIC value is preferred. Further, the DIC is equiva-
lent to the Akaike Information Criterion (AIC; Akaike, 1973)
when prior information is absent (Ellison, 2004) and ap-
proximately equivalent given uninformative prior informa-
tion (Ando, 2010, p. 215; see also Ward, 2008).

The predictive quality of the posterior estimates (i.e.,
model fit) can be assessed with posterior predictive checks
(Lynch & Western, 2004; Scheines et al., 1999). Based on
the posterior, a synthetic data set is generated and the discrep-
ancy between generated and observed data is approximated
as a distribution of differences of test statistics T (e.g., χ2)
over a number of iterations. The proportion of test statistics
T from generated data (ygen) exceeding T from observed data
(y) is calculated as a posterior predictive p value (hereafter:
PPP), indicating the “probability that a future observation
would exceed the observed data, given the model” Lynch,
2007, p. 156:

PPP = p(T (ygen) ≥ T (y)|y) (4)

Values around .50 imply equally distributed discrepancies
and thus good fit. Extreme values, such as PPP less than
.05, indicate poor fit.

It should be noted that the DIC and PPP are not suited to
evaluate the adequacy of small variance priors (Hoijtink &
Van de Schoot, 2017). However, we will use both criteria in
conjunction with the procedure of Asparouhov et al. (2015,
Appendix A) who propose to run a series of models with
different prior variances until increasing the prior variance is
considered unnecessary (see below).

The use of Bayesian methodology has steadily increased
in recent decades (Van de Schoot, Winter, Ryan, Zondervan-
Zwijnenburg, & Depaoli, 2016). Several studies have cov-
ered diverse substantive and methodological areas of re-
search on MI and some successfully used approximate MI in
situations where exact parameter constraints have been too
strict and suggested incomparability of the variables under
study (Bujacz, Vittersø, Huta, & Kaczmarek, 2014; Chan

et al., 2015; Chiorri, Day, & Malmberg, 2014; Cieciuch,
Davidov, Algesheimer, & Schmidt, 2017; Cieciuch, Davi-
dov, Schmidt, Algesheimer, & Schwartz, 2014; Davidov et
al., 2015; De Bondt & Van Petegem, 2015; Falkenström,
Hatcher, Skjulsvik, Holmqvist Larsson, & Holmqvist, 2015;
Jackson, Gucciardi, & Dimmock, 2014; Van de Schoot et al.,
2013; Zercher, Schmidt, Cieciuch, & Davidov, 2015). How-
ever, to the best of our knowledge there exists no application
with panel data.

5 Empirical Application

5.1 Data

Data for this analysis is taken from the German sociolog-
ical and criminological panel study “Crime in the modern
city (Crimoc)”.6 The study examines the onset of delin-
quency during early adolescence and the development of
delinquency and explanatory dimensions during adolescence
and young adulthood (Boers, Reinecke, Seddig, & Mariotti,
2010; Seddig, 2014, 2016). The study examines causes, con-
sequences, and the development of delinquent behavior from
adolescence to adulthood. In 2002 the study was first im-
plemented in the city of Duisburg, Germany. A cohort of
approximately 3,500 seventh-grade students (mean age 13)
from different schools was interviewed annually in schools
using paper-and-pencil questionnaires or via a postal ques-
tionnaire survey. Since 2009 data collection is conducted bi-
ennially. In 2017 the 12th survey was conducted.

The current analysis uses 4 waves of panel data cover-
ing ages 14, 16, 18, and 20. Although more data points are
available, we chose this particular data set for two reasons.
First, to observe substantial change in the latent means of
hedonism we considered a longer time period spanning from
early adolescence until young adulthood. Second, however,
to keep the application simple and parsimonious, we decided
4 data points are adequate to illustrate the approximate MI
procedure. Hence, we accepted two year gaps between mea-
surement occasions.

The 4 waves of panel data contain information on N
= 1,002 respondents (64% females; 36% males). Obvi-
ously, panel dropout is an issue in the Crimoc study (Rei-
necke, 2013). This can be explained by the code-based and
anonymized panel construction procedure. A self-generated
code based on six time-invariant personal characteristics has
to be filled out by the respondents prior to each assessment.
The code is used to identify data of the same respondent
across time. However, many respondents do not reconstruct
it correctly. Thus, compared to the separate cross-sectional

6The study is funded by the German Research Foundation
(Deutsche Forschungsgemeinschaft). Project directors are Klaus
Boers (University of Münster, Germany) and Jost Reinecke (Uni-
versity of Bielefeld, Germany). Additional information about the
study can be found at http://www.crimoc.org.

http://www.crimoc.org
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Table 1
Means and standard deviations (n=1,002)

Total Female Male

Age Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

y1 (Desires)
14 3.00 1.19 3.00 1.17 3.00 1.23
16 2.80 1.14 2.81 1.13 2.80 1.17
18 2.49 1.12 2.45 1.13 2.57 1.11
20 2.29 1.03 2.21 1.01 2.44 1.05

y2 (Excitement)
14 2.45 1.14 2.40 1.13 2.53 1.14
16 2.42 1.06 2.30 1.00 2.63 1.14
18 2.13 0.97 1.95 0.92 2.47 0.98
20 2.00 0.93 1.81 0.87 2.36 0.94

y3 (Pleasure)
14 3.10 1.12 3.03 1.07 3.22 1.21
16 3.12 1.06 3.03 1.01 3.27 1.13
18 3.03 1.04 2.95 1.03 3.18 1.04
20 3.06 0.98 2.97 0.98 3.22 0.96

samples, the panel contains fewer males, fewer students from
secondary schools, and fewer delinquents (Seddig, 2016).
Consequently, the levels of hedonistic orientation may be un-
derestimated.

5.2 Measures

To illustrate the application of approximate MI with
Bayesian CFA we focus on adolescents’ preferences to max-
imize pleasure and enjoy life. Such a hedonistic orienta-
tion is characterized by an affection for enjoyment, excite-
ment, and consumption pronouncing the immediate gratifi-
cation of short-term desires. As one of the ten universal
values captured in Schwartz’s theory of basic human values
(Schwartz, 1992, 1994; Schwartz et al., 2012, 4), the con-
cept of hedonism plays not only a prominent role in social
psychology and cross-cultural research, but also in sociology
(e.g. Hitlin & Piliavin, 2004). Hedonistic orientations are
widely accepted among many adolescents and serve as a rel-
evant factor in the explanation of various phenomena, such
as youth delinquency (e.g. Boers et al., 2010; Seddig, 2014)
or nonparticipation in higher education (e.g. Leitgöb, Paseka,
Bacher, & Altrichter, 2012). Hence, we consider the devel-
opment of hedonistic orientations as an appropriate example
for a broad audience of researchers from various disciplines.

We will analyze hedonism with multiple indicators at each
time point. Three indicator variables measure the concept of
hedonism. Students were asked to rate their “understand-
ing for people who do what they desire” (y1) as well as
their personal desires for “living a life of pleasure” (y2) and
“excitement” (y3). These items were assessed on a 5-point

scale, where 1 indicates the lowest and 5 indicates the highest
level of agreement. Thus, we treated the scale as continuous
(Finney & DiStefano, 2013; Rhemtulla, Brosseau-Liard, &
Savalei, 2012). Table 1 shows item means and standard de-
viations. Figure 2 shows the longitudinal confirmatory factor
model.

5.3 Analytical Procedure

We first test exact MI with the traditional (full infor-
mation) maximum likelihood approach (Finkbeiner, 1979).
Therefore, we follow a “bottom-up” strategy and begin with
the least restrictive model (configural model). We then con-
secutively introduce cross-time equality restrictions on the
factor loadings (metric model) and intercepts (scalar model).
Finally, we replace exact equality constraints for parameters
found to be non-invariant across time points with approxi-
mate equality constraints by using zero-mean, small-variance
priors in the Bayesian approach.

We follow the outline of (Asparouhov et al., 2015, Ap-
pendix A) to assess which prior variance allows sufficient
wiggle room for parameter differences, but is small enough
so that the differences can be considered approximately zero.
The procedure requires to begin with a very small prior vari-
ance (e.g., υ = 0.001) and then gradually increase it in small
steps to achieve identified solutions that allow to separate
minor parameter differences from model misspecifications.
The process is monitored with regard to model fit (DIC, PPP,
and the 95% credibility intervals for the difference between
observed and replicated chi-square values) and convergence.
Increasing the prior variance is considered unnecessary when
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Figure 2. Longitudinal panel CFA model “hedonism”

Table 2
Maximum Likelihood CFA Model Fit (N = 1,002)

Model χ2 (df) RMSEA SRMR CFI

Configural 35.630 (30) 0.014 0.017 0.998
Metric 42.982 (36) 0.014 0.021 0.997
Scalar 151.015 (42) 0.051 0.042 0.955

Note. df=degrees of freedom; RMSEA=root mean square error of
approximation; SRMR=standardized root mean square residual;
CFI=comparative fit index.

model fit differences between models become irrelevant.

The programm Mplus Version 8 (L. Muthén & Muthén,
1998-2017) was used with the Gibbs sampler and two
MCMC chains in this study. A process is assumed to be
converged when the second half of the iterations has PSR
values lower than defined by the default of the Mplus com-
mand “bconvergence” (Asparouhov & Muthén, 2010b). The
treatment of missing data in Bayesian estimation is similar to
full information maximum likelihood, that is, the full infor-
mation available from the data is used assuming missing at
random (Asparouhov & Muthén, 2010a, 2010b).

5.4 Results

The results based on maximum likelihood CFA suggest
that at least exact metric MI is supported (Table 2). Global
fit statistics for scalar MI are also within the acceptable range
(Hu & Bentler, 1999). However, the χ-difference to the met-
ric model is very large. Further, Chen (2007) developed cri-
teria for other fit statistics to indicate when MI is not given.
According to these criteria, change in RMSEA should be less
than .015, change in SRMR should be less than .010, and
change in CFI should be less than -.010. The scalar model
does not meet these criteria. This implies a misspecifica-
tion in the scalar model that leads to a substantial decrease in
model fit, but not to an overall rejection of the model. How-
ever, although the global fit of the scalar model is tolerable,
the metric model may be the better choice. We admit that this
is a very strict interpretation of model fit differences, which
should be used with caution and may only serve illustrative
purposes in this example. However, the Bayesian exact scalar
MI model by far has the worst fit (upper section in Table 3).7

According to the maximum likelihood modification in-
dices, the misspecification in the scalar model is located at
the intercept level. The intercepts of items y1 and y3 are non-
invariant at time points 1 and 4 (age 14 and 20). Therefore,

7In all models, autocorrelated disturbances were considered to
fit the data structure appropriately (see the Mplus input in Figure
3).
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1 Analysis:
2 Estimator=Bayes; Chains=2; Proc=2; Stvalues=ml;
3 Biterations=1000000(100000); Bseed=3010;
4 Model:
5 hedo1 by y11* y21* y31* (1-3); [y11 y21 y31] (i11-i13);
6 hedo2 by y12* y22* y32* (1-3); [y12 y22 y32] (i21-i23);
7 hedo3 by y13* y23* y33* (1-3); [y13 y23 y33] (i31-i33);
8 hedo4 by y14* y24* y34* (1-3); [y14 y24 y34] (i41-i43);
9 hedo1@1 hedo2-hedo4;

10 [hedo1@0 hedo2-hedo4];
11 y11 with y12 y13 y14;
12 y12 with y13 y14;
13 y13 with y14;
14 y21 with y22 y23 y24;
15 y22 with y23 y24;
16 y23 with y24;
17 y31 with y32 y33 y34;
18 y32 with y33 y34;
19 y33 with y34;
20 Model priors:
21 Do(1,3) diff(i1#-i4#)~N(0,0.01);

Figure 3. Mplus input

Table 3
Bayesian CFA Model Fit (N = 1,002)

Prior DIC PPP 95% CI

Exact MI
Configural 32976 0.350 [−28.4,+40.5]
Metric 32972 0.306 [−26.0,+42.5]
Scalar 33069 0.000 [+76.0,+144.1]

Approximate MI
Scalar N(0,0.001) 33014 0.002 [+17.4,+91.2]
Scalar N(0,0.005) 32979 0.174 [−18.4,+51.8]
Scalar N(0,0.010) 32974 0.249 [−23.4,+45.9]
Scalar N(0,0.100) 32972 0.302 [−26.0,+43.0]
Scalar N(0,0.500) 32973 0.293 [−25.4,+43.6]

DIC=deviance information criterion; PPP=posterior predictive p-
value; CI=credibility interval; MI=measurement invariance.

we specified zero-mean, small-variance priors for the differ-
ences of all intercepts across time. We began the Bayesian
analyses with a very small prior variance and successively
increased it while we monitored DIC, PPP, and 95% credi-
bility intervals for the difference between observed and repli-
cated chi-square value. Although this strategy is not a test
of the adequacy of the prior variances (Hoijtink & Van de
Schoot, 2017), it is possible to decide if model fit substan-
tially improves with larger prior variances. An extract of the
Mplus input for the approximate MI model with prior vari-
ance υ = 0.010 is given in Figure 3.

The results show that the smallest prior variance υ = 0.001
does not fit the data, i.e. υ is too close to zero. By gradually

adjusting υ we were able to achieve good model fit while
maintaining convergence and identifiability. The less strict
prior variances υ = 0.100 and υ = 0.500 reveal no major
improvement of model fit compared to υ = 0.010. Moreover,
models with υ = 0.100 and υ = 0.500 are very slow to con-
verge, need much more iterations, and the quality of model
identification diminishes.8 Further, the DIC, PPP, and lim-
its of 95% credibility interval for the difference between ob-
served and replicated chi-square values for υ = 0.010 do not
substantially differ from the exact metric MI model. Thus,
υ = 0.010 is deemed sufficient to consider minor deviations
from exact intercept equivalence and we assume that approx-
imate scalar MI holds. Thus, it is reasonable to compare the
latent means of hedonism across time.

Figure 4 shows a part of the Mplus results output for the
model with prior variance υ = 0.010. It can be seen that the
factor loadings are held exactly equal across time and small
differences exist for the intercepts across time. The latent
means of hedonism across time imply that a hedonistic ori-
entation declines in the process of maturation from youth to
young adulthood.

The latent means for hedonism across time can be com-
pared with regard to the use of exact or approximate MI (Ta-
ble 4). The decline of hedonism can be observed regard-
less of the model.9 However, two differences are noteworthy.

8The model with υ = 0.500 has poor convergence even after
500.000 iterations. 100.000 were sufficient for υ = 0.010. 100.000
iterations were used for all other models, except 200.000 were used
for υ = 0.100.

9In this specific case (but not necessarily in other cases), the
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Table 4
Hedonism Latent Mean Comparison (n=1,002)

Exact MI (ML) Exact MI (Bayes) Appr. MI (Bayes)

Age Mean Std. Err. Mean Std. Err. Mean Std. Err.

14 0.000 0.000 0.000 0.000 0.000 0.000
16 −0.161 0.049 −0.167 0.051 −0.144 0.113
18 −0.574 0.056 −0.600 0.062 −0.556 0.116
20 −0.777 0.061 −0.813 0.070 −0.738 0.123

1 MODEL RESULTS
2 Posterior One-Tailed 95% C.I.
3 Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance
4

5 hedo1 BY
6 y11 0.668 0.044 0.000 0.581 0.754 *
7 y21 0.523 0.037 0.000 0.450 0.596 *
8 y31 0.514 0.035 0.000 0.444 0.583 *
9

10 hedo2 BY
11 y12 0.668 0.044 0.000 0.581 0.754 *
12 y22 0.523 0.037 0.000 0.450 0.596 *
13 y32 0.514 0.035 0.000 0.444 0.583 *
14

15 hedo3 BY
16 y13 0.668 0.044 0.000 0.581 0.754 *
17 y23 0.523 0.037 0.000 0.450 0.596 *
18 y33 0.514 0.035 0.000 0.444 0.583 *
19

20 hedo4 BY
21 y14 0.668 0.044 0.000 0.581 0.754 *
22 y24 0.523 0.037 0.000 0.450 0.596 *
23 y34 0.514 0.035 0.000 0.444 0.583 *
24

25 Means
26 hedo1 0.000 0.000 1.000 0.000 0.000
27 hedo2 -0.144 0.113 0.099 -0.369 0.075
28 hedo3 -0.556 0.116 0.000 -0.792 -0.334 *
29 hedo4 -0.738 0.123 0.000 -0.991 -0.511 *
30

31 Intercepts
32 y11 2.986 0.037 0.000 2.913 3.058 *
33 y21 2.448 0.035 0.000 2.380 2.516 *
34 y31 3.125 0.035 0.000 3.057 3.194 *
35 y12 2.901 0.076 0.000 2.753 3.052 *
36 y22 2.486 0.062 0.000 2.364 2.608 *
37 y32 3.195 0.061 0.000 3.076 3.315 *
38 y13 2.865 0.076 0.000 2.717 3.016 *
39 y23 2.425 0.063 0.000 2.305 2.549 *
40 y33 3.306 0.061 0.000 3.187 3.426 *
41 y14 2.793 0.080 0.000 2.642 2.954 *
42 y24 2.397 0.064 0.000 2.274 2.524 *
43 y34 3.421 0.062 0.000 3.303 3.544 *

Figure 4. Mplus model results output (υ = 0.010; point estimates are medians)
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1 DIFFERENCE OUTPUT
2

3 Average Std. Dev. Deviations from the Mean
4 I11 I21 I31 I41
5 1 2.886 0.053 0.099* 0.014 -0.021 -0.092*
6

7 I12 I22 I32 I42
8 2 2.439 0.044 0.009 0.047 -0.013 -0.042
9

10 I13 I23 I33 I43
11 3 3.262 0.042 0.136* -0.067 0.044 0.159*

Figure 5. Mplus difference output (υ = 0.010)

First, the decline appears to be less pronounced in the ap-
proximate MI solution. Second, the standard errors are larger
in the approximate MI solution. For example, the change in
latent means of hedonism between age 14 and 16 is consid-
ered not significant with approximate MI, but significant with
both exact MI solutions.

Finally, the non-invariant parameters can be identified
based on the approximate MI solution (B. Muthén & As-
parouhov, 2013). Non-invariance is determined as the differ-
ence of a particular parameter at a time point from the aver-
age of estimates for the particular parameter across time. If a
difference of zero is outside of the 2.5% and 97.5% quantiles
of the posterior distribution of differences, the difference is
assumed to be significant and the parameter is assumed non-
invariant. Figure 5 shows the difference output produced
by Mplus for the Bayesian CFA model with prior variance
υ = 0.010. The column “Average” refers to the average of
estimates for parameters across time. Significant deviations
from the average (i.e., non-invariant parameters) are labeled
with an asterisk in the columns “Deviations from the Mean”.
The results indicate that the intercepts of items y1 and y3 sig-
nificantly deviate from the cross-time average at time points
1 and 4.

6 Conclusion

The analyses reported in this paper used Bayesian approx-
imate MI to test the comparability of students’ preferences to
maximize pleasure and enjoy life (“hedonism”). Since com-
parability is important for longitudinal research and the study
of processes and change of latent variables, a careful assess-
ment of MI has to be conducted before drawing substantive
conclusions. The Bayesian approach offers a flexible alter-
native to the exact approach where all model parameters are
held exactly equal across time points. Approximate MI al-
lows for a small degree of deviation from exact zero con-
straints while the differences across time points are kept at a
minimum.

Regardless of using maximum likelihood or Bayesian es-
timation, the results of testing the longitudinal MI of hedo-

nism showed that exact scalar MI may not be the best solu-
tion. However, the use of zero-mean, small-variance priors
lead to support for approximate scalar MI. A small prior vari-
ance (υ = 0.010) was deemed sufficient to account for minor
differences of item intercepts across time. These minor dif-
ferences already led to a substantial deterioration of fit of
the exact scalar MI model and substantive conclusions may
be not trustworthy. The Bayesian approach showed that the
latent means are comparable at least based on approximate
MI. Although the differences in the latent means from exact
and approximate MI models were small, they may be more
severe in other studies. In any case, a careful test of invari-
ance properties is recommended over alternative strategies,
such as using observed composite scores (Steinmetz, 2013).

For practical researchers it may not be easy to decide when
and how to use the Bayesian approach. However, consider-
ing what can be achieved by using small variance priors for
testing MI may open up a new perspective. When model fit
of more restrictive (e.g., scalar) models is worse than that of
less restrictive (e.g., metric) models, researchers may take a
closer look at the actual parameter differences that elicit the
misfit. Sometimes already very small parameter differences
across time may lead to a decision against a particular model
in the traditional (maximum likelihood) approach. In this
case, using the Bayesian approach to reduce the stringency
of parameter equality may be very reasonable and compara-
bility can be justified, even if the parameter differences pre-
cluded a comparison using the traditional approach. How-
ever, if the differences are actually large and not regarded as
negligible, too much leeway for the parameter differences is
not advisable. Very large prior variances may be too vague
and the estimation is dominated entirely by the data. Con-
sequently, assuming comparability may be reasonable, even
if model fit is good. In contrast, very small prior variances

same development can be observed when mean differences of com-
posite scores are compared (not displayed). However, this similarity
does not imply that testing for MI is unnecessary. Composite mean
differences have been shown to be trustworthy only when full scalar
MI holds for the underlying measures (Steinmetz, 2013).
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may be too close to exact zero differences and result in poor
model fit. A rule of thumb for limits of the prior variance
does not seem to be useful. Many times a balance is needed
between the desired condition (i.e., exact parameter equal-
ity) and the situation found in the data. This balance can be
achieved by the Bayesian posterior distribution of parameter
differences: while the irregularities in the data are considered
the differences are kept as close to zero as possible.

The results presented in this paper do not rely on a strict
test of the hypothesis that parameter differences defined by
the prior variance υ are approximately zero. We applied the
strategy outlined by Asparouhov et al. (2015) where no sin-
gle prior is preferred over another. A test of the particular hy-
pothesis that parameters are approximately zero is the prior-
posterior predictive p-value (Asparouhov & Muthén, 2017;
Hoijtink & Van de Schoot, 2017). However, Mplus does not
yet provide the prior-posterior predictive p-value for approx-
imate MI.

Further, the choice of a different than a zero-mean prior
may be considered in cases where different types of re-
sponse bias may give rise to assumptions about system-
atic reporting tendencies that contradict measurement equiv-
alence (Billiet & Davidov, 2008; Cheung & Rensvold, 2000;
Welkenhuysen-Gybels, Billiet, & Cambré, 2003). If, for ex-
ample, a shift in the intercept or factor loading of a particular
item is expected across measurement occasions, this could
be expressed with a non-zero mean for the prior.

Van de Schoot et al. (2013) pointed out that approximate
MI may not be appropriate in all situations. They suggest
partial approximate MI as a further approach that may lead to
even better solutions. Partial approximate MI allows minor
differences only for those parameters that are non-invariant.
Further, in the presence of large parameter differences, non-
invariant parameters tend to be pulled toward the average of
the parameter estimates which causes bias in latent variable
means (Van de Schoot et al., 2013). A method to compen-
sate for this bias is alignment (Asparouhov & Muthén, 2014;
Marsh et al., 2017; B. Muthén & Asparouhov, 2014) where
a component loss function (Jennrich, 2006) is used to gen-
erate solutions with many approximately invariant parame-
ters and very few non-invariant parameters. However, using
strict, partial, or approximate MI, or even applying the align-
ment procedure must be judged on a case-by-case basis. The
equality constraints imposed by any of these approaches are
sensible to the unique data set that is analyzed.
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