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Estimates of poverty and inequality are often based on application of a single equivalence scale,
despite the fact that a large number of different equivalence scales can be found in the literature.
This paper describes a framework for sensitivity analysis which can be used to account for the
variability of equivalence scales and allows to derive variance estimates of results of sensitivity
analysis. Simulations show that this method yields reliable estimates. An empirical application
reveals that accounting for both variability of equivalence scales and sampling variance leads
to confidence intervals which are wide.

Keywords: equivalence scale; influence function; low income proportion; sensitivity analysis;
variance estimation

1 Introduction

Equivalence scales play a major part in research on
poverty and inequality. They are used to adjust household
income of households of different size and composition for
differences in relative costs of reaching the same living stan-
dard. The result is called equivalent income. Equivalent
income can be directly compared across households and is
used to calculate measures of poverty and inequality. A well-
known equivalence scale is the modified OECD scale (Hage-
naars, de Vos, & Zaidi, 1994), which finds widespread use in
economics, sociology, statistics, and other disciplines. Apart
from the modified OECD scale other popular scales exist,
like the equivalence scale suggested by McClements (1977),
which is a common choice for analysis of British data. In
general, a large variety of equivalence scales can be found in
the literature, due to different estimation methods and differ-
ent assumptions. This raises the question which of the many
available scales one should use, because results are sensi-
tive to the choice of equivalence scale (Buhmann, Rainwa-
ter, Schmaus, & Smeeding, 1988; Burkhauser, Smeeding, &
Merz, 1996; Coulter, Cowell, & Jenkins, 1992; De Vos &
Zaidi, 1997; Székely, Lustig, Cumpa, & Mejía, 2004). Esti-
mating an equivalence scale for each specific research ques-
tion and data set would avoid this choice, but is infeasible,
as estimation of equivalence scales is a time consuming task
and there is no consensus on which of the many available
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methods are preferable (Muellbauer & van de Ven, 2004).

Using a single equivalence scale taken from the literature,
as is commonly done, ignores that there is a wide range of
equivalence scales of which none can be claimed to be supe-
rior to others, as each method for derivation of equivalence
scales has its advantages and disadvantages (see e.g. Coulter
et al., 1992; Schröder, 2013; Schulte, 2007). Applying a sin-
gle scale leads to valid estimates of poverty and inequality
conditional on the chosen equivalence scale, but the choice
of the equivalence scale may be hard to justify. Sensitiv-
ity analyses are a simple remedy, which means calculating
the indicators of interest using alternative equivalence scales
(Gustafsson, 1995). In many empirical applications no sen-
sitivity analysis is conducted, though. Moreover, the sample
variance of the results of sensitivity analysis has been ignored
in the literature and variance estimates are only calculated for
the results of the main analysis, if at all.

The main contribution of this paper is to propose a frame-
work for sensitivity analysis which allows to include variabil-
ity of equivalence scales in a formal way and which yields a
simple method for variance estimation for results of sensitiv-
ity analysis. Using a certain parametrization of equivalence
scales the researcher specifies a univariate probability distri-
bution which describes the set of possible equivalence scales.
In combination with sample data this induces a distribution
for a measure of poverty or inequality. The induced distribu-
tion can be analysed using its mean, median, extrema, and so
forth. Linearization techniques based on influence functions
as proposed by Deville, 1999 are applied to derive variance
estimates. The simultaneous confidence interval of the min-
imum and the maximum of the induced distribution is pro-
posed as a way of capturing both variability of equivalence
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scales and sample variance. In doing so, this paper brings to-
gether the literature on sensitivity analysis and the literature
on variance estimation. The former has ignored sample vari-
ance so far and the latter ignored variability of equivalence
scales.

There is a large number of measures of poverty and in-
equality (see e.g. Zheng, 1997). As an important example,
the low income proportion will be analyzed, which is usually
defined as the proportion of households with equivalent in-
come equal or less than 60% of median equivalent income.
This indicator, also known as at-risk-of-poverty rate, is rou-
tinely reported by national statistical offices. It is part of the
EU2020 indicators which are used to measure the achieve-
ment of policy goals in the European Union and its member
states. As such, the low income proportion has received con-
siderable attention in the methodological literature on vari-
ance estimation for non-linear indicators and surfaces regu-
larly in public debates. The results derived in this paper ap-
ply to other measures as well, as long as certain assumptions
hold, and additional results for the Gini index and the quintile
share ratio can be found in the supplementary materials.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces basic concepts and notation. An easy way
to formalize assumptions of sensitivity analysis is explained
in section 3. A discussion of linearization for variance es-
timation with equivalent income assumed known (i.e. using
one specific equivalence scale) is given in section 4. In sec-
tion 5 the framework for variance estimation for sensitivity
analysis is discussed. Simulation results relating to the per-
formance of the variance estimators are presented in section
6. Results of an empirical application to German data are
provided in section 7. Section 8 concludes.

2 Notation

2.1 Low income proportion

Let U = {1, . . . , k, . . .N} be a finite population of house-
holds of size N. Y∗ denotes equivalent income and y∗k denotes
equivalent income of household k. The cumulative distribu-
tion function (cdf) of Y∗ is given by

FY∗ (z) =
1
N

∑
k∈U

1(y∗k ≤ z), (1)

with 1(·) being the indicator function. The βth quantile of Y∗

is given by

QY∗ (β) = F−1
Y∗ (β) = inf{z : FY∗ (z) ≥ β}. (2)

For example, QY∗ (0.5) is the median.
The low income threshold is defined as αQY∗ (β). β is usu-

ally set to 0.5 and common choices for α are 0.6 or 0.5. Given
a choice of values for α and β the low income proportion is

defined as

P(α, β) = FY∗ (αQY∗ (β))

=
1
N

∑
k∈U

1(y∗k ≤ αQY∗ (β)). (3)

Given a sample S ⊂ U of size n, FY∗ (z) is estimated
via its sample analogue F̂Y∗ (z) = 1/n

∑
k∈S 1(y∗k ≤ z) in

case of simple random sampling. Otherwise F̂Y∗ (z) =

1/N̂w
∑

k∈S wk1(y∗k ≤ z) is used, with survey weights wk and
N̂w =

∑
k∈S wk. The estimates Q̂Y∗ (β) and P̂(α, β) of QY∗ (β)

and P(α, β) can be found by replacing FY∗ in equations (2)
and (3) with F̂Y∗ .1

2.2 Equivalence scales

Equivalent income Y∗ is not directly observed, but derived
from observed income Y . Let h = 1, . . . ,H index different
household types, each with a specific equivalence weight Ah.
Ah is set to 1 for one household type chosen as reference,
e.g. single person households. Equivalent income of all other
households is standardized to be comparable to the refer-
ence household type. In what follows it will be assumed that
households are only differentiated by household size and that
h will denote the number of household members. An equiv-
alence scale is defined as a set of equivalence weights for all
household types, A = (A1, . . . , AH). Equivalent income for
household k of size h is calculated via y∗k = yk/Ah. Uh and
Sh are subsets of U and S each including all households of
size h.

Replacing equation (1) with

FY∗ (z) =
1
N

H∑
h=1

∑
k∈Uh

1(yk/Ah ≤ z) (4)

and plugging this definition into equations (2) and (3) the low
income proportion is given by

P(α, β) =

1
N

H∑
h=1

∑
k∈Uh

1

yk/Ah ≤ α inf

z :

 1
N

H∑
h=1

∑
k∈Uh

1(yk/Ah ≤ z)

 ≥ β

.
(5)

Changing equivalence weights can affect the low income pro-
portion through both the low income threshold and the num-
ber of households below the threshold.

1The low income proportion can also be defined with respect to
individuals. For example, one could be interested in the proportion
of children living below the low income threshold. The low income
proportion is then given by 1

Nc

∑
k∈U ck1(y∗k ≤ αQ(β)), where ck is

the number of children in household k and Nc is the total number of
children. Variance estimation can proceed as described in sec. 3 and
sec. 4, but has to take into account additional sampling variability
through ck (see e.g. Thuysbaert, 2008).
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3 Formalizing assumptions of sensitivity analysis

In sensitivity analyses usually a limited number of addi-
tional equivalence scalesA1,A2, . . . is used and analyses are
rerun (e.g. Streak, Yu, & Van der Berg, 2009; Székely et al.,
2004; Triest, 1998).2 A more formal approach can start from
distributional assumptions about the elements of A summa-
rized in some density fA. The choice of fA is subjective and
depends on what the researcher is willing to justify. As a
simple way to specify fA the representation of equivalence
scales given by Buhmann et al., 1988 will be used, which
only needs one parameter to be specified to yield a complete
equivalence scale, making it a useful tool for sensitivity anal-
ysis. Let h denote the number of household members. Equiv-
alence weights are calculated via

Ah = hη (6)

with 0 ≤ η ≤ 1. Setting η = 1 leaves h unchanged and
gives the head-count-ratio, whereas η = 0 amounts to leaving
household income unmodified. This representation is gener-
ally considered to approximate most equivalence scales quite
well, even equivalence scales which are based on several pa-
rameters, e.g. different weights for adults and children. For
instance, the modified OECD scale can be approximated by
setting η = 0.54. Figure 1a shows how equivalence weights
Ah for households of size h = 1, . . . , 5 depend on η (dashed
and dotted lines). Increasing η increases equivalence weights
for all household types. Equivalence weights of the modified
OECD scale are shown as points at η = 0.54 and are close
to the lines, confirming the good fit of the approximation via
equation (6).3

Using equation (6) only distributional assumptions for η
are needed and an univariate distribution suffices to specify
fA. This distribution can either be derived from the literature
or set ad hoc based on plausibility. For example, based on an
overview of equivalence scale estimates for Germany given
by Schulte, 2007, which covers different methods and data
sets, Dudel, Garbuszus, Ott, and Werding, 2013 arrive at val-
ues of η which are shown in figure 1b. Each dot represents a
value of η obtained for a specific equivalence scale.

Values of η range from 0.32 to 0.72. These values suf-
fice to specify a uniform distribution, i.e. Unif(0.32, 0.72),
based on the assumption that the resulting range covers all
plausible values and none of the values in the specified in-
terval is more probable than another. As the three upper-
most values of η shown in figure 1b could be interpreted as
outliers, one could restrict attention to values of η based on
equivalence scales which were estimated using expenditure
data. These range from 0.34 to 0.51 and one could assume
that η ∼ Unif(0.34, 0.51), which seems more reasonable than
Unif(0.32, 0.72). Given the findings in figure 1b other distri-
butions may be hard to justify. Still, other distributions with
limited support could be used instead and the supplemen-
tary materials include simulation results based on a truncated

normal distribution. Using continuous distributions seems
more appropriate than discrete distributions, as the values of
η shown in figure 1b are not “exact” due to sampling vari-
ability, because all of the underlying equivalence scales taken
from the literature are based on sample data.

For other countries than Germany assumptions on η can
be derived from the literature in a similar fashion. While
one should be careful with using the numbers given above
for other countries, this would nevertheless be possible if
economies of scale and scope can be assumed to be similar
to those in Germany, i.e. if the relative costs of adding a new
member to a household are similar.

4 Variance estimation via linearization

Variance estimation for the low income proportion can not
use standard approaches for proportions, because the low in-
come threshold in equation (3) is endogenous and has to be
estimated from the data. More generally, most measures of
poverty and inequality are nonlinear functions of the data and
variance estimation is not straightforward. Variance estima-
tion for nonlinear measures has received considerable atten-
tion in the literature and one approach is to use lineariza-
tion. Variance estimation for the low income proportion with
some equivalence scale assumed given has been discussed
by Shao and Rao, 1993, Binder and Kovacevic, 1995, Pre-
ston, 1995, Deville, 1999, Zheng, 2001, Berger and Skinner,
2003, Osier, 2009, and Graf and Tillé, 2014, using different
linearization techniques and different assumptions on sample
design. Their main results concerning variance estimation
for the low income proportion coincide, though, and in what
follows the approach of Deville, 1999 will be described.

Suppose P̂(α, β) has been estimated via sample data. In-
terest lies in calculating the variance Var(P̂). This can be
achieved by calculating a linearized variable zk and estimat-
ing the variance of tz =

∑
wkzk. Var(tz) can be calculated

by standard methods, e.g. the Horvitz-Thompson estimator.
Asymptotic arguments establish that Var(P̂) ≈ Var(tz) (for
details see Deville, 1999).

The values of zk can be found through the influence func-
tion. Let X be a variable of interest and let M be a discrete
measure with unit mass for each point xk and a total mass of

2Notable exceptions which explore the dependence of results
on equivalence scales more in-depth include Duclos and Mercader-
Prats, 1999, Burkhauser et al., 1996, Banks and Johnson, 1994 and
Coulter et al., 1992.

3For equivalence weights of the modified OECD scale shown
in figure 1a it was assumed that the second person in a household
is above age 14, while the third, fourth, and fifth person are below
age 14. This leads to equivalence weights of 1 (h=1), 1.5 (h=2),
1.8 (h=3), 2.1 (h=4), and 2.4 (h=5). η was derived by using these
equivalence weights as well as the weight for a single parent with
one child (1.3) as the dependent variable in the non-linear regression
Ah = hη + eh.
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Figure 1. (a) Equivalence weights for households of size h = 1, . . . , 5 as functions of η (lines) and equivalence weights of the
modified OECD scale (crosses at η = 0.54); (b) Values of η obtained from the literature reviews of Schulte, 2007 and Dudel,
Garbuszus, Ott, and Werding, 2013 (points) and modified OECD scale (cross at η = 0.54);

N. Let T (M) be a functional of M. For example, the cdf of
X can be written as FX(z) = [1/

∫
dM]

∫
1(x ≤ z)dM. The

influence function of a functional T (M) as defined by Deville
is given by

IT (M; x) = lim
ε→0

T (M + εδx) − T (M)
ε

, (7)

where δx is the Dirac measure at x. IT is the Gateaux dif-
ferential of T in direction of δx. It captures the change
in T given an infinitesimal change in M. Inserting xk into
IT (M; ·) gives zk. Thus, as Graf and Tillé, 2014 note, Dev-
ille’s approach starts from the population parameter T (M)
and not the sample estimator T (M̂). However, T (M) is not
known and is estimated by its sample analogue T (M̂). T (M̂)
is plugged into equation (7), giving an estimate of zk, ẑk,
which can be used to approximate the variance of T (M̂) via
Var[T (M̂)] ≈ Var(

∑
k∈S wk ẑk) (see Deville, 1999 for details).

Deville, 1999 shows that influence functions follow the
standard rules of differential calculus and gives a set of useful
rules which can be used to derive influence functions. Osier,
2009 provides detailed derivations for many indicators in-
cluding the low income proportion. The influence function
of P(α, β) is given by

IP(M; y∗) =
1
N

[
1(y∗ ≤ αQY∗ (β)) − P(α, β)

]
−

α
1
N

fY∗ (αQY∗ (β))
fY∗ (QY∗ (β))

[
1(y∗ ≤ QY∗ (β)) − β

]
, (8)

where fY∗ (z) is the derivative of FY∗ (z), i.e. the probability
density function (pdf) of Y∗. In Deville, 1999 multiplication
of the second term by α is missing. Variants of this result
can also be found in Shao and Rao (1993, p. 401), Binder

and Kovacevic (1995, p. 142), Preston (1995, p. 95), Zheng
(2001, p. 345) and Osier (2009, p. 173). As noted by Pre-
ston, 1995 the first term covers the variance of P for a fixed
low income threshold and the second term captures the ef-
fect of estimating the threshold from the data. An analysis
carried out by Zheng, 2001 indicates that variance estimates
acknowledging estimation of the threshold generally tend to
be higher than estimates only based on the first term, because
the variance of the low income proportion with an estimated
poverty threshold is higher. For estimation of the linearized
variable the sample analogs Q̂Y∗ (β), P̂(α, β) and f̂Y∗ (·) are
plugged into equation (8).

Because FY∗ (z) as defined by equation (1) is a step func-
tion, the pdf fY∗ (z) equals 0 or does not exist. One solution is
to replace summation with integration and assume that FY∗ (z)
is continuously differentiable (e.g. Zheng, 2001). Deville,
1999 proposed to use a convoluted smooth function instead
of the non-smooth function, i.e. a smoothed version of FY∗ (z)
to achieve continuous differentiability. A theoretical justifi-
cation was given by Wang and Opsomer, 2011 using kernel
estimators. Their approach requires certain smoothness and
tail properties of the kernel estimator, which are satisfied by
popular kernel functions like triangle and Gaussian kernels.
Usually the latter is used, either for estimation of F̃Y∗ (z) or
for direct estimation of fY∗ (z) if FY∗ (z) is assumed to be dif-
ferentiable (e.g. Berger & Skinner, 2003; Münnich & Zins,
2011; Osier, 2009; Preston, 1995). The simulations and the
empirical application which will be presented in this paper
are based on the assumption that FY∗ (z) is continuously dif-
ferentiable. Finite sample performance of this approach is
quite good at least for large samples, while the use of the
convolution product as proposed by Deville, 1999 changes
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the quantity to be estimated and is not easy to interpret.

5 Variance estimation for induced distributions of P

5.1 Induced distributions of P

Let fη(u) be the pdf of the distribution chosen for η. In
combination with U this induces a distribution of the low
income proportion, fP(p). This means that for every equiva-
lence scaleA = hη on the support of fη P(α, β|η) can be cal-
culated, resulting in a distribution of P(α, β) which depends
on the choice of fη. Switching to the case of a sample S,
a natural estimator of fP(p) is fP̂(p).4 An example of such a
distribution fP̂ based on the data described in the next section
and using Unif(0, 1) for η is shown in figure 2b. Figure 2a
shows the low income proportion as a function of η, high-
lighting the strong impact of η on the low income propor-
tion.5 The choice of Unif(0, 1) may be rather extreme and
more realistic examples will be used in sections 6 and 7.

The induced distribution of P(α, β) can be characterized
through its expectation, quantiles, and the likes. For exam-
ple, the expectation E(P) can be written as

E(P) =

∫
P(α, β|u) fη(u)du, (9)

where P(α, β|u) is given by replacing FY∗ (z) in equations (2)
and (3) with

FY∗ (z; u) =
1
N

H∑
h=1

∑
k∈Uh

1(yk/hu ≤ z). (10)

Estimation can simply proceed by replacing FY∗ (z; u) with its
sample analogue F̂Y∗ (z; u), calculating P(α, β|u) on the sup-
port of fη, and weighting by fη. Note that E(P) does not
necessarily equal P(α, β|E(η)) even if the distribution of η is
assumed to be symmetric, because P(α, β|η) is nonlinear in η
(see figure 2a).

As seen in figure 2b the induced distribution of P(α, β)
can be heavily skewed, making the expectation a possibly
misleading choice. The median of the distribution is a more
robust alternative. Of further interest are the minimum and
maximum which can be seen as extreme quantiles. The ex-
trema of the distribution limit the range of the low income
proportion and thus give bounds on the best and worst pos-
sible amount of relative poverty given a range of equiva-
lence weights. Let QP(γ) be the γth quantile of the distri-
bution of P(α, β), with QP(0) being the minimum and QP(1)
being the maximum. It is defined as in equation (2) with
FY∗ (z) replaced by FP(z), the cdf of the induced distribution
of P(α, β). FP(z) can be written as

FP(z) =

∫ εu

εl

1(P(α, β|u) ≤ z) fη(u)du, (11)

where εl and εu are the endpoints of the support of fη. Prac-
tical calculations can proceed in a simple fashion: P(α, β|η)

is calculated on the support of fη, the subset of results for
which P(α, β|η) ≤ z is selected, and the corresponding values
of fη are used to calculate FP(z).

In case of the results shown in figure 2b the mean equals
0.176. The minimum of the results in figure 2b is 0.154, the
maximum is 0.229, and the median is about 0.165. Using
the modified OECD scale yields a low income proportion of
0.162. This shows that reporting only a single point esti-
mate based on a certain equivalence scale may be mislead-
ing, if one is not able to assume a specific equivalence scale
as fixed. However, sensitivity analysis would usually stop at
this point. As in most analyses sample data will be used, this
ignores variability due to sampling. That is, the numbers just
quoted may give an indication of the variability of P(α, β)
with respect to equivalence scales, but only conditional on
the data.

5.2 Variance estimation

Following Deville, 1999, the variance of E(P) can be cal-
culated via its influence function.

Proposition 1. Given an arbitrary univariate density fη, the
influence function of E(P) is given by

IE(P)[M; k] =

∫
IP(α,β|u)[M; yk/hu

k] fη(u)du.

This follows directly from rule 4 of Deville, 1999. The
pseudo-variable zk to be calculated for each observation k
is simply given by the expectation of the pseudo-variables
calculated via equation (8) for all values of η.

The influence function of FP(z) as defined in equation
(11), which is required for the influence function and vari-
ance estimate of QP(γ), can not be easily defined, because
adding an observation may change the values of the indicator
function in equation (11). To arrive at a simple solution, the
following assumption is invoked: The low income proportion
is a strictly decreasing function of η on the interval [εl, εu],
i.e. δP(α, β, η)/δη < 0. Given this assumption it follows that

FP(z) =

∫ εu

τ(z)
fη(u)du = 1 − Fη(τ(z)), (12)

where τ(z) is the smallest value in the interval [εl, εu] for
which P(α, β|τ(z)) ≤ z holds. It is a function of the data and
does not necessarily equal εl. Using this simplified version
of FP(z) it is possible to express τ(z) as the inverse of the low
income proportion with α and β fixed, as each value of the

4Note that given a specific choice of η, i.e. a non-random scalar,
the low income proportion for the population, P(α, β), is still a non-
random scalar, too. The distribution of P(α, β) is solely due to the
distribution of η, fη.

5In the example shown in figure 2a, the correlation between η

and P(α, β|η) is about −0.93.
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Figure 2. (a) Low income proportion as a function of η and (b) fP̂, both for the 2012 CNEF-file of the German Socio-Economic
Panel using η ∼ Unif(0, 1).

low income proportion corresponds to exactly one value of η.
This allows to calculate the influence function of τ(z) which
otherwise would be hard to obtain. Given the simplified ver-
sion of FP(z) it can be shown that the following proposition
holds.

Proposition 2. The influence function of QP(γ) can be cal-
culated as IQP(γ)[M; k] = IP(α,β|η(γ))[M; yk/h

η(γ)
k ] where η(γ) is

the value of η for which QP(γ) results.

For a proof see the appendix. From proposition 2 a simple
two-step procedure follows. First, given fη, calculate FP(z)
and find QP(γ) and the corresponding η(γ). Second, use η(γ)
to calculate equivalent income and apply the standard for-
mula (8) for variance estimation of the low income propor-
tion.

The assumption invoked above may only hold approxi-
mately and only on a subset of the interval [0, 1]. For exam-
ple, in case of the results shown in figure 2a, it is only sat-
isfied on the interval [0, 0.62]. Given an income distribution
it is hard to say whether the assumption will be satisfied, as
the impact of η on the low income proportion via equations
(6) and (5) is not easy to predict. Nevertheless, empirical
evidence suggests that the relation between η and the low
income proportion generally follows the pattern shown in 2a
(Banks & Johnson, 1994; Burkhauser et al., 1996; Coulter et
al., 1992). If the support of fη is chosen correspondingly, this
will not pose a problem. Furthermore, simulation results in
the next section and in the supplementary materials show that
variance estimates are only slightly biased if [0, 1] is chosen
as the support of fη. While one should be cautious about con-
cluding that violation of the assumption is unproblematic, it
at least seems to be the case for the data used in this paper.

Note that proposition 2 holds for any measure of poverty
and inequality for which the assumption of strict monotonic-

ity is reasonable, i.e. indices need either to be strictly increas-
ing or strictly decreasing in η. Further note that the distribu-
tion fη is only needed at the first step of the procedure out-
lined above. As long as one is able to calculate the induced
distribution of P(α, β) any distributional assumptions for η
are possible. If only QP(0) and QP(1) have to be estimated
then by the monotonicity assumption it suffices to specify
the endpoints of the support of fη. If the assumption is not
satisfied the resulting values of QP(0) and QP(1) may be mis-
leading, though.

As indicated above, QP(0.5), QP(0) and QP(1) are pro-
posed as quantiles of special interest. Simultaneous confi-
dence intervals for QP̂(0) and QP̂(1) can be constructed us-
ing the Bonferroni correction. Let ql

0 be the resulting lower
bound for QP̂(0) and let qu

1 be the resulting upper bound for
QP̂(1) for the desired overall confidence level. ql

0 and qu
1 to-

gether yield an interval which captures both sampling vari-
ance and variability of equivalence scales. As such, it is
proposed as an indication of overall uncertainty. The more
willing one is to make strong assumptions about equivalence
scales, the smaller this interval will become. For example, if
we assume η as used in equation (6) to follow a uniform dis-
tribution Unif(0.32, 0.72) will give a larger difference qu

1−ql
0

than assuming Unif(0.50, 0.58), because equivalence scales
“close” to each other usually lead to quite similar results. As-
suming a single value for η can be seen as an extreme case,
which only allows for sampling variance.

6 Monte carlo simulations

6.1 Simulation setup

To assess finite sample performance of the variance esti-
mators proposed in the preceding section Monte Carlo sim-
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ulations were run using the 2012 cross-national equivalent
file (CNEF) of the German Socio-Economic Panel (SOEP),
2012.6 The SOEP is a panel survey conducted annually since
1984 and covers a broad range of topics. CNEF data include
a subset of variables from the SOEP, which are directly com-
parable to the CNEF versions of other surveys, easing repli-
cations. For a general description of the SOEP see Wagner,
Frick, and Schupp, 2007 and for the CNEF see Frick, Jenk-
ins, Lillard, Lipps, and Wooden, 2007.

The CNEF data include information on annual house-
hold income and the number of household members for a
total of 12352 households.7 Using this data as population
frame, 50000 simple random samples without replacement
were drawn for sampling fractions of 2.5%, 5%, and 10%,
corresponding to sample sizes of 309, 618, and 1235, re-
spectively. Additional results of simulations based on 50000
stratified random samples without replacement are described
in appendix B in the supplementary materials and differ only
slightly from the results presented here. Furthermore, sim-
ulation results for the Gini coefficient and the quintile share
ratio can be found in appendix C, also in the supplementary
materials. All programs are available from the author upon
request.

For each of the 50000 samples, the standard errors of
the following quantities were calculated: the low income
proportion using the modified OECD scale and the mean,
median, minimum and maximum of the induced distribu-
tion of the low income proportion. α and β were set to 0.6
and 0.5, thus following practice of Eurostat. Three variants
were specified for fη: one using Unif(0.34, 0.51), one us-
ing Unif(0.32, 0.72), and a variant using Unif(0, 1), where
the first variant uses only estimates taken from the survey
of Dudel et al., 2013 which are based on expenditure data
and demand systems. Using Unif(0, 1) is rather extreme, as
values close to 0 and 1 are not very sensible a priori and are
not supported by the literature on equivalence scales. Addi-
tional simulations using a truncated normal distribution are
presented in the supplementary materials. The induced dis-
tribution of the low income proportion was estimated by cal-
culating P(0.6, 0.5|η) for each percentile of fη. The resulting
distribution of values of P(0.6, 0.5|η) was then used to esti-
mate the mean and the quantiles of the induced distribution.
Given a value of η P(0.6, 0.5|η) was estimated by first gener-
ating equivalent weights for each household type according
to equation (6) which were then plugged into equation (5).

Each of the estimates listed above is compared to its true
value in terms of relative bias. Relative bias is calculated as
(E(Xsim)−Xtrue)/Xtrue, where E(Xsim) is the mean of the quan-
tity of interest over all 50000 Monte Carlo repetitions and
Xtrue is the true value. The true variance is calculated using
the Monte Carlo variance, i.e. the variance of the estimators
based on 50000 replications.

Density estimation as needed to calculate the influence

function of the low income proportion as given by equation
(8) was carried out using Gaussian kernels. Bandwidth h was
calculated as 0.79(Q̂Y∗ (0.75) − Q̂Y∗ (0.25))n−0.2 as suggested
by Silverman, 1986 for distributions with positive skew (see
also Verma & Betti, 2005). Q̂Y∗ (·) denotes the estimated
quantile function of equivalent income as defined in section
2.1.

6.2 Results

Results on relative bias are shown in table 1. It is divided
in four parts, each part corresponding to one of the different
assumptions on the distribution of η. The first part includes
results for the low income proportion calculated by approx-
imating the modified OECD scale with η = 0.54. The other
parts cover results for the expectation of the induced distri-
bution, its median, minimum, and maximum, respectively.
Tables with more detailed results can be found in appendix
B in the supplementary materials.

As can be seen from table 1, estimates of standard errors
based on the induced distribution generally can exhibit both
upward and downward bias. Nevertheless, in most cases bias
is negligible.

More specifically, bias is small in case of Unif(0.34, 0.51),
which is the only variant for which the assumption of mono-
tonicity is plausible. Bias is even smaller for some cases if
Unif(0.32, 0.72) is used. An exception is the median, for
which bias is high compared to minimum and maximum.
It is still small in absolute terms, especially for larger sam-
ple sizes. Results for the third variant using η ∼ Unif(0, 1)
are somewhat more mixed. Bias is small for the expecta-
tion and the maximum, but relatively large for the median
and the minimum. It decreases with sample size, though,
and 95% confidence intervals (not shown) still are not too
far off with coverage probabilities between 93% and 97%. In
summary, variance estimation as proposed in section 5 works
quite well, even if the monotonicity assumption is violated.

7 Empirical application

7.1 Data

In this section empirical results for Germany will be pre-
sented which make use of the framework outlined in section
5. CNEFs from the SOEP covering the years 2000 up to
2012 will be used. For each year the same quantities are
calculated: the low income proportion based on the modi-
fied OECD scale and the median of the induced distribution
of the low income proportion using each Unif(0.34, 0.51)

6The data can be obtained from the German Institute for Eco-
nomic Research, Berlin. See http://www.diw.de/en/soep. The DOI
of the data set is: 10.5684/soep.v29

7Note that unit and item nonresponse and other reasons of at-
trition are not considered. Because the CNEF already includes im-
puted values all 12352 households can be used for simulations.

http://www.diw.de/en/soep
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Table 1
Relative bias, simple random sampling

Sampling fraction 2.5% (n = 309) 5% (n = 618) 10% (n = 1235)

η = 0.54
SE(P) −0.003 −0.006 −0.009

η ∼ Unif(0.34, 0.51)
SE(E(P)) −0.011 −0.015 −0.001
SE(QP(0.5)) 0.009 0.003 −0.003
SE(QP(0)) 0.014 0.013 0.013
SE(QP(1)) −0.004 −0.003 −0.003

η ∼ Unif(0.32, 0.72)
SE(E(P)) −0.012 −0.015 −0.001
SE(QP(0.5)) 0.049 0.028 0.018
SE(QP(0)) 0.002 0.001 0.005
SE(QP(1)) 0.020 0.007 0.001

η ∼ Unif(0, 1)
SE(E(P)) −0.016 −0.020 −0.006
SE(QP(0.5)) 0.082 0.066 0.061
SE(QP(0)) −0.087 −0.061 −0.037
SE(QP(1)) −0.009 −0.015 −0.018

and Unif(0.32, 0.72). Additionally, confidence intervals are
calculated as well as the simultaneous confidences intervals
of the minimum and maximum of the induced distributions.
Moreover, in addition to the modified OECD scale two al-
ternative equivalence scales were used. One is the so called
square-root method proposed by the OECD, which calculates
equivalence scales as Ah =

√
h. The other equivalence scale

is an approximation to the scale published by Koulovatianos,
Schröder, and Schmidt, 2005 and uses η = 0.72.

The sampling design of the SOEP is rather intricate and
the data include design weights and cross-sectional raking
weights, both of which will be used for analysis. Note that
the data also include weights to account for panel attrition.
These were not used in the calculation of the results pre-
sented below, though. An extended discussion of weighting
such a complex sample as the SOEP and additional results
of calculations accounting for panel attrition can be found in
appendix D in the supplementary materials.

For cross-sectional weights it has to be taken into account
that these depend on the sample. Deville, 1999 derived a
procedure for this case that runs as follows (see also Berger
& Skinner, 2003; Graf & Tillé, 2014). Let X denote the
variables which are used for weighting and xk the observed
values of these variables for observation k. wk is the cross-
sectional weight which results for observation k. For vari-
ance estimation the linearized variable

z̃k = ẑk − x′kβ̂ (13)

is used. β̂ is the estimated vector of coefficients of the
weighted regression of xk on ẑk, weighted by wk. Thus, z̃k is

defined as the residual of k in this regression. The following
variables were used: state; household size; home ownership
status; size of community. Variance estimation is based on
the variance of t̃z̃ =

∑
k∈S dk z̃k, where dk is the design weight.

The variance of t̃z̃ is estimated using the Hájek, 1964 approx-
imation of the Horvitz-Thompson estimator.

7.2 Results

Results can be found in figures 3a to 4b. Figure 3a shows
point estimates and 95% confidence intervals of the low in-
come proportion using η = 0.54, i.e. the modified OECD
scale. Figures 3b and 3c show results obtained by setting
η = 0.5 (square root method) and η = 0.72 (Koulova-
tianos et al., 2005), respectively. Figures 3d and 3e show
point estimates and confidence intervals of the median of
the induced distributions using η ∼ Unif(0.34, 0.51) and
η ∼ Unif(0.32, 0.72), respectively.

Not surprisingly, differences between results of the mod-
ified OECD scale (figure 3a) and of the square-root method
(figure 3b) are negligible with respect to both the point es-
timates and the confidence intervals. The scale of Koulo-
vatianos et al., 2005 (figure 3c) results in the low income
proportion being approximately one percentage point lower
than in case of the modified OECD scale, pointing again to
the sensitivity of the low income proportion to the choice of
η. The width of confidence intervals and the general trend of
the low income proportion over time are similar, though.

Results of the modified OECD scale (figure 3a) and
the median of the distribution induced by assuming η ∼
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(e) Median induced distribution
Figure 3. Point estimates and confidence intervals using SOEP CNEF data.
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(b)
Figure 4. Point estimate of the median and simultaneous confidence interval of minimum and maximum (η ∼ Unif(0.34, 0.51)
and η ∼ Unif(0.32, 0.72)) using SOEP CNEF data. Point estimates of minimum and maximum are shown as crosses.

Unif(0.34, 0.51) (figure 3d) exhibit some differences. For
example, the point estimate of the median of the induced
distribution amounts to 0.175 for 2010 and 0.177 for 2011,
whereas the use of the modified OECD scale results in values
of 0.171 and 0.167, respectively. Moreover, trends in point
estimates differ. Using the modified OECD scale the low in-
come proportion increases between 2007 and 2010 by 0.009,
while the difference between these years is less than 0.001 in
case of the median of the induced distribution. Generally, the
mean absolute difference of point estimates is about 0.009.
Upper and lower limits of confidence intervals are shifted by
a similar amount, but the width of the confidence intervals,
i.e. the difference between upper and lower limit of the con-
fidence intervals, is quite similar in both cases and amounts
to 0.017.

If the support of η is extended to the interval [0.32, 0.72]
differences as compared to the modified OECD scale are less
pronounced (figure 3e). For example, using the modified
OECD scale the low income proportion amounts to 0.171 for
the year 2010 and the median of the induced distribution also
amounts to 0.171. Furthermore, the width of the confidence
intervals is quite similar and differences are small.

Figures 4a and 4b show the median of the induced distri-
butions, but the confidence interval of the median has been
replaced with the lower and upper bound of the simultane-
ous 95% confidence interval of the minimum and the maxi-
mum, calculated using the Bonferroni correction as proposed
in section 5.8. As can be seen in both figures this interval is
not necessarily symmetric. The width of the confidence in-
tervals is now much larger. For instance, for 2010 the width
amounts to 0.030 (figure 4a) and 0.046 (figure 4b), respec-
tively, whereas it amounts to 0.018 in the other cases (figures
3d and 3e). Generally, the mean ratio of widths as compared

to the confidence intervals for the low income proportion us-
ing the modified OECD scale is 2.05 and 2.86, respectively.
This also holds if one uses the square root method or the scale
of Koulovatianos et al., 2005 instead of the modified OECD
scale.

The total width of the confidence intervals in figures 4a
and 4b can be decomposed into two parts: The contribu-
tion of equivalence scale uncertainty and the variability due
to sampling, where the former is given by the difference of
the maximum and the minimum of the induced distribution,
while the latter is calculated as the sum of the difference
between the upper endpoint of the confidence interval and
the maximum and the difference between the minimum and
the lower endpoint. For example, the total width of 0.030
for 2010 seen in figure 4a can be decomposed into 0.013
(equivalence scale uncertainty) and 0.018 (sampling vari-
ance). Overall, between 42% and 57% of the interval widths
shown in figure 4a are due to equivalence scale uncertainty
and 58% to 70% in figure 4b.

These results have several implications. First, and most
importantly, they show that much variability is ignored by us-
ing only a single equivalence scale, even compared to the rel-
atively restrictive case of using Unif(0.34, 0.51). Estimates
derived by using a fixed equivalence scale are still valid con-
ditional on the specific scale, though. Second, the range of
intervals heavily depends on the distribution assumed for η.
This shows that assumptions of sensitivity analysis should
be well-founded and not be chosen arbitrarily. Third, choos-
ing a relatively small range of possible values for η may
lead to small intervals, but may not be consistent with the

8Calculation proceeds by assuming normality and estimating
97.5% confidence intervals for maximum and minimum to achieve
a joint confidence level of at least 95%.
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equivalence scales used for main analysis, as is suggested by
the comparison of the results of the modified OECD scale
and equivalence scales based on demand systems. Using the
framework presented in this paper and reporting the median
or mean of the induced distribution as main estimates could
avoid such inconsistencies. Either way, this again highlights
that both the choice of equivalence scale for main analysis
and the assumptions for sensitivity analysis should not be
taken lightly.

8 Conclusion

In this paper a method for acknowledging variability of
equivalence scales in the estimation of indices of poverty
and inequality was proposed, which can be uses as a formal
framework for sensitivity analysis. Starting from a simple
parametrization of equivalence scales the method is based on
subjective assumptions about the distribution of equivalence
scales made by the researcher. These assumptions lead not to
a single estimate, but to an induced distribution of a measure
of poverty or inequality. It was shown that variance estimates
for parameters of the induced distribution can be calculated
using standard approaches. The use of the simultaneous con-
fidence interval of the extrema of the induced distribution
was proposed as an useful addition to standard confidence
intervals.

Results of simulations show that the approach leads to
reliable variance estimates. As an example the approach
was applied to data from the German Socio-Economic Panel,
demonstrating that the procedure leads to a much broader
range of results than the standard approach. Using only a
certain equivalence scale, e.g. the modified OECD scale,
leads to results which underestimate uncertainty and which
rest on strong assumptions. While results conditional on a
fixed equivalence scale are still valid, conducting sensitivity
analysis and estimating the variance of the results of sensi-
tivity analysis as proposed in this paper helps to avoid these
issues.
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Appendix
Proof of proposition 2

The influence function of IQP can be derived in the following
fashion. Because FP(QP(γ)) = γ is constant, the influence
function of FP equals zero. Using rule 7 of Deville, 1999,
which is similar to taking the total differential, this can be
expanded to

IFP [M; k] = IFP [M; k|QP(γ)] + fP(QP(γ))IQP (M; k) = 0, (14)

where IFP [M; k|QP(γ)] is the influence function of FP with
QP(γ) fixed at the current value. Rearranging gives

IQP [M; k] = −
1

fP(Q(γ))
IFP [M; k|Q(γ)]. (15)

The influence function IFP is given by

IFP [M; k|QP(γ)] = − fη(τ(QP(γ)))Iτ(QP(γ))[M; k], (16)

which requires the influence function Iτ(QP(γ))[M; k]. Given
the assumption introduced in section 5.2 τ(z) can be defined
in terms of the inverse of P(α, β, η) with respect to η and α
and β fixed. Let τ(z) = P−1(z) be this inverse function which
gives for any value of the low income proportion p the cor-
responding value of η such that if P(η) = p then P−1(p) = η.
Given α and β P(P−1(QP(γ))) = p is constant from which

Iτ(QP(γ))[M; k] = −
1

δP(η)/δη|η(γ)
IP[M; k; η(γ)] (17)

follows, where η(γ) is the result of P−1(QP(γ)), i.e. the value
of η which leads to the γth quantile of the distribution of
P(α, β). fP(QP(γ)) in equation (15) can be written as

fP(QP(γ)) = fη(η(γ))
1

δP(η)/δη|η(γ)
. (18)

Plugging equations (16), (17), and (18) back in equation (15)
gives the desired result. Note that this proof does not depend
on the definition of the low income proportion which can be
replaced with any other measure of interest. The proof for
the case of a measure strictly increasing in η follows in the
same way.
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