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Robust Lavallée-Hidiroglou stratified sampling strategy
M. Caterina Bramati

Sapienza University of Rome

There are several reasons why robust regression techniques are useful tools in sampling design.
First of all, when stratified samples are considered, one needs to deal with three main issues:
the sample size, the strata bounds determination and the sample allocation in the strata. Since
the target variable Y , the objective of the survey, is unknown, some auxiliary information X
known for the entire population from which the sample is drawn, is used. Such information
is helpful as it is typically strongly correlated with the target Y . However, some discrepancies
between these variables may arise. The use of auxiliary information, combined with the choice
of the appropriate statistical model to estimate the relationship between Y and X, is crucial for
the determination of the strata bounds, the size of the sample and the sampling rates according
to a chosen precision level for the estimates, as has been shown by Rivest (2002). Nevertheless,
this regression-based approach is highly sensitive to the presence of contaminated data. Since
the key tool for stratified sampling is the measure of scale of Y conditional on the knowledge
of the auxiliary X, a robust approach based on the S -estimator of the regression is proposed in
this paper. The aim is to allow for robust sample size and strata bounds determination, together
with optimal sample allocation. Simulation results based on data from the Construction sector
of a Structural Business Survey illustrate the advantages of the proposed method.
Keywords: robust regression, stratified design, auxiliary data

1 Introduction

The word ‘robust’ has been extensively employed in sur-
vey sampling referring to resistance to the bias induced by
misspecification in model-based inference (see Nedyalkova
and Tillé 2012 ). To this extent, several authors (Royall
and Herson 1973, Scott et al. 1978) have proposed meth-
ods to protect inference against misspecification. In what
follows, by the term ‘robust’ design we mean a sampling de-
sign which is insensitive to the occurrence of gross errors in
the data. In other words, a robust design is not altered by
removing or modifying a small percentage of the data set.

It is important to realize that outliers occur frequently
in real data. Outlying observations can be present in a sam-
ple because of errors in recording observations, they can be
due to transcription or transmission errors, or they may be
caused by an exceptional occurrence in the observed phe-
nomenon. Rousseeuw and Leroy (1987) present many real
data sets in which the Least Squares residuals are of little
help in identifying outliers. Sensitivity analysis is often used
to detect the influential cases deleting observations one by
one and assessing the effects of such deletions on the re-
gression output. Unfortunately, outliers are not necessarily
influential observations. Moreover, when outliers are clus-
tered, they ‘mask’ each other and sensitivity analysis fails
to detect them (see Rousseeuw and Leroy 1987). In low di-
mensional data sets visual inspection could be effective for
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locating outliers.However, there are no simple methods for
visually detecting outliers in high dimensional data sets –
see Rousseeuw and Van Zomeren (1990) for a discussion.
In practice therefore one needs an objective procedure which
is able to diminish the impact of outliers, as an alternative
technique to the deletion of observations, which can be very
subjective.

To illustrate, consider a stratified design where the strat-
ification variable X includes some low quality data. Then
aberrant observations in X will affect both the location and
scale measures for each stratum, attributing higher disper-
sion to the units belonging to them. This in turn implies an
overestimation of the sample size which depends on the dis-
persion of the data, thus affecting the sampling design and
hence the survey results.

Ratio-type estimators for robust regression have been
proposed by Chambers (1986) and more recently by Kadilar
et al. (2007), using simple random sampling. However, they
use the M-estimator, which is known to be vulnerable to out-
liers in X (see Rousseeuw and Leroy 1987) and are therefore
not suitable in a stratified design where the auxiliary variable
X is contaminated.

This paper deals with the model-based approach to sam-
ple survey design. For a comprehensive description of this
approach, see Valliant, Dorfman and Royall (2000). The aim
is to estimate the population total ty of a Y variable using
an estimator t̂y. Under the model-based approach, the prop-
erties of this estimator are determined by the distribution of
its sample error under the assumed model for the population
(see Brewer 1963 and Royall 1970). In this paper, the ex-
pression for the conditional expectation and variance of Y ,
given that the statistical unit is classified in stratum h, de-
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pends on the model specified. As a consequence, we speak
of the model bias of the estimator of the total as E(t̂y − ty),
where the expectation is with respect to the assumed model
for Y .

Note that the concept of model bias has a different in-
terpretation from the usual concept of design bias. For ex-
ample, Nedyalkova and Tillé (2012) refer to model-unbiased
and design-unbiased estimators. These authors stress that
the Horvitz-Thompson (HT) estimator can be model-biased
(due to model misspecification for example) thus inflating its
mean square error under the model. However, it still remains
design-unbiased.

Here we focus on the stratified sampling design, which
has been proven to be a very efficient surveying technique
for skewed populations, as pointed out in Lavallée and
Hidiroglou (1988). For this reason, stratified samples are
often employed in business surveys carried out by National
Statistical Offices.

Lavallée and Hidiroglou (1988) propose an iterative pro-
cedure, the LH algorithm, which stratifies skewed popula-
tions into a take-all stratum and a number of take-some strata.
Given a particular allocation rule, the stratum bounds are
then chosen in order to minimize the overall sample size
subject to a specified level of precision for the target vari-
able. Outliers can strongly affect the outcome of the LH al-
gorithm since the sample size is inflated when observations
appear more extreme than they really are. Moreover, the stra-
tum bounds and the sample allocation might be both affected.
This is clear when we consider Neyman allocation based on
the within-stratum dispersion of X. Since the allocation’s ra-
tionale is to survey more units in strata where the auxiliary
variable is more dispersed, such outliers might have the effect
of enormously and unduly increasing the sample size in each
contaminated stratum.

In this paper, two robust versions of the LH method are
suggested: the ‘naive robust’ and the ‘robust’ LH sampling
strategy, which we compare through a simulation study.

The LH method assumes use of the Horviz-Thompson
estimator. However, precision can be improved by taking
advantage of the available auxiliary information about the
target population. In particular, we consider the estimator
derived from a linear regression model based on the relation-
ship between the values of Y and a set of auxiliary variables X
for which the totals in the finite target population are known.
Given such an assumed relationship, a generalized regression
estimator can be derived. If the linear model underlying this
generalized regression estimator explains the variation of the
target parameter reasonably well, then using it in the optimal
design will result in a reduction of the design variance rela-
tive to that of the Horvitz-Thompson estimator. If, however,
this model is misspecified, then there could be an increase in
the design variance, even though the generalized regression
estimator remains approximately design-unbiasedness.

1.1 Stratified Design and the LH algorithm

In what follows we focus on simple stratified sample de-
signs with one take-all stratum and several take-some strata.

This strategy is suitable in the presence of populations with
skewed distributions (a few units account for a large share of
the study variable), as pointed out in Tillé (2001), and when
the statistical units composing the universe are available in a
list together with some auxiliary information from adminis-
trative sources (i.e. tax declaration, social security registers
and so on). Moreover, stratified sampling is required for EU
countries to be compliant with the recommendations of the
European statistical office (Eurostat) concerning designs for
business surveys. As a consequence, the quality of the data
held by the administrative sources is a key issue for the effi-
cient use of these data in sample design.

In a stratified sample, the population is divided into sub-
groups (or strata), which are mutually exclusive (i.e. 1 unit
can belong to 1 stratum only) and collectively exhaustive (i.e.
no population unit excluded).

The ‘statistical precision’ is the constraint under which
choices of sample sizes and allocation are made. In a semi-
nal paper, Lavallée and Hidiroglou (1988) suggest an optimal
solution to the choice of the stratum bounds, the sample size
and allocation subject to the constraint of a fixed precision
for the target variable. In particular, their algorithm allows
for the simultaneous determination of the minimum sample
size, the strata bounds and the sample allocation in order to
satisfy a specified level of statistical precision.

Consider a stratified random sampling scheme with L
strata for a variable of interest Y defined over a target popula-
tion U of size N. Denoting by Uh, h = 1, . . . , L, the compo-
nent of size Nh of the target population making up stratum h,
and by sh the random sample of size nh taken from this stra-
tum, with fh = nh

Nh
the corresponding sampling fraction, the

Horvitz-Thompson estimator t̂ystrat =
∑L

h=1
Nh
nh

∑
k∈sh

yk then
has design variance

Var(t̂ystrat) =

L∑
h=1

Nh
(1 − fh)

fh
S 2

yh (1)

where
S 2

yh =
1

Nh − 1

∑
k∈Uh

(yk − Yh)2,

and Yh is the mean of Y within stratum h.
In the procedure the L-th stratum is the take-all stratum,

i.e. all the enterprises belonging to it are sampled. Random
sampling is then used to select the enterprises in the remain-
ing L−1 strata. Thus, for the take-all stratum nL = NL, whilst
for h < L, the sample size nh in the take-some stratum can be
written as (n − NL)ah, where

∑L−1
h=1 ah = 1.

By straightforward calculations (1) can be rewritten as

Var(t̂ystrat) =
1

n − NL

L−1∑
h=1

N2
h S 2

yh

ah
−

L−1∑
h=1

NhS 2
yh (2)

from which, solving for n,

nt̂ystrat = NL +

∑L−1
h=1

W2
h

ah
S 2

yh

(cY/N)2 +
∑L−1

h=1
Wh
N S 2

yh

, (3)
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where Wh = Nh
N , c is the target coefficient of variation (the

precision level, which often ranges between 1% to 10% in
business surveys) and Y is the population mean of Y .

The idea is to find the optimal stratum boundaries
b1, . . . , bL−1 which minimize nt̂ystrat given an appropriate sam-
ple allocation method (Neyman, proportional and so on). For
instance, under Neyman allocation

ah =
WhS yh∑L−1

k=1 WkS yk
,

which means that

nt̂ystrat = NL +
(
∑L−1

h=1 WhS yh)2

(cY/N)2 +
∑L−1

h=1
Wh
N S 2

yh

. (4)

1.2 The Regression Model
In practice, implementing the design described in the

previous section requires knowledge of the stratum variances
S 2

yh and therefore of the population Y , while the strata are de-
fined in terms of the values of an auxiliary variable X, e.g.
a size variable, which is known for all statistical units in the
target population. In this situation Lavallée and Hidiroglou
(1988) suggest replacing the stratum variances S 2

yh in equa-
tion (4) by the stratum variances of the auxiliary variable,
S 2

xh.
However, the auxiliary variable X used for stratification

is only a proxy for the survey variable Y . To account for
the discrepancies existing between Y and X, Rivest (2002)
suggests a generalized LH algorithm which uses a regression
model linking the target and the auxiliary variable(s) to de-
fine appropriate population and stratum moments of Y . Such
a model-based optimal stratification method can be useful in
very long-tailed populations, as encountered in business sur-
veys, for example. In particular, the relationship between Y
and X is often characterized by a log-linear regression rela-
tionship.

In what follows we consider variables X and Y as con-
tinuous random variables and we denote by f (x), x ∈ R the
density of X. The data x1, . . . , xN are considered as N inde-
pendent realizations of the random variable X.

Since stratum h consists of the population units with an
X-value in the interval (bh−1, bh], the stratification process re-
places the stratum mean and variance of Y by the values of
E(Y |bh ≥ X > bh−1) and Var(Y |bh ≥ X > bh−1), the con-
ditional mean and variance of Y given that the unit falls in
stratum h, for h = 1, . . . , L − 1.

In particular, the model assumes that the regression rela-
tionship between Y and X can be expressed as

log Y = α + β log X + ε, (5)

where ε is assumed to be a zero-mean random variable, nor-
mally distributed with variance σ2 and independent from X,
whereas α and β are the parameters to be estimated.

The conditional moments of Y are obtained using the ba-
sic properties of the log-normal distribution. They are

E(Y |X ∈ (bh−1, bh]) = eα+σ2/2E(Xβ|X ∈ (bh−1, bh])

and

Var(Y |X ∈ (bh−1, bh]) = eα+σ2/2{eσ
2
E(X2β|X ∈ (bh−1, bh])

− E(Xβ|X ∈ (bh−1, bh])2}. (6)

Plugging the expression for the variance above into (4), it
is clear that strata bounds, sample size and allocation then
depend on the first and second-order conditional moments of
the auxiliary variable.

1.3 Outliers and Robust Design

The main weak point in the algorithm proposed by
Rivest (2002) is that, since S 2

yh is unknown, the design is
in practice based on the auxiliary information provided by
administrative records. This is particularly true in the case of
business surveys, where business registers with information
on firm activities are used. Such sources often suffer from
low data quality.

In general, several types of outliers can occur in the data
which might affect the LH sampling algorithm. Using the
same notion of outliers as in Rousseeuw and Leroy (1987),
we define three main types of anomalies depending on the
data contaminated
• outliers in the survey (Y) data (vertical outliers)
• outliers in the auxiliary (X) data (leverage points)
• outliers in both variables (X,Y) (good/bad leverage

points).
The presence of such anomalies makes the estimation of the
conditional mean and variance of Y |X unreliable, therefore
affecting the sample size and strata bounds determination, as
well as the sample allocation.

In what follows we focus on contamination in the admin-
istrative data (leverage points) and we propose two alterna-
tives to the Rivest (2002) Generalized LH algorithm (GLH).
Of course, errors in survey data (vertical outliers) might also
occur, but they are unknown in advance. Correction for such
outliers can be applied only after the data collection, for in-
stance using a post-stratified robust estimator, which is be-
yond the scope of this paper. Note, however, that the ap-
proach here is based on using a regression estimator which is
robust to vertical outliers and to bad leverage points, allowing
for robustness when the design process uses contaminated
data from previous surveys.

In the first approach, robust regression estimators of the
parameters of the log-linear regression model are used. Then,
the estimated robust parameters are plugged in the LH objec-
tive function used for the computation of the strata bounds,
the minimum sample size and the sample allocation which
satisfy a fixed statistical precision. We call this the naive
robust approach (NR-GLH).

In the second approach, strata bounds and sizes are de-
rived after re-weighting the auxiliary information according
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to the degree of outlyingness. This approach, which we re-
fer as the ‘Robust GLH’ algorithm, is presented in the next
section.

2 The Robust GLH algorithm
When outliers arise in the auxiliary variable X they might

affect the strata bounds b1, . . . , bL−1, the overall sample size
n and the sample allocation ah, h = 1, . . . , L − 1. Let ω(·) be
some weighting function which assigns values between [0, 1]
according to the degree of reliability of the data. Given the
log-linear relationship (5) between the survey variable Y and
the auxiliary variable X, we can then replace the conditional
variance (6) by the weighted conditional variance

Varω(Y |X ∈ (bh−1, bh])

= expα+σ2/2{eσ
2
Eω(X2β|X ∈ (bh−1, bh])

− Eω(Xβ|X ∈ (bh−1, bh])2}

= expα+σ2/2(eσ
2
ψh/Wh − (φh/Wh)2), (7)

where

Wh =

∫ bh

bh−1

ω(xβ) f (x)dx,

φh =

∫ bh

bh−1

xβω(xβ) f (x)dx,

ψh =

∫ bh

bh−1

x2βω(xβ) f (x)dx.

Note that the sample design approach proposed in this
paper assumes knowledge of a sample of Y values from the
target population. This is usually from previous surveys or
pilot studies. Since the auxiliary information X is gener-
ally available at different points in time from administrative
sources, it should be possible to estimate the regression of Y
on X in a time-coherent manner. The estimated scale and re-
gression coefficients obtained from the sample from the pre-
vious survey are then used in the Generalized LH algorithm.
This is the situation that we assume throughout this paper.

When no data are available on the variable of interest
Y , stratification is done using only the information on the
auxiliary variable X in the LH algorithm (i.e. there are no
regression adjustments). In this case, the presence of out-
lying observations in X could inflate the stratum variances,
resulting in an unduly large take-all stratum. In the univari-
ate case (one scalar stratification variable), it is possible to
identify outliers by visual inspection. However, this is much
more difficult if X is a vector of auxiliary variables. In that
case, one could use multivariate outlier detection methods
based on robust location and covariance estimators – see
Rousseeuw and Van Zomeren (1990).

2.1 Choice of ω(·)
Several weighting functions might be considered. Our

choice focuses on ω(x) = ρ′(x)/x, the weighting function as-
sociated with the S-estimator of the regression of Y on X, see

Rousseeuw and Yohai(1984). This estimator is the solution
to

S (x, y) = arg min
β

s(r1(β), ..., rN(β)) (8)

where the ri(β) are the regression residuals and s is a scale
measure defined by

1
N

N∑
i=1

ρ(
ri(β)

s
) = K (9)

for K = EΦ[ρ], Φ being the Gaussian distribution, and a con-
veniently chosen ρ function satisfying
• ρ(·) symmetric and continuously differentiable, with
ρ(0) = 0,
• there exists c > 0 such that ρ(·) is strictly increasing on

[0, c] and constant on [c,+∞).
• K = δρ(c), where δ is the breakdown point of the pro-

cedure as n→ ∞.
The S-estimator, whose name is derived from the fact that it
is implicitly defined in terms of a scale statistic, has several
statistical properties. It is regression, scale and affine equi-
variant. It is robust with respect to both vertical outliers and
leverage points up to a 50% breakdown point (see Donoho
and Huber 1983, for a definition of breakdown point), and
it is highly efficient. In particular, it is possible to tune the
efficiency level of the estimator and its degree of resistance
to outliers by means of the choice of the breakdown point δ.
When δ is set to 0, the efficiency level of the S-estimator is
highest and coincides with that of the classical least squares
estimator.

Some options for ρ(x) and ω(x) = ρ′(x)/x are presented
in Figures 1 and 2. Given choice of a particular specification,
we denote the resulting S-estimates of the model parameters
(α, β, σ) by (α̂ROB, β̂ROB, σ̂ROB) in what follows. Of course,
other robust regression estimators can be used, e.g. the Least
Median of Squares, the Least Trimmed Squares and the GM
estimator. However, these are usually less efficient than the
S-estimator (see Leroy and Rousseeuw 1984).

2.2 The algorithm
The problem is essentially one of solving for bounds

b1, . . . , bh, . . . , bL which minimize n. Several allocation cri-
teria can be considered in this context: here we focus on the
Neyman allocation scheme. Replacing S 2

yh in (4) by (7), the
log-linear specification for the objective function is then

nt̂ystrat = NL +
(
∑L−1

h=1 (eσ
2
ψhWh − φ

2
h)1/2)2

(c ∗medi|x
β
i |/N)2 +

∑L−1
h=1

(eσ2
ψh−φ

2
h/Wh)

N

(10)

with the moments Wh, φh and ψh replaced by their robust
estimates. These are defined by substituting the S-estimates
β̂ROB and σ̂ROB for β and σ respectively in (8).

As in Rivest (2002), the iterative scheme proposed by
Sethi (1963) is then implemented for a given L and precision
c, and the optimal strata bounds and sample size computed.
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Figure 2. Possible options for psi

In order to define this iterative scheme, let F be the anti-
derivative of the integrable function ω(xβ) f (x), then from the
fundamental theorem of calculus Wh = F(bh)−F(bh−1). Sim-
ilarly, Wh+1 = F(bh+1) − F(bh).

Therefore, ∂Wh/∂bh = F
′

(bh) = ω(bβh) f (bh) and
∂Wh+1/∂bh = −F

′

(bh) = −∂Wh/∂bh. The same argument
applies for definite integrals φh and ψh. Thus, from

∂Wh

∂bh
= −

∂Wh+1

∂bh
= ω(bβh) f (bh)

∂φh

∂bh
= −

∂φh+1

∂bh
= bβhω(bβh) f (bh)

∂ψh

∂bh
= −

∂ψh+1

∂bh
= b2β

h ω(bβh) f (bh)

one obtains

∂n
∂bh

= ω(bβh) f (bh)

×

{(
∂n
∂Wh

−
∂n

∂Wh+1

)
+

(
∂n
∂φh
−

∂n
∂φh+1

)
bβh +

(
∂n
∂ψh
−

∂n
∂ψh+1

)
b2β

h

}
and

∂n
∂bL−1

= ω(bβL−1) f (bL−1)

×

{
−N +

∂n
∂WL−1

+
∂n

∂φL−1
bβL−1 +

∂n
∂ψL−1

b2β
L−1

}
.

The largest solution to the estimating equation ∂n
∂bh

= 0
is the updated value of bh in the iterative scheme. In order to
calculate the partial derivative on left hand side of this equa-
tion we therefore need to calculate the partial derivatives of
n with respect to Wh, φh and ψh. Under Neyman allocation
these are given by

∂n
∂Wh

=
Peσ

2
ψh/(eσ

2
ψhWh − φ

2
h)1/2

Q
−

P2(φh/Wh)2/N
Q2

∂n
∂φh

=
−2Pφh/(eσ

2
ψhWh − φ

2
h)1/2

Q
+

2P2(φh/(WhN)
Q2

∂n
∂ψh

=
Peσ

2
/(eσ

2
ψhWh − φ

2
h)1/2

Q
−

eσ
2
P2/N
Q2

with

P =

L−1∑
h=1

(eσ
2
ψhWh − φ

2
h)1/2

Q = (c ∗medi|x
β
i |/N)2 +

∑L−1
h=1 (eσ

2
ψh − φ

2
h/Wh)

N
.

3 Simulation Study
A simulation study was carried out to compare the per-

formance of the two robust sampling strategies with the GLH
strategy of Rivest (2002) under several distributions for the
data. Simulations were based on the business sampling frame
of the Structural Business Survey (SBS) in 2005, where the
target variable Y is the value added for enterprises in the
Construction industry, stratified by economic-size class. The
number of strata was set to 6, as Cochran (1977) recom-
mends, with one take-all stratum and 5 take-some strata. The
auxiliary information X is turnover which is available from
the VAT register.
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Table 1: MSE comparisons of NR-GLH and R-GLH methods versus GLH (Rivest 2002), target precision: 1%

Design MSE(yNR−GLH)/MSE(yGLH) MSE(yR−GLH)/MSE(yGLH)

No outliers 4.52 1.10
Long-tailed Cauchy 0.07 0.00
Long-tailed t 6.79 0.08
Vertical outliers 15% 1.01 0.99
Leverage points 15% 4.52 0.00
Vertical outliers 30% 0.99 0.99
Leverage points 30% 0.11 0.00

In each simulation a population was generated from the
equation

log yi = β log xi + εi

with β = .75, and with the distribution of εi specified as fol-
lows:

1. no outliers: εi ∼ N(0, 1)
2. long-tailed errors: εi ∼ Cauchy
3. long-tailed errors: εi ∼ t3
4. vertical outliers: δ% of εi ∼ N(5

√
χ2

1;0.99, 1.5)

5. bad leverage points: δ% of εi ∼ N(10, 10) and corre-
sponding X ∼ N(−10, 10).

The contamination level, i.e. the percentage of outliers in
the data, was set to δ = 15% and 30%, whilst the number
of replications was set to 1000. Then the GLH algorithm
(Rivest 2002), the naive robust GLH (NR-GLH) algorithm
and the robust GLH (R-GLH) algorithm were used to com-
pute the strata bounds, sizes and allocation for a 1% precision
level. The resulting designs were then evaluated by compar-
ing the averages over the simulations of the Mean Squared
Error (MSE) of the Horvitz-Thompson estimator for the pop-
ulation mean of Y generated by these different designs. Table
1 displays the main results.

From the simulations we observe that the R-GLH is
more efficient than the GLH algorithm mainly when data
are long-tailed and when leverage points occur. When com-
pared, the NR-GLH is less efficient than the R-GLH in the
case of long-tailed distributions, whereas in the case of small
percentages of vertical outliers it is as efficient as the GLH
approach. Of course, when data are not contaminated and
drawn from a symmetric distribution, both robust approaches
are less efficient than the non-robust approach. In other
words, the low quality of the auxiliary information used for
the stratified design can dramatically influence upwards the
sample size, the sample allocation and the strata bounds de-
termination. The presence of vertical outliers alone does not
much affect the entire procedure, as expected.

4 Conclusions

This work suggests a robust approach to the sample strat-
ification which modifies the generalized Lavallée-Hidiroglou
algorithm (see Rivest 2002) introducing a robust regression
estimator which is not vulnerable to low quality auxiliary
data. In particular, stratified sampling is very sensitive to
outliers especially in business surveys where administrative

sources with poor data quality are used. Sample size and
strata bounds are then obtained under a chosen precision and
sample frequencies computed using the Neyman allocation.
A simulation study illustrates the performance of the sam-
pling strategy hereby proposed, showing the superior effi-
ciency of the R-GLH estimator compared to the GLH strat-
ification when data are long-tailed distributed and when the
auxiliary information is affected by outliers.
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ROBUST LAVALLÉE-HIDIROGLOU STRATIFIED SAMPLING STRATEGY 143

Royall, R. M., & Herson, J. H. (1973). Robustness estimation in
finite populations I. Journal of the American Statistical Associ-
ation, 68, 880-889.

Scott, A., Brewer, K. R. W., & Ho, E. W. H. (1978). Finite popu-
lation sampling and robust estimation. Journal of the American
Statistical Association, 73, 359-361.

Sethi, V. K. (1963). A note on the optimum stratification of popu-

lations for estimating the population means. Australian Journal
of Statistics, 5, 20-33.
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