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In business surveys in general, and in multipurpose agricultural surveys in particular, the prob-
lem of designing a sample from a list frame usually consists of two different aspects. The first
is concerned with the choice of a rule for stratifying the population when several size variables
are available and the second is devoted to sample size determination and sample allocation to
a given set of strata. The main property that is required of the sample design is that it delivers
a specified level of precision for a set of variables of interest using as few sampling units as
possible. This article examines how this can be achieved via a basic partition into two strata,
one completely enumerated and the other sampled, defined in such a way as to achieve both
these objectives.
The procedure was used to design the Italian Milk Products Monthly Survey on the basis of a
set of auxiliary variables obtained from an annual census of the same target population. Given
the combinatorial optimization nature of the problem, we use stochastic relaxation theory, and
in particular, we use simulated annealing because of its flexibility. Our results indicate that in
this situation the multivariate partition obtained by using this random search strategy is a suit-
able solution as it permits identification of boundaries of any shape. Furthermore, numerical
comparisons between sampling designs obtained by using these procedures and some simple
extensions of univariate stratification rules are made. The gain from using the proposed strategy
is nontrivial as it achieves the required precision using a sample size that is notably smaller than
that required by simple extensions to univariate stratification rules.
Keywords: skewed population distribution, sample design, sample allocation, stratification,
combinatorial optimization, simulated annealing

1 Introduction

Agricultural statistics are generated within the frame-
work of the European Union (EU) programme on surveys
on farm structure conducted by all EU members in order to
have up-to-date and comparable information on the Member
States, with the purpose of being used as a basic tool for de-
signing the Common Agricultural Policy (CAP). However,
to perform a well defined analysis of the agricultural sector,
it is important to follow the whole chain of agricultural prod-
ucts transformation. Thus the farms data are necessarily used
jointly with the information arising from surveys aimed to
estimate the input and output of firms belonging to the sector
defined by agro-alimentary transformation and commercial-
ization.

In both the farms and transformation firms populations,
the structure of the European economy is extremely differ-
ent among and within each Member State. The variability of
farms and establishments sizes is a relevant structural charac-
teristic at Community level. Most of these units have a small
size and are not important in economic terms even if they
are interesting for the analysis of rural development. On the
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other hand, a limited number of large units represents a rel-
evant part of the population in standard gross margin (SGM)
terms and so have to be always included in any sample sur-
vey.

This is a typical situation in any business survey, in
which the population of interest is extremely positively
skewed because of the presence of few “large” units and
many “small” units. Thus, when estimating an unknown total
of the population, many small observations give a negligible
contribution, whereas few large observations have a dramatic
impact on the estimates.

In sampling theory the large concentration of the popu-
lation with respect to surveyed variables constitutes a prob-
lem which is difficult to handle without the use of selection
probabilities proportional to a size measure or by use of a
stratification or partition tool. The first strategy is quite dif-
ficult, even if possible, to be extended to situations in which
multiple auxiliaries are available (Benedetti and Piersimoni,
Submitted for publication), while the second strategy can be
dealt with by the introduction of a take-all (Censused) stra-
tum and of one or more take-some (Sampled) strata. This
procedure is commonly used by National Statistical Institutes
(NSI) to select samples, even if it is not easy to give a unique
definition of the boundaries of such strata when they have
to be based on a multivariate set of size measures. Roughly
speaking, this solution consists in partitioning the population
in two sets of units: a take-all stratum whose units are en-

125



126 ROBERTO BENEDETTI AND FEDERICA PIERSIMONI

tirely surveyed (Censused - C) and a take-some stratum from
which a simple random sample is drawn (Sampled - S).

This approach is not new and has been widely employed
by survey practitioners, often using a heuristic rule for deter-
mining the part of the population to be censused (for exam-
ple, firms with more than one hundred employees). This way
of proceeding, typically motivated by the desire to match ad-
ministrative criteria, usually ignores the statistical implica-
tions on the precision of the estimates.

The univariate methodological framework for this prob-
lem was suggested by Hidiroglou (1986) who proposed an
algorithm for the determination of the optimal boundary be-
tween the two strata C and S. In the literature several for-
mal extensions to the univariate optimal determination of
the boundaries between more than two strata have been pro-
posed (Dalenius and Hodges 1959; Singh 1971; Lavallée and
Hidiroglou 1988; Hedlin 2000; Lu and Sitter 2002; Gunning
and Horgan 2004 and 2007; for a review see Horgan 2006)
through the use of algorithms that usually derive simultane-
ously the sample size needed to guarantee a fixed accuracy
level for the resulting estimates and the sample allocation to
the strata. Rivest (2002) proposed a generalization of these
algorithms, extended in Baillargeon and Rivest (2009), to be
used when the survey variable and the stratification variable
differ. However these classical methods deals only with the
univariate case and cannot be easily extended when there are
multiple covariates for stratification.

Consider a finite population U = {1, 2, ...N}
recorded on a list frame together with a set of k pos-
itive auxiliary variables X =

{
x1, x2, ..., xj, ..., xk

}
where

xj =
{
x1j, x2j, ..., xij, ..., xNj

}
is the generic j-th auxiliary. This

is a typical situation in many business surveys, particularly in
the agricultural sector, and NIS’s usually make huge efforts
to design surveys that are based on an efficient use of all
the available auxiliary information in order to obtain more
precise and reliable estimates (Bee et al. 2010; Hidiroglou
and Laniel 2001; Hidiroglou and Srinath 1993).

A traditional approach to dealing with multivariate aux-
iliary variables in sampling design is to employ a stratifica-
tion scheme such that the population units are classified in
a stratum according to the values of their auxiliary variables
(Benedetti et al. 2008; Sigman and Monsour 1995; Vogel
1995). In this context the common procedure is to perform
a stratification by size by defining a set of univariate thresh-
old levels for each auxiliary variable included in the sam-
pling frame. Such an approach is equivalent to partitioning
the population into strata that have “box-shaped” boundaries
or that are approximated through the union of several such
boxes. This constraint prevents the identification of irreg-
ularly shaped strata boundaries unless a grid constituted by
several rectangles of different size are used to approximate
the required solution.

Optimal data partitioning is a classical problem in the
statistical literature, following the early work of Fisher on
linear discriminant analysis (Fisher 1936; for a review see
Izenman 2008). However our problem is more directly
related to the use of unsupervised classification methods

(Everitt et al. 2011) to cluster a set of units (in this case
a population frame). The main difference between the two
problems lies in the fact that the underlying objective func-
tions are different: in sampling design the aim is usually to
minimize the sample size while in clustering it is a common
practice to minimize the within cluster variance. There is an
intuitive connection between these two concepts even if the
definition of sample size depends not only on the variance
within each stratum but also on other parameters (see Section
2).

The purpose of this paper is to propose a more general
and accurate solution for the identification of the optimal
multivariate boundaries of a self representing stratum since a
general methodological framework to deal with this situation
does not currently exist.

Our approach is based on the use of a random search
algorithm whose aim is to find a partition of the frame that
will minimize the sample size needed to respect a given limit
on the coefficients of variation of the estimates for the totals
of a given set of auxiliary variables.

Of course, the sample size can be further reduced by in-
creasing the number of sampled strata. However in this pa-
per we focus on the basic situation in which only two strata
are considered. Our proposed multivariate stratification so-
lution must therefore be considered as providing a point of
departure for solution of the more general problem of strata
boundaries for more than two strata. In this context two ad-
ditional problems arise, an increasing computational burden
(see Section 3) and, even more complex, the assessment of
the optimal number of strata to be used.

It is also worthwhile pointing out that estimation accu-
racy can also be increased through the use of well known
model assisted estimation methods such as the calibration
weighting (Deville and Särndal 1992). In this context an
optimal, or at least well designed, sample selection should
be considered as complementary to an appropriate estimator
and not an alternative.

The paper is organized as follows. Section 2 introduces
a theoretical framework for the multivariate census thresh-
old determination in which we focus on the partition of the
population in two strata, with an overall sample size con-
strained to respect an upper bound on the coefficient of vari-
ation of the estimate of each variable of interest. Our pro-
posal starts by simply extending the univariate method of
Hidiroglou (1986) to a multivariate framework and then, by
removing the assumption of box-shaped partition rules, we
delineate a general combinatorial optimization problem that
is solved via simulated annealing. To avoid excessive com-
putational burden when dealing with list frames with a large
number of statistical units (it is not uncommon that the num-
ber of units is greater than one million) we also investigated
the generalized version of simulated annealing suggested by
Tsallis and Stariolo (1996), and its deterministic counterpart,
the so-called Iterated Conditional Modes (ICM; Besag 1986)
algorithm. Section 3 examines how our approach can be
used to draw a monthly sample of firms in the Milk Products
sector for which a huge amount of auxiliary information is
available. This practical example is also used to evaluate the
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performances of the proposed solutions through numerical
comparisons. Finally, Section 4 is devoted to some conclud-
ing remarks, focusing on issues regarding further research on
this topic.

2 Optimal Multivariate Threshold
for a Completely Enumerated

Stratum
The stratification method that is introduced in this sec-

tion is tailored to population with strongly positive asymme-
try: for example when the population is composed by few
large units and many small units. A possible sample design
for such a population is to split it into two sets according
to a partitioning criterion. If this rule has to be applied to a
single scalar auxiliary variable X we then have to determine a
threshold such that units whose X values lie below the thresh-
old are randomly sampled, while the units with values over
the threshold are completely enumerated. This auxiliary vari-
able is assumed to be correlated with the variable of interest
Y . Suppose that for a finite population of size N values of an
auxiliary variable x1, x2, . . . , xi, . . . , xN are given such that,
without any loss of generality, x1 ≤ x2 ≤ · · · ≤ xi ≤ · · · ≤ xN .
This population is partitioned into two sets of large and small
units, labelled C and S respectively, with cardinalities NC
and NS . A sample of n units is then obtained, consisting of
all the NC large units and n − NC small units, by drawing a
simple random sample without replacement from the subset
S of the small units.

The Horwitz-Thompson estimator of the total of the aux-
iliary is:

t̂HT,x =
NS

n − NC

∑
i∈s

xi +

N∑
i=N−NC+1

xi, (1)

where s is the sample selected from the stratum S .
For the precision of the estimate (1) to achieve the re-

quired limit cx for the coefficient of variation, the number of
sampled units must then be equal to:

n = N −
NS c2

xt2
x

c2
xt2

x + NS V2
S ,x

, (2)

where tx is the known total of the auxiliary variable and V2
S ,x

is its variance in the stratum S .
In Hidiroglou (1986) it is shown that, when cx, tx and

N are fixed, n has only one local minimum. Equation (2)
shows that n cannot be fixed in advance, but it depends on
the threshold thr of units to be completely enumerated, on
the required coefficient of variation cx and on the variance
V2

S ,x. A population unit i is considered to be a sampled unit
if it is in the set S = {i : xi < thr} or to be a completely
enumerated (ce) unit if it is in the set C = {i : xi ≥ thr}.

If the population is strongly asymmetric, for a generic
iteration h, Hidiroglou (1986) proposed to evaluate thr by
using the following rule:

thrh+1 = µS h +

√
NS h − 1

N2
S h

c2
xt2

x + V2
S h,x

. (3)

In some experimental results Hidiroglou (1986) shows
that, when a population is strongly asymmetric, this proce-
dure converges (as the index h increases) to the optimum
threshold.

2.1 Extensions to Multivariate Auxiliaries
The extension of the algorithm (3) to a set

X =
{
x1, x2, ..., xj, ..., xk

}
of k auxiliary variables is simply

obtained through the union of each univariate partition or, in
other terms, by defining the set S={ i: xi, j <thr j∀ j=1,. . . ,k}.
This is an extremely conservative solution because the
threshold obtained for a certain variable j does not use
the information that there may be units that are under the
threshold for this variable but over the threshold for at least
one of the other auxiliary variables. We refer to this method
as “Union” from now on.

An implication of using Union is that each individual
threshold is set too low, i.e. too many units are placed in C.
A solution, when using the information in (3) to define the
threshold for any single auxiliary variable, is to define the set
C not just as the NC = N −NS greatest units according to the
ordering induced by that variable, but as all the units that are
considered to be in C according to the thresholds of the other
k − 1 auxiliary variables. This is equivalent to replacing (3)
by the iterative scheme:

thrr,h+1, j = µx j,S r,h, j +

√
NS r,h, j − 1

N2
S r,h, j

c2
x j

t2
x j

+ V2
x j,S r,h, j

, (4)

where NS r,h, j is the number of units in S for auxiliary vari-
able j at the iteration h of the algorithm used to evaluate its
threshold and at iteration r of this “conditional optimization”
algorithm. The key component at each iteration of this it-
erative algorithm is the definition of the set Sr,h, j={ i: xi,g
<thrr,h,g∀ g=1,. . . ,j}∩{ i: xi,g <thrr−1,h,g∀ g=j+1,. . . ,k} since
this includes all units defined as being in C in previous itera-
tions for variable j as well as those already identified as being
in C for the remaining variables.

The procedure is iterated over the index r, and within
each value of this index, over the index h for each of the k
variables, until convergence.

This iterative search is quite efficient and usually finds
a solution in a small number of iterations using as starting
thresholds the maximum value of each auxiliary variable, i.e.
C = {∅} initially. Its main drawback is that it still corresponds
to a box-shaped partitioning into sampled and completely
enumerated units, and hence does not necessarily lead to a
global optimum. In what follows we refer to this method as
“Iterated Conditional Union”.

2.2 A Stochastic Relaxation Approach: the Simu-
lated Annealing Algorithm

An alternative optimizing approach which does not as-
sume any shape for the optimal partition is via simulated an-
nealing (SA). This is a stochastic optimization method for
finding a global minimum of a function (Kirkpatrick et al.
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1983). The method is a generalization of the Metropolis-
Hastings algorithm (Metropolis et al. 1953) and represents
one of the most popular optimization strategies for solving
complex combinatorial problems.

Let θ ∈ Θ = {S ,C}N be a vector of size N whose i− th el-
ement may assume two possible values: S indicating that the
unit is to be sampled (i ∈ S ) and C if it has to be enumerated
(i ∈ C). In the approach of Geman and Geman (1984), the
optimization problem can be viewed as a stochastic process
described through a family of distributions:

πT (θ) =
exp{− f (θ)/T }∑
θ∈Θ exp{− f (θ)/T }

, (5)

where f (θ) is the energy function, T is a positive parame-
ter called temperature and the denominator of equation (5)
is called the normalization constant of the model. It can be
shown (Brémaund 1999) that limT→0 πT (θ) = πlim(θ) where
πlim(θ) takes the same positive value at any configuration θ
that corresponds to a global minimum of the energy function
and πlim(θ) = 0 otherwise.

The SA algorithm is an iterative random search proce-
dure where at each step we generate a non-homogeneous
Markov-Chain with a reduced value for the temperature T .
Specifically, for k auxiliary variables, the energy function for
each iteration h and for each visited unit i can be defined
as f (θh,i) = max(nx1,h,i, nx2,h,i, . . . , nxk ,h,i) where each sample
size is evaluated using (2) under the configuration θ. Given a
configuration θh,i at the h−th iteration, another configuration,
say θh+1,i, is then chosen on the basis of a visiting schedule
for each unit i. Here we visit units sequentially following an
initial random ordering of the list frame. The new configura-
tion of the i− th element of the vector θ following such a visit
is defined by first exchanging the codes S and C or vice versa
of the unit i, and then accepting this exchange if it leads to a
reduction of the energy function defined by the sample size.

For any suitable choice of stopping criterion, a final con-
figuration is therefore obtained. Generally, this corresponds
to a local minimum. In order to avoid convergence to local
minima, a stochastic decision rule is used, which allocates a
positive probability to exchange of configuration even when
an increase in the energy function is obtained. In particular,
the algorithm replaces the solution obtained at the h−th itera-
tion θh,i with a new solution θh+1,i according to an acceptance
rule known as Metropolis criterion that allows hill climbing
of the objective function.

More formally, the algorithm can be summarized as fol-
lows. The procedure starts at the first iteration h = 1, with an
initial value T1 and randomly selects the initial configuration
θ1 from {S ,C}N . At step h the elements of θh are updated as
follows:
• select a unit in the population according to the visiting

schedule (we used a sequential criterion) and exchange
its status (from S to C or vice versa);
• denote with θ∗h the new proposed vector of codes and

with f(θ∗h) the sample size evaluated as the maximum
of (2) obtained for each of the k auxiliary variables.
Randomly decide whether or not to adopt θ∗h according

to the Boltzmann distribution:

θh =


θ∗h with probability
p = min

(
1, exp

{ [ f (θh)− f (θ∗h)]
Th

})
θh otherwise;

(6)

• repeat these steps, say m times (in the case studies of
section 3 we used m = 5), for all the units of the popu-
lation, then update the temperature according to a very
simple and widely used rule Th+1 = ρTh = ρhT1 with
0 < ρ < 1 representing a control parameter on the
cooling speed of the algorithm. Values close to 1 in-
crease the number of iterations needed to reach the op-
timum but also prevent convergence to local minima;
• stop when | f (θh) − f (θh+1)| / f (θh) ≤ ε or when the

number of iterations exceeds a fixed maximum.
The most serious drawback for this algorithm is its com-

putational burden. Partitioning populations with a huge num-
ber of units could be unfeasible since the procedure is applied
to all units in the population. While this might not be a ma-
jor drawback for relative small populations in the case of two
strata, it could be a serious drawback for very large popula-
tions and potentially a severe drawback in the case of more
than two strata. If there are more than two strata then optimal
multivariate sample allocations would need to be determined
for each unit in the population at each iteration, leading to
huge computational burden.

A way of speeding up the annealing process is to use
generalized simulated annealing (GSA; Tsallis and Stariolo
1996), in which the updating criterion (6) is again random
but with an acceptance probability given by:

θh =


θ∗h with p = min

1, 1[
1+(qA−1)

(
f (θ∗h )− f (θh)

Th

)] 1
qA−1


θh otherwise,

(7)

and with a temperature that decreases according to the rule:

Th = T1
2qV−1 − 1

(1 + h)qV−1 − 1
. (8)

The two constants qA and qV regulate the acceptance
probability distribution and the rate of temperature decrease
respectively. When qA = qV = 1 the distribution (7) cor-
responds to (6) and the temperature decreases logarithmi-
cally with the increase of the iteration number, while when
qA = 2 and qV = 1 the algorithm is equivalent to the so called
“Fast Simulated Annealing” or “Cauchy Machine” (Tsallis
and Stariolo 1996).

If the size N of the list frame is such that even the GSA
is unfeasible, then it is possible to speed up the convergence
of the annealing process even further using “Iterated Condi-
tional Modes” (ICM; Besag 1986). This replaces the stochas-
tic rule (6) by the deterministic rule:

θh =

{
θ∗h if f (θh) > f (θ∗h)
θh otherwise. (9)
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Note that this rule will lead to convergence to a local mini-
mum but not necessarily to a global one. However, this theo-
retical drawback could be more than compensated by a dra-
matic decrease in the computational burden. In our empirical
experience the ICM has always suggested solutions that are
rarely equal to the global optimum but usually very close to
it and with a number of iterations which is negligible in com-
parison to that required by random search procedures as SA
and GSA.

2.3 Auxiliary and survey variables

Up to now, the coefficient of variation constraints have
been imposed on the auxiliary variables X rather than on the
survey variables. The typical assumption is that optimal sam-
ple design based on specifying target levels of precision for
a set of auxiliary variables will lead to a design that achieves
the required target precision c j for each survey variable j.
However if, as often happens, the survey variables and the
auxiliary variables are not just the same variables recorded in
two different periods, then there could be considerable differ-
ences among them. In such situations the solution developed
above could be sub-optimal because it is well known that in
practice this hypothesis is only an approximation to the true
situation and that using the auxiliary variables to design the
sample could therefore underestimate the sample size needed
to reach a predetermined level of precision.

A standard alternative is to use a model for any of the
unknown q survey variables Y =

{
y1, y2, . . . , yl, . . . , yq

}
in

terms of the known vector of auxiliaries X. The solution that
underpins the approach that we adopt in the present paper
is to derive from past surveys a model that relates each yl
with its counterpart x j observed in previous years. In our
particular application thus q = k and for each model j = l.
The sample allocation to each stratum is then made on the
basis of the anticipated moments of Y given X. This ap-
proach is discussed in Dayal (1985), Sigman and Monsour
(1995) and Baillargeon and Rivest (2009). It is important
to emphasise that there is considerable advantage to design-
ing a survey that is repeated at two time points in which the
variables collected at each time point have the same defini-
tion and the phenomenon being investigated is known to be
highly dependent on its past values. In this context, the case
used as an illustration in this paper is a classical survey re-
peated in time that is very similar to most NIS-run business
surveys (Benedetti et al. 2010; Hidiroglou and Laniel 2001;
Hidiroglou and Srinath 1993) and consequently represents
the natural application of the method proposed in this paper.

An important issue relates to the implicit use of a linear
model linking the auxiliaries and the variable of interest Y in
our approach. Clearly, we may use a simple linear regression
if we are in the case where each variable has its own counter-
part within the auxiliaries or multiple regression if they rep-
resent a set of completely different information only related
to the set of covariates. In these simple models a log-scale
relationship should help reduce the effects of heteroscedastic
errors and skewness of the population data.

A more complex issue that often arises when dealing

with business surveys, whose statistical units are usually es-
tablishments, is that the observed phenomenon can also be
equal to 0 with a non-null probability. Such a zero inflated
situation, where X > 0 and Y = 0, may occur because a
unit can go out of business between the collection of the X
variables and the date of the survey (Baillargeon and Rivest
2009). The probability to be zero, i.e. to go out of business,
or suspend or postpone the activity of interest, typically de-
creases with the increase of the size of the establishments.
The proposed model for y j given x j can then be based on a
log-scale mixture model with survival probabilities ph that
are assumed to be constant for each unit i belonging to the
same stratum h = {S ,C}:

yi, j =

{
exp

(
α j + β j log

(
xi, j

)
+ εi, j

)
with probability ph

0 with probability 1−ph;
(10)

where εi, j ∼ N
(
0, σ2

j

)
. Such models, whose parameters can

be estimated by using maximum likelihood (Liu and Chan
2010), are widely used for ecological count data and recently
extended to the analysis of economic microdata (Cameron
and Trivedi 2005). The anticipated moments under (10) can
be derived from Baillargeon and Rivest (2009):

µy j,S r,h, j = pheα j+
σ2

j
2


∑

i∈h xβ j

i, j

Nh

 , (11)

V2
y j,S r,h, j

= phe2α j+2σ2
j


∑

i∈h x2β j

i, j

Nh

 − p2
he2α j+σ

2
j


∑

i∈h xβ j

i, j

Nh


2

,

(12)

t2
y j

= eα j+
σ2

j
2

∑
h∈{S ,C}

ph

∑
i∈h

xβ j

i, j

 . (13)

3 A case study: the milk products
monthly survey

In this section we will apply the multivariate census
threshold determination procedures proposed in Section 2
to the Milk Products monthly survey performed in Italy by
Istat. The purpose of this survey is to collect data on the
quantities of milk and the main milk products produced ev-
ery month. This survey is based on a stratified sample, with
a stratification of dairies by size and output specialization
for a total of seven strata. On average, the population and
the sample size are approximately N=2000 and n=400 es-
tablishments respectively and the desired level of precision c
is set to 5% with the exception for the variable Cows Milk
Collected which is set to 1% (Istat 2011).

In addition to the monthly survey, Istat carries out an an-
nual census of the dairies. In this study we use eight variables
enumerated completely in the frames obtained from the cen-
suses conducted from 2004 to 2009. These are Cow’s Milk
Collected (V1) and Cream Used (V2) corresponding to pro-
duction input, and six variables for production output: Drink-
ing Milk (V3), Cream Produced (V4), Acidified Milk (V5),



130 ROBERTO BENEDETTI AND FEDERICA PIERSIMONI

Concentrated Milk (V6), Powdered Dairy Products (V7) and
Cheese From Cow’s Milk (V8).

The multivariate partition procedures proposed in this
paper were then implemented, with the aim of determining
the boundaries of the two strata C and S for the monthly sur-
vey on dairies corresponding to a hypothetical sample for the
year 2010, using as auxiliary variables the census data of the
previous year. Our aim was to estimate the population totals
of the variables measured by Istat in the monthly survey.

We start with a brief description of the frames. The scat-
ter plot of two of the most important and correlated vari-
ables, Cow’s Milk Collected (V1) and Cheese From Cow’s
Milk (V8), are shown in Figure 1 for the 2009 data; the
graphs for the other years (2004–2008) are almost identical
and therefore are not reported here. The main evidence is
that within a given year the variables are highly skewed with
some mild positive correlation which is quite stationary in
time, as confirmed by the linear correlation coefficients (see
table 1 and table 2). The scatter plots of Figure 2 show that
when the auxiliaries are compared between two years, say
2004 and 2005 or 2004 and 2009, they exhibit a very high
correlation ranging in the interval [0.77; 0.99] that, as ex-
pected, decreases as the time span between the two variables
is higher (see table 3). Moreover, dairies are strongly special-
ized and most firms are small. In particular in 2009, 79.92%
of the firms produced only one type of output (78.7% pro-
duced only Cheese From Cow’s Milk), 6.62% two types and
only 2.02% three types.

The anticipated moments used in this experiment, i.e.
sums and sums of squares, are estimated for each variable
of interest for the year 2010 by fitting a simple linear regres-
sion to the available frame data for the years 2008 and 2009.
Given that this very simple model fitted well, we chose not
to try any of the more complex solutions described in section
2.3. In order to estimate the 2010 values of the anticipated
moments of the survey variables we therefore assume that
for each variable the relationship between 2010 and 2009 is
equivalent to that observed between 2009 and 2008.

Before attempting to partition the population in the eight
dimensional space of all the available auxiliaries it is interest-
ing to observe the results obtained by some of the proposed
algorithms in only two dimensions.

We chose two variables: Cow’s Milk Collected (V1) and
Cheese From Cow’s Milk (V8). The box-shaped boundaries
identified through the union of univariate results and by the
iterated conditional union (ICU) approach (this required just
three iterations) described in section 2 are set out in table 4.

Starting from a threshold where all population units are
sampled, the stopping criterion adopted is when the maxi-
mum difference between the thresholds obtained in two con-
secutive iterations is zero.

An interesting practical property of the ICU algorithm,
observed in every design in which it was applied, is that it
always converges to the same solution even when for each
auxiliary the threshold used is a first guess and is not iterated
as in the univariate procedure (3), i.e. the maximum number
of iterations for h is assumed to be equal to 1. This character-
istic could be a useful way of speeding up convergence when
dealing with very large populations.

Table 1: Correlation matrix of the 2009 data

V2 V3 V4 V5 V6 V7 V8

V1 0.08 0.29 0.16 0.14 -0.01 -0.01 0.49
V2 1.00 0.22 0.29 0.03 0.02 0.00 0.14
V3 1.00 0.73 0.18 0.00 0.00 0.02
V4 1.00 0.16 0.00 0.00 0.02
V5 1.00 0.00 0.00 0.03
V6 1.00 0.00 -0.01
V7 1.00 -0.01

Table 2: Correlation Coefficients between Cow’s Milk Collected
(V1) and Cheese From Cow’s Milk (V8) from 2004 to 2009

2004 2005 2006 2007 2008 2009

0.6474 0.5829 0.5538 0.4668 0.5085 0.4955

The main evidence from table 4 is that, as suggested
by the theoretical considerations in section 2, the two lim-
its proposed by the iterative procedure are higher than those
obtained by the simple extension of the univariate criterion,
resulting in 28 units being moved out of the completely enu-
merated stratum and a saving of approximately 8 sampling
units when c=1% (see Table 5).

However it can also be shown that these boundaries are
not optimal and that a better stratification can be achieved
(see Figure 4) through the use of Simulated Annealing, fur-
ther reducing the number of the units to be completely enu-
merated (units belonging to the dark grey area). Note that,
due to the complex nature of the algorithm, the boundaries
for each single variable follow a curve and are no longer lin-
ear (see Figure 4).

Unfortunately, this procedure cannot be considered as a
definitive solution to our problem because it suffers from a
critical disadvantage: its convergence to a global optimum
could require an unfeasible number of iterations. Note that
this problem is due to the temperature decreasing schedule
that we choose. It is evident that the smaller the value of the
parameter ρ, the quicker the procedure reaches convergence
(see Figure 3 for the convergence of the algorithm by using
only the two variables V1 and V8). However, speeding up the
procedure could lead to convergence to a local minimum, im-
plying that the optimal sample size could be lower than that
obtained using a low value of ρ. This is not the case when
using only two auxiliaries as the algorithm always converges
to the global optimum (when ρ=0.99 it needs 221 iterations
to converge while for ρ=0.96 only 83 are required and for
ρ=0.93 and ρ=0.90 it used 52 and 36 iterations respectively).

Table 5 shows the sample allocations to the Sampled and
Completely Enumerated strata when strata boundaries were
calculated based on the two variables V1 and V8 as well as
on the complete set of auxiliaries using all the methods sug-
gested in Section 2, i.e. Union, Iterated Conditional Union,
Simulated Annealing, Generalized SA (with parameters qA
= 2 and qV = 1.5) and Iterated Conditional Modes. The op-
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!

Figure 1. Scatter plots of the 2009 data; the units of measurement are quintal (left) and its 4
√ transformation (right)

!
Figure 2. Scatter plots of 2004 vs 2005 data and of 2004 vs 2009 data for the Cow’s Milk Collected and for Cheese from Cow’s Milk (data
are a 4

√ transformation of quintals)
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Table 3: Correlation Coefficients between the years 2004-2009 for Cow’s Milk Collected (V1) and for Cheese From Cow’s Milk (V8)

Cow’s Milk Collected Cow’s Milk Cheese

Year 2005 2006 2007 2008 2009 2005 2006 2007 2008 2009

2004 0.91 0.85 0.80 0.79 0.77 0.98 0.98 0.97 0.96 0.95
2005 1.00 0.92 0.87 0.85 0.83 1.00 0.99 0.98 0.97 0.96
2006 1.00 0.97 0.95 0.94 1.00 0.99 0.98 0.96
2007 1.00 0.97 0.96 1.00 0.99 0.97
2008 1.00 0.99 1.00 0.98

Table 4: Complete enumeration thresholds based on application of the Iterated Conditional Union and Union algorithms, with c=1%. The
thresholds of the Iterated Conditional Union are reported for each value of the parameters (r = among auxiliaries iteration number; h =

univariate threshold iteration number for each auxiliary)

Algorithm Max. Abs. Difference Cow’s Milk Collected Cow’s Milk Cheese r h

Iterated Conditional Union 37156.26 3994.10 1 6,6
1628.44 38784.70 3997.40 2 5,1

0.00 38784.70 3997.40 3 1,1

Iterated Conditional Union 75435.86 13660.61 1 1,1
31321.38 44114.48 4843.24 2 1,1

4542.59 39571.89 4074.67 3 1,1
766.22 38805.67 4006.89 4 1,1

33.10 38772.57 3999.74 5 1,1
12.13 38784.70 3997.40 6 1,1

0.00 38784.70 3997.40 7 1,1

Union 37156.26 3841.26

timal sample size suggested by each method was evaluated
for three different target sampling errors c=1%, c=5% and
c=10% which were set to be the same for all the variables.

The main conclusion that can be drawn from the results
set out in table 5 is that moving from Union to Iterated Con-
ditional Union leads to a decrease in the sample size (ap-
proximately 1% for 2 variables and 1,6% for 8 variables
for c=1% and c=5% while almost no reductions are present
when c=10%). However, this reduction is not nearly as dra-
matic when the SA and the GSA are used, both for two and
eight auxiliaries, and for the different errors. In this case re-
ductions range from 3,1% when c=1% to 5,3% when c=10%
with two auxiliaries and from 5% for c=1% to 15,8% for
c=10% with eight auxiliaries. Thus, as the number of the
auxiliaries increases, SA and GSA seem to increase their rel-
ative efficiency.

Note that although they require a different number of it-
erations SA and GSA always converged to the same solution
in our experiments, while ICM, which requires a consider-
ably lower number of iterations, typically reached a local op-
timum that was about 1% to 2% larger than that reached by
SA and GSA. For many practical sample designs this could
be a satisfactory price to pay to ensure a drastically reduced
computational burden compared to that required by a random
search method.

Furthermore, it is clear that there is a decrease in the
number of completely enumerated units when one goes from
a threshold based on a box-shaped boundary procedure such
as Union or Iterated Conditional Union to one based on a ran-

dom search criterion such as SA and GSA. This illustrates
that as the target error level c increases, the boundaries re-
turned by SA and GSA can reduce the number of the units
to be completely enumerated compared with boundaries de-
fined by box-shaped algorithms, and this reduction increases
as we increase the number of the auxiliary variables.

Table 6 shows the CVs for the auxiliary variables gener-
ated by the different partitions defined by the various meth-
ods. Observe that for every variable and every method, the
limits c are always respected but the irregularly shaped par-
titions (SA, GSA and ICM) always avoid unnecessarily low
CV values. That is, in order to achieve the CV limits, a par-
titioning rule that is based on box-shaped boundaries tends
to require a much greater number of population units to be
completely enumerated compared with a rule that allows an
irregularly shaped partition.

4 Conclusions
In the design of agricultural surveys it is very useful to

have a completely enumerated stratum of large units defined
in terms of a multivariate size measure. However, in spite
of the fact that such multivariate auxiliary variables are now
available, the current literature only addresses the definition
of a completely enumerated stratum for the univariate case.
The numerical solutions described in this paper represent an
attempt to fill this gap. In particular we show that algorithms
that use a random search strategy to find a better partition
of the frame are a good alternative to those that are obtained
as simple extensions of well known univariate solutions. In
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!

Figure 3. Two auxiliary variables: convergence to a global optimum of the sample size obtained by the simulated annealing partitions,
varying the iteration number, for different values of the temperature decrease parameter ρ and c=1%

!
Figure 4. Two auxiliary variables: boundaries between the completely enumerated stratum (white) and the sampled stratum defined by
Iterated Conditional Union (light gray) and Simulated Annealing (dark gray)

particular, we show that a solution to this type of combinato-
rial optimization problem, subject to an overall sample size
sufficient to achieve a fixed level of error for each variable,
can be implemented via simulated annealing.

The use of anticipated moments in our approach allows
its extension to optimal design for multipurpose surveys. In
particular, the use of statistical models to predict the future
values of a set of survey variables, is a tool that could help to
extend the results of this paper to situations more complex
than those that we encountered in our design of the Milk

Products Monthly Survey. However, how to calculate the
predicted values and how to use these results in analytical
calculations of the expected coefficients of variation are two
issues that require further research.

It is important to emphasise that it is not appropriate
to consider that the partition methods explored in this pa-
per represent as an alternative to a selection with probability
proportional to size (πps) design. Even though a πps design
strategy is typically used when only one size measure in the
list frame is available, it is our opinion that the best overall
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Table 5: Sample sizes n, and numbers of units NS in the sampled stratum and NC in the completely enumerated stratum, for different
methods, numbers of variables considered and target levels of the sampling error c

c=1%

2 Auxiliary Variables 8 Auxiliary Variables

Method NS NC n NS NC n

Union 1297 642 766.1 1255 723 833.6
It. Cond. Union 1325 614 758.7 1294 684 820.3
SA, GSA 1409 530 735.2 1399 579 778.7
ICM 1341 598 744.7 1342 636 786.5

c=5%

2 Auxiliary Variables 8 Auxiliary Variables

Method NS NC n NS NC n

Union 1718 221 309.1 1678 300 373.3
It. Cond. Union 1723 216 305.4 1687 291 367.3
SA, GSA 1769 170 291.5 1762 216 330.6
ICM 1736 203 297.9 1736 242 333.3

c=10%

2 Auxiliary Variables 8 Auxiliary Variables

Method NS NC n NS NC n

Union 1815 124 177.4 1782 196 242.7
It. Cond. Union 1817 122 176.5 1783 195 242.7
SA, GSA 1851 88 167.1 1849 129 204.3
ICM 1830 109 170.5 1829 149 208.7

Table 6: Ex post CVs for the eight auxiliary variables, for the different methods and sampling errors

Limit CV Method V1 V2 V3 V4 V5 V6 V7 V8

c=1% Union 1.00 0.16 0.08 0.17 0.12 0.00 0.00 0.93
It. C. Union 1.00 0.17 0.07 0.16 0.11 0.00 0.00 0.93
SA, GSA 1.00 0.76 0.99 0.69 1.00 0.98 0.70 1.00
ICM 1.00 0.88 0.94 0.85 0.35 0.00 0.00 1.00

c=5% Union 5.00 1.15 1.20 1.24 0.75 0.00 0.00 4.86
It. C. Union 4.98 1.25 1.18 1.22 0.74 0.00 0.00 5.00
SA, GSA 5.00 3.53 4.99 4.46 1.65 1.55 1.11 5.00
ICM 5.00 3.90 4.93 4.95 1.88 1.77 1.26 5.00

c=10% Union 9.85 3.20 2.94 3.36 0.99 0.00 0.00 10.00
It. C. Union 9.75 3.17 2.91 3.33 0.98 0.00 0.00 10.00
SA, GSA 10.00 9.19 9.92 9.88 7.50 2.01 1.44 10.00
ICM 9.97 9.22 9.91 9.40 8.51 2.27 1.62 10.00

strategy should be the one that makes joint use of these two
important and efficient sample design tools.

Other issues that remain open for future research include
extension of the algorithms developed in this paper to solve
the more general problem of multivariate and multipurpose
optimal partition of the population into more than two strata.
Furthermore, it would be extremely useful if this multipur-
pose and multivariate approach could also deal with the prac-
tical problem of nonresponse, perhaps through the use of re-
sponse probabilities estimated from previous surveys.
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