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To date there has been limited practical application of energy supply models to sprint cycling 

performance due to difficulties in determining complex physiological parameters or 

oversimplifications limiting relevance to steady state performance. Here an energy supply 

and demand model is presented for track cycling drawing on research incorporating forward 

integration energy demand modelling, the Power-Cadence relationship in maximal sprint 

cycling, rate of fatigue per revolution relative to maximum power and the critical power 

model. All input parameters can be determined from simple field or laboratory testing and 

even training data. The model successfully predicted an elite cyclist’s timed 250-m 

performance from stationary start to within 0.31%. 
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INTRODUCTION: Forward integration modelling of sprint cycling performance has been 

reported to accurately predict velocity in dynamic sprint cycling events (R2 = 98.9%; Martin et. 

al., 2006). While input parameters influencing energy demand can be optimised, power data 

must be measured during a race, lab test, or training to provide the energy supply to the 

model. Those power data cannot be optimised because they are dependent on energy 

demand parameters. An alternative approach is to model physiological energy supply, and 

observe power output evolving under different supply and demand parameters until the 

optimal combination is found. One of the simplest models of energy supply is the Critical 

Power model (CP; Monod & Scherrer, 1965), which can be derived from constant power/time 

to exhaustion testing or average power during a time trial (Quod et. al., 2010). However, this 

limits CP to modelling steady state energy supply only. More powerful models with greater 

predicative ability of dynamic energy supply have been developed utilizing exponential time 

decay constants (e.g. Morton, 2006), muscle structure and function (e.g. James and Green, 

2012) or metabolic gas analysis (e.g. Olds, 2001). When attempting to create individualized 

athlete models a trade-off exists between predictive power and the simplicity in obtaining input 

parameters (e.g. de Koning et. al. 1999). 

The power-cadence relationship (P-C), relative rate of fatigue (RRF) and CP are all derivable 

from training data, simple laboratory tests and/or field based testing, and can be used to 

model energy supply in sprint cycling. Sargeant et. al. (1981) demonstrated that the maximal 

non-fatigued power produced for a given cadence during maximal sprinting fits a parabolic 

relationship. Martin et. al. (1997) developed the inertial load test (IL) to determine P-C from a 

single 4 second sprint, allowing maximal non-fatigued energy supply at varying cadences to 

be easily measured and modelled. Recently Tomas et. al. (2009) noted that fatigue during 

isokinetic cycling (IK) at different cadences was influenced by the number of crank 

revolutions. This observation is particularly important in the context of maximal sprint cycling 

because pedalling rate is known to influence rate of fatigue (Gardner et. al., 2009) and 

pedalling rate changes throughout a track cycling sprint. Therefore fatigue could be modelled 

as a linear decrease in power per revolution relative to maximum power (i.e. RRF). This rate 

of fatigue per revolution of the cranks is easily obtained from an IK trial. Finally, total 

anaerobic work capacity (AWC) derived from CP provides a limit to the total amount of 



 

 

anaerobic work done and a steady state power once AWC is exhausted (Monod & Scherrer, 

1965). 

The purposes of this research were to derive a combined energy supply and demand model 

for track cycling that uses readily obtained inputs and then examine the robustness of that 

model with real world test and performance data. 

 

METHODS: One elite male cyclist performed IL and IK tests in a seated position to determine 

maximum power (Pmax), optimal cadence (RPMopt) and RRF. Standing P-C and CP 

parameters were estimated from training data. Standing and seated aerodynamic drag area 

(CdA) was measured via the virtual elevation method (Alphamantis Tech. Inc., Montreal, 

Canada). The cyclist also completed a 250 m time trial from an electronically controlled 

starting gate. Movement time (total time minus reaction time) to complete the lap was 

measured using video of the trial and Dartfish (v6.0; Fribourg, Switzerland) then compared 

against the modelled time derived from the test and training data. 

Modelling Energy Demand: The energy demand side of the model from Martin et. al. (2006) 

was adapted with three modifications. Wheel velocity in the turns was determined by 

numerically solving a factor between the model centre of mass (CoM) radius and actual turn 

radius for lean angle at the wheels. A 15 meter transition in lean angle between straights and 

turns was estimated by linear interpolation where the radius at the entry or exit to a straight 

was twice the actual turn radius. The second modification was to give the model a CoM 

velocity prior to the wheels moving, which reflects forward movement of the cyclist before the 

start gate opens. Third, a check was made as to whether seated or standing, coefficient of 

rolling resistance (Crr) and CoM height values should be used.  

Modelling Energy Supply: Energy was supplied to the model by calculating the maximum 

non-fatigued standing or seated torque deliverable at the current modelled cadence (Gardner 

et. al., 2009). Fatigue was introduced when the model reached a fixed number of revolutions. 

The equation for fatigue was as follows: Fatigued Torque = Non-fatigued Torque x (1 – RRF x 

number fatigued revs completed). Once the amount of work completed in the model equalled 

the athlete’s AWC, fatigue was no longer applied and the energy supply came from the 

athlete’s critical power. 

Both the onset of fatigue and initial CoM velocity were specified by optimising the residual 

sum of squares between the actual and modelled power outputs. Table 1 details the model 

parameters additional to those previously described by Martin et. al. (2006) and how they are 

obtained. 

Table 1: Additonal Model Inputs and Methods for Obtaining Them 

Input Determined By 

Energy Demand  

Turn radius Laser range finder and track markings 

Length of straights Laser range finder and track markings 

Length of turns Laser range finder and track markings 

Distance from start of model to first 

turn entry or exit 

Laser range finder and track markings 

CoM velocity in start gate Optimised with Microsoft Excel Solver Add-In 

Energy Supply  

Standing & seated max power Inertial load test and training data 

Standing & Seated Optimal RPM Inertial load test 

Standing & Seated CoM height Kinematic video analysis 

Cadence where cyclist transitions from 

standing to sitting 

Estimated from competition data 

Onset of fatigue in # of revolutions Optimised with Microsoft Excel Solver Add-In 

Rate of fatigue relative to max power Maximal isokinetic sprint at 120 RPM 

Anaerobic work capacity From CP estimated from training data or MMP 

Critical power From training data or MMP 



 

 

RESULTS & DISCUSSION: The updated forward integration model accurately predicted the 

actual 250 m and intermediate split times throughout the trial (Table 2). Actual and modelled 

wheel velocity were highly correlated throughout the trial (R2 = 99%) as was actual and 

modelled power (R2 = 93%; Figure 1). While others had previously demonstrated that the 

forward integration model could accurately replicate a known performance from known 

power-time characteristics, these results extend upon those by demonstrating similar 

accuracy can be obtained using independently measured power-pedalling rate and fatigue 

characteristics as supply-side parameters. 

 

Table 2: Actual and Modelled Data From 250m Time Trial 

Split Actual Model Difference 

62.5 m 7.04 s 7.30 s 3.54% 

125 m 11.04 s 11.19 s 1.37% 

Final 125 m 7.08 s 6.98 s -1.38% 

250m 18.12 s 18.18 s 0.31% 

 

Future research will seek to provide measured rather than predicted values for Crr, initial 

velocity CoM and the duration or number of revolutions before the onset of fatigue. Our lab 

and others are conducting follow up work to address whether expressing rate of fatigue as a 

function of cadence is appropriate, early results indicate the number of completed revolutions 

is responsible for up to 90% of the observed fatigue during maximal efforts. In contrast, 

accumulated work is responsible for <20% of the changes in power. 

 

 

 

Figure 1: Modelled versus actual data for a 250 meter lap trial from start gate. 
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CONCLUSION: An energy supply and demand model for predicting track sprint cycling 

performance is presented. The model is simple enough for construction in a spreadsheet yet 

accurate when predicting highly dynamic short duration sprint cycling performance. In 

contrast a demand only model requires power-time data to be measured beforehand and care 

should be taken when interpreting changes to any inputs. For example, if a change increases 

modelled cadence then power output should also change according to P-C but the already 

measured power-time data cannot be altered possibly leading to erroneous predictions. 

Including energy supply in the model solves this paradox and allows for a more thorough 

optimization of performance. 

The advantage of our model to athletes, coaches and sport scientists is all inputs are easily 

measured from simple performance tests and analysis of training data. When reliability of the 

test protocol is known a confidence interval can be constructed around the effect of that test 

result on modelled performance. Conclusions about the statistical certainty of a change in 

performance can then be expressed. This is a particularly powerful tool and a number of 

scenarios can be explored by quantifying the effects of changes to different inputs on 

modelled performance. For example gear selection, mass, training effects, ergogenic aids, 

and even tradeoffs between parameters like power production and aerodynamic efficiency of 

different riding positions. 

In summary modelling both energy supply and demand in sport with practical inputs is a 

particularly useful tool for coaches in determining how time, money and energy should be 

focused to maximise gains in performance.  
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