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The Long Jump and Triple Jump are the two horizontal jumping events of Track and 
Field. They have in common 1) the primary goal of miximizing the horizontal distance 
jumped; 2) a sprint-like approach on a runway (often the same one) to a take-off 
marker; 3) an attempt to achieve a desired flight phase trajectory; and 4) similar 
training techniques used by the athletes. With the exception of these few common 
f actors the events are considerably different and, as one would expect, the principal 
difference lies in the fact that the triple jump consists of three successive jumps 
from alternate legs whereas the long jump consists of a single jump from a single 
leg. Due to this difference, the execution of the triple jump is considerably more 
complex than the execution of the long jump, and for the same reason, the 
biomechanical analysis of the respecti ve jumps is also more complex for the triple 
jump. This paper briefly summarizes some biomechanical analysis techniques that 
can be used to study the Long and Triple Jumps. Generally the techniques have been 
applied to study the various phases of the long jump and it is clear how the techniques 
will apply to the triple jump even though very few biomechanical analyses of the 
triple jump are reported in the literature. Also presented are preliminary experimental 
data concerning the triple jump and a procedure to synthesize the jump at an 
elementary mechanics level. 

GENERAL ORDER OF ANALYSIS 

A biomechanical analysis of the long and triple jumps often occurs in the following 
order: 

(A) Observe the activity and collect qualitative displacement data by studying 
films or video sequences. 

(B) Collect quantitative displacement data from film or video sequences and 
possibly calculate velocities, accelerations and mass center displacement. 

(C) Use an elementary mathematical model of the jumper to calculate the 
effects of various initial velocities on the resulting mass center trajectory 
during the flight phase(s). 

(D) Collect force plate data that can be used by itself or in conjunction with 
(A), (B), and (C). 

(E) Develop and use more complex mathematical models to simulate the 
activity or to determine parameters not directly measurable (i.e., joint 
forces and moments, angular momenta, etc.). 
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Item (A) above merely means that one observes the event to obtain an 

understanding of how the jump takes place. Sometimes this observation is embodied 
in (B) when appropriate cine or video data collection methods are used. Item (C) is 
described in texts in kinesiology and biomechanics and represents an elementary 
application of mechanics to study the jump. Items (D) and (E) require advanced 
electronic experimental equipment and/or advanced applications of mechanics 
principles. 

Applications in the Long Jwnp 

It is assumed that the reader is familiar with the basic idea of how long 
jumping takes pi ace and an effort will not be made here to describe the many details 
and variations of the approach, take-off, and landing. For such a discussion please 
see Bush, 1978; Doherty, 1976; Dyson, 1977; Ecker, 1976, and Wilt, 1972. The general 
discussion here will focus on the support and flight phases. 

Observation of the jump shows that it consists of two main parts -- (1) the 
Support Phase where the athlete develops the vertical component of the take-off 
velocity and (2) the Flight Phase where the athlete attempts to orient the body 
segments properly to produce an acceptable landing. Figure 1 shows a sketch of 
these main parts of the jump, using the trajectory of the jumper's mass center as 
the designator of the motion. In the figure, the distance sI' spanning locations of 
the mass cei1ter at A and B, represents the support phase. The distance LI' spanning 
locations of the mass center from B to C, represents the flight phase. A mechanics 
analysis consists of a study of these two phases. However, the actual recording of 
long jump performance is not based on a measurement of the distance traveled by 
the mass center, but by the distance measured from a designated "scratch" line to 
the body part (usually the feet) touching the landing area closest to the "scratch" 
line. Thus, as suggested by Hay (1978), the actual measured performance consists of 
three segments, aI' a and L , as shown in Fig. 1. Here a is the distance fromlthe "scratch" line to ~e locat10n of the mass center at take-off (location Bl; L I is 
the horizontal distance traveled by the mass center during the flight phase (B to Cl; 
and a is the distance from the location of the mass center at landing (location C)

3to the position of the feet. Thus, the measured distance M is given as
L 

Nt = a l ~ a2 ~ Ll 
(I) 

An estimation of a and a can be obtained conveniently from measurements
2

taken of film records of the athlete's jumps and, compared to the magnitude of L I' 
they are quite small. 

The distance L l' representing the dominant part of the jump, lends itself to 
an elementary mechanics analysis by way of the ballistics equations (Dyson, 1978; 
Ramey, 1976). With reference to Fig. 1, let v and v be the horizontal and vertical 
velocities respecti vely of the jumper at take-~ff. Ttren the ballistics analysis shows 
that 

v (v ~~2~2gy)
L x v_ L 0 (2)I-~ g 

Here g is the local gravitational constant and y is the difference in elevation between 
the mass center at take-off and landing. 0 
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Equation 2 illustrates the relationship that exists between the take-off velocities, 

and the distance the mass center moves. Dyson (1978) uses this equation to show 
an upper bound of expected performance for long jumps in the range of L =37.5 ft 
(the current world record is 29'-2~"). Ramey (1972) uses this equatIon in a 
differentiated form to illustrate the influence that changes in these velocities have 
on the changes in L l' 

The ballistics approach discussed above is an important first step in the analysis 
of the jump. It is seen to combine the first three elements of the analysis process 
mentioned prevDusly. Nevertheless, because of the significance of the take-off 
velocities, as illustrated in Eq. 2, it becomes important to study how the velocities 
are acquired. This study requires that one consider the forces associated with support 
phase, since virtually all the vertical velocity is developed during this phase and a 
portion of the horizontal velocity acquired during the approach on the runway is lost. 
A force platform is usually used to record the support phase force histories. 

There has been considerable work done on the development of force platforms 
that can be used in jumping studies (Ramey, 1975; International Society of 
Biomechanics, 1975-). A typical record is shown in Fig. 2. These force records can 
be used to study the changes in velocity during the support phase by using the 
impulse-momentum equations of mechanics. 

It is shown by Ramey (1973) that the impulse-momentum equation yields the 
following relationship for the change in velocity during the support phase 

f
t 

t b 

F dt
 
a
 

liV = m	 (3) 

where	 li V is the change in the velocity vector during the support phase, F is the 
resultant force vector acting of the athlete during the support phase (obtained 
from the force platform), m is the mass of the athlete, dt is a differential 
time segment, and t and t are the times at the beginning and end of the a b
support	 phase. 

Define li V=. v:-Y', where y is the velocity vector at take-off and Y' is the velocity 
vector at the beginning of the support phase. Then upon substitution for li V in Eq. 3 
one determines the take-off velocity vector as 

t b 

~a F dt 
v + v· (4)

m 

Equation 4 shows how the take-off velocity is related to the force history and 
that a knowledge of the initial velocity v' must be known. One can approximate v' 
by measuring it's horizontal and vertical components, VI and v'. That is, v' can be 
obtained from measurements taken as the jumper passes \hro~tY a timing gat~ placed 
immediately before the take-off area or, alternatively it can be approximated by 



255 

1,000 

on 
.a 

UJ _u 
_0::: 
-0
>LL. 500 

...J 
cc 
U 
~ 
0:::
 
UJ
 
> 

0
 
0
 

UJ	 +200u 
0:::	 

+1000LL. 
0_...J 

-cc - ....	 on -100
%z.a

0-	-200N 
0: 
0	 -300 
:z: 0 

FIGURE 2 

typical Force Recoru for the Loq lump 

0.05	 0.10 0.15 0.20 

.TIME, SEC. 

(a) Vertical Force 

0.05	 0.10 0.15 0.20 

TIME, SEC. 

(b) Horizontal Force 



256 
calculations of the mass center motion just prior to reaching the take-off region. 
The vertical component, v' , generally must be determined using the latter procedure.* y 

It should be noted that v' in Eq. 4 can be either positive or negative and thus 
increase or diminish the effect of the first term on the right side of the equation. 
Generally for long jumping, the horizontal component of v' will be positive and the 
first term on the right side of Eq. 4 will be negative. On the other hand, the vertical 
component of v' wiU usually be negative while the first term on the right side of 
Eq. 4 will be positive. In actual athletic performances, the slight lowering of the 
jumpers center of mass observed on the penultimate stride tends to reduce the 
magnitude of the negatively signed vertical component of v' and thus not diminish, 
as greatly, the effect of the impulse represented by the first term on the right of 
Eq. 4. 

The real advantage of the approach embodied in the use of Eq. 4 is that the 
force history is explicitly displayed. Ramey (J 972) suggestes how Eq. 4 can be 
manipulated to quantitati vely assess the influence of changes in the take-off velocities 
as determined by changes in the forces during the support phase. 

It is worth noting that although the force plate records provide useful 
information, the use of this data in further calculations requires them to be combined 
with displacement data from a cine analysis. This corresponds to item (D) of the 
general analysis process described earlier. . 

To this point, the discussion has centered on the mechanics associated with 
the motion of the jumper's mass center and the forces associated with the support 
phase. However, another part of the biomechanics analysis concerns itself with the 
effects produced by movements of the limbs during the flight phase. It is well known 
that during the flight phase of the jump, the athlete positions the limbs to produce 
a desired reorientation of the whole body and to prepare for a suitable landing. The 
mathematical description of this reorientation phenomenon follows the conservation 
of angular momentum principal of mechanics and has been used in several studies. 
For this type of analysis the human body is modelled as a collection of hinge and 
ball and socket connected rigid bodies. Figure 3 is an example used in a three 
dimensional analysis of the flight phase of the long jump (Ramey, 1981). The 
conservation of angular momentum equation is summarized in Eq. 5. 

2 
n 

H (I. • w- + r. x m. ;. ) (5)o I I I I I
i=l 

Here H is the angular momentum vector taken about the system mass center and 
remains

o 
constant during the. flight phase; n is the number of body segments used in 

the model; I., lJ}, r., m. and r: are the inertia dyadic, angYlar velocity vector, position 
vector with lreJpe~t tcl an irtertial reference frame, mass, and linear velocity vector 
respectively of body segment i. 

Equation 5 can be used to determine the angular momentum H associated 
with various long jumping techniques (sail, hitchkick, hang, somersau~t, etc.) by 
measuring the quantities on the right side and performing the requisite calculation. 
The measurements are based on data reduced from a cine analysis of the jump(s) and 

*When one is studying standing long jumps, Eq. 4 is simplified by the fact that v'=O. 
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body segment mass distribution either assumed or determined approximately in situ. 
Hay (J 977) and Bedi (J 977) describe some of these methods. 

The application of Eq. 5 in the analysis is clearly no longer an elementary 
process. The equation must be expanded using the advanced concepts of analytical 
dynamics, which is usually the case when the body is modeled as a collection of rigid 
bodies. Equation 5 has been used to produce a simulation of the flight phase of the 
long jump, including the somersault long jump (Ramey, 198 I). Hatze (J 98 I) takes the 
concepts of analytical mechanics further and provides a simulation of the support 
phase of the long jump. This latter application is considerably more complex than 
any of the others. 

The two simulation procedures just mentioned indicate the considerable 
complexity associated with modeling the long jump. Such approaches will eventually 
lead to a better understanding of the event, however, at this writing much must yet 
be done. 

Triple Jump 

Compared to the work done on the biomechanical analysis of the long jump, 
virtually nothing of that nature has been done for the triple jump. Most of the work 
falls in category A of the general approach described earlier and is typically illustrated 
by Bush, 1978; Doherty, 1976; Dyson, 1977; Ecker, 1976, and Wilt, 1972. 

As one attempts to proceed with the mechanics analysis of the triple jump, 
as has been done for the long jump, the similarities and differences between the two 
jumps become clear. Figure 4 shows a sketch of the support and flight phases of 
the triple jump (this figure is the cOlIDterpart to Fig. I for the long jump). The 
obvious difference is that there are three support and flight phases in the triple jump 
compared to just one support and flight phase in the long jump. However each 
support-flight phase pair of the triple jump essentially resembles the support-flight 
phase pair of the long jump. The resemblence just noted is unfortunate because many 
novice coaches and jumpers attempt to extrapolate the knowledge and experience 
from the long jump to the three phases of the triple jump. Such an extrapolation 
does not work. In doing a biomechanical analysis one can take advantage of the 
resemblence, but care must be exercised to accolIDt for the differences. In the 
following paragraphs we shall discuss, in some detail, how one could proceed with the 
ballistics and impulse momentum type analysis in the triple jump as was described 
for the long jump. The complexity will become clear. 

Refer to Fig. 4. Here observe that the measured distance, MT' of a triple 
jump is given as 

where a I is the distance from the "scratch" line to the center of mass at take-off; 
a is tne distance from the center of mass to the location of the body segment4
touching the landing region closest to the "scratch" line; s2 and s3 are the distances 
traveled by the mass center during Support Phases 2 ana 3; and, L. 0=1,2,3) is the 
distance traveled by the mass center during Flight Phase i. Thus tve note that a l
and a in the triple jump analysis correspond to a and a in the long jump analysis; 4 l 2
however, there is no counterpart to s2 and s3 in the long jump analysis. 
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One may proceed to use the ballistics and impulse-momentum equations to 
calculate the distance jumped just as was done in the long jump. First determine 
the distance travelled during the flight phases, L., using the ballistics equation. The 
generalization of Eq. 2 yields 1 

L. = (vx) i ~ \) i + .Avy )~ + 2 g YiJ 
1 1 (7)

g 

Here (v). and (v). denote the horizontal and vertical components of the mass center 
take-off ~elocityYeft the beginning of Flight Phase i and y. denotes the difference in 
elevation of the mass center between the beginning ahd end of Flight Phase i. 

As described in the long jump discussion, the take-off velocities are functions 
of the initial velocity at the beginning of the ~ phase and the forces developed 
during the support phase. Thus, using the impulse-momentum equations in component 
form expressions for the velocities are obtained, 

fiF ). dt 
(v ). = X 1 + (v I ) . (8a)

x 1 m x 1 

fiF ). dt 
(v ). y 1 + (v I). (8b)Y 1 m yl 

Here (v' ). and (v' ). are the horizontal and vertical components of the mass center 
velocitla~ the be8ihning of Support Phase i and (F ). and F ). are the time varying 
horizontal and vertical components of the force ~Jctor a~ttng during the support 
phase. The integration indicated in Eq. 8 is to be taken from the time of the 
beginning of the particular support phase to its end. 

Substitution of Eq. 8 into Eq. 7 shows the interaction of the variables for a 
particular flight phase. That is, 

(F ). dt (F ). dt 2 IJ~XI +(v'). 1 +(v'). +2gy.~m m x 1 m 1 1 (9)L. 
1 g 

It should be noted in Eq. 9 that several terms are functions of events that 
happen during previous flight and support phases. First consider the term (v' ). 
(i= I ,2,3). For the first flight phase, (v' )1 is determined from cine analysis o~ ~ 
timing gate as mentioned in the long juXmp discussion. For Flight Phases 2 and 3 
however, the horizontal velocity at the beginning of the support phase is equal to 
the horizontal velocity at the end of the previous flight phase which in turn is equal 
to the horizontal velocity at take-off of the previous flight phase (since air resistance 
is neglected). Thus, 

(v'). = (v). 1 (l0)
x 1 X 1

Next consider the vertical component (v' ). (i= I,2,3). For the first phase (v' ) 
is obtained from cine analysis as described in t~ellong jump discussion. For the ot~e~ 
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phases, (v' ). (i=2,3) is the vertical velocity at the end of the previous flight phase. 
Then by ~irtg the ballistics equation in this instance one finds 

l 2 i.(v').=- (v)'1+2gy'l (i=2,3) (11)y I Y 1- 1

If Eq. 8 is substituted into Eqs. 10 and 11, and the resulting relationships are 
then substituted into Eq. 9, one can determine how L. of the second and third flight 
phases depend on the forces and velocities of the p~evious and current support and 
flight phases (not shown here). 

Before one can complete the calculation of the measured distance, M in Eq. 6, 
expressions for the horizontal distances travelled during the last two suppJrt phases, 
sand s must be determined. For simplicity determine s (k=2,3) as the product 
ot the aJerage horizontal velocity during the support phase a~d the time duration of°the support phase, k' Thus, 

Ok 
sk = [(v~)k + (vx)k1 2 (k=2,3) (12) 

Substitution of Eq. 8 into Eq. 12 yields

fiF ). dt 
(13)sk = [(v~)k + ~I 1 Ok (k=2,3) 

Here again one observes that due to the first term on the right side of Eq. 13 the 
distance travelled during the k-th support phase will be a function of events that 
occurred in the previous phases. 

The preceeding discussion concerning the expansion of Eq. 6 to calculate the 
measured distance shows that a rather complicated expression results. Additionally 
it is seen that the expression requires a knowledge of the force histories occurring 
during each support phase. To the author's knowledge, such force records have not 
been described in the triple jumping literature. The fact that the force histories are 
not catalogued is not surprising when one recognizes that three force platforms would 
be needed to obtain the data. Additionally, the force platforms would have to be 
arranged to suit the required flight phases of the test subject. This then requires 
mobile placements of the force platforms if several subjects are being used who have 
different jumping abilities. 

In an effort to obtain a measure of the forces associated with the triple jump 
the author conducted some preliminary experiments using a single force platform. In 
this instance the force platform was set flush with an approach runway and the 
subject, an experienced collegiate triple jumper, was directed to take three jumps 
from the force platform. First the subject was required to make a normal approach 
and execute the first support phase from the force platform. The first flight phase 
associated with this jump was to be done in the usual fashion which required that 
the landing area be modified to accept a vigorous one-legged landing without causing 
injury to the subject. Next the subject was directed to make a normal approach but 
to execute the first support and flight phases on the runway. These first phases 
were to be adjusted such that the end of the first flight phase would occur on the 
force platform. Then in the usual fashion the subject was to complete the second 
support phase on the force platform. Once again the second flight phase would be 
continued in the normal fashion. The previous modification to the landing area was 
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kept in place so the subject could function as much as normal and yet not get injured. 
Finally, the subject was directed to initiate the first and second support and flight 
phases on the runway. These were to be adjusted such that the end of the second 
flight phase would occur on the force platform. The subject would then -continue in 
the normal fashion to execute the third support phase on the force platform. The 
third flight phase in this case was executed in the usual fashion with a landing 
occurring in a standard pit. Figure 5 illustrates the procedure just described. 

It is dear that the method described for obtaining the force records is merely 
an approximation of an actual jump since the three phases were not part of a single 
continuous jump. Nevertheless it is about all one can do with only one force platform. 
In these experiments the subject was able to maintain flight phases of approximately 
14 feet each. 

Figure 6 shows the vertical and horizontal force histories for the three support 
phases of the experiment. It is seen that the vertical forces have very similar shapes 
and only differ in magnitude and duration. Additionally these records are not 
slbstantially different from those one would observe for the support phase of the 
long jump. For the vertical components, the force record oscillates about a mean 
value. The oscillation is attributed to the excitation of the natural frequency of the 
horizontal transducers of the force platform and is not truly a measure of the force. 
Stiffer transducers are required in the force platform in order to provide a more 
realistic view of the horizontal force. Nevertheless, a measure of the time variation 
of the horizontal force is shown by the dotted line in the figures. The dotted line 
merely approximates the trend indicated by the actual signal. It is seen that just 
as with the vertical component of the force, the horizontal components are quite 
similar and do not differ greatly from those observed in the long jump. Naturally 
their magnitude and duration vary a little but this is as expected since each phase 
is taught to be executed differently. 

If the force records were not of such an approximate nature further analysis 
could be done using some of the ideas illustrated in the previous discussion. Additionally 
one could proceed further to develop simulation models as have been done with the 
long jump. Such additional analysis will await future study. 

CONCLUDING REMARKS 

The intent of this paper was to summarize some of the biomechanical analysis concepts 
that are being applied to the long and triple jumps. It is clear that more study has 
been devoted to the long jump, probably because of its popularity compared to the 
popularity of the triple jump, because it is not as complex, and because it includes 
the fundamentals associated with nearly all vigorous jumps. As better analytical and 
experimental methods become available for studying the long jump it is expected that 
our knowledge of the biomechanics of the triple jump will be expanded. 
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